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Dirac and Klein-Gordon Equations:
Convergence of Solutions in the Nonrelativistic Limit
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Abstract. The convergence of solutions of the Dirac and Klein-Gordon
equations to solutions of the Pauli and Schrodinger equations in the non-
relativistic limit is discussed. An abstract theory of these equations is developed
which is general enough to allow physical space to be an arbitrary complete
Riemannian manifold.

I. Introduction

Our object is to discuss the sense in which solutions of relativistic wave equations
approximate solutions of the corresponding non-relativistic Schrodinger equations
when the speed of light tends to infinity. We are concerned specifically with
the Dirac and Klein-Gordon equations for a particle in an external electro-
magnetic field. The problem, at least on a formal level, has a long history, but
rigorous results have a rather recent provenance. Veselic [11,12] dealt with
spectral convergence and analyticity of eigenfunctions in 1/c. His results for the
Dirac operator were improved and extended by Hunziker [6]. Veselic also
treated the Klein-Gordon equation, but only under extremely restrictive condi-
tions on the electric potential, with vanishing magnetic potential. These authors
were concerned with resolvent convergence, and they showed that in some sense
the resolvent of the relativistic Hamiltonian converges to that of the non-relativistic
Hamiltonian as c tends to oo.

Once one has resolvent convergence, the Trotter-Kato theorem may be
used to deduce convergence of the corresponding one-parameter groups, and
hence convergence of solutions of the equations. We follow a variant of this
approach, using a generalization of the Trotter-Kato theorem formulated by
Da vies [4].

In Sect. 2 we discuss an abstract version of the Dirac equation with relatively
bounded potentials, simplifying and also generalizing Hunziker's calculations.
In Sect. 3 the abstract theory is applied to some concrete cases, including Dirac
operators over curved spaces. In Sect. 4 we outline a parallel discussion of the
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Klein-Gordon equation. Many of the results of this paper are contained, in
somewhat different form, in [3].

2. An Abstract Dirac Equation

We shall consider the nonrelativistic limit of an abstract Dirac equation which
is general enough to encompass the case of curved space as well as the usual
Dirac equation over ίR3 or R". To this end, we will work in a setting which is
somewhat more general than that considered by Hunziker [6]. In Sect. 3 we
will indicate how the concrete special cases fit into this abstract approach.

Let H be a Hubert space and let A and β be two self-adjoint operators on
H with the following commutation properties:

β2 = I (2.1)

Aβ + βA = 0 or A = - βAβ. (2.2)

These formulas are what remain of Dirac's anticommutation relations in our
setting. Note that (2.1) implies that β is bounded (and also unitary as well as
self-adjoint). The operator A will be unbounded in all interesting cases.

The operators A, β can be represented more concretely by two-by-two operator
matrices. Indeed, since β2 = /, the operator β has two spectral projections P+, P _
corresponding to the eigenvalues + 1 , — 1. Note the formula P± =(1 ±β)/2.
D-D is the orthogonal direct sum H + @H_ where H ± is the range of P±. With
respect to this decomposition we can represent A and β by operator matrices.
We have

0

where A1X and A22 are self-adjoint while Aί2,A2ί are closed and densely defined
with A21 = A*2. The condition Aβ= — βA means that Aλί = A22 = 0, so that
A is of the form

U* oj
where Ao: D-D _ -• D-D + is a closed, density defined operator with adjoint ^4*: H + -> H _.
If, for example, H + = H_ = ίH]0, a given Hubert space, so that H ̂  C 2 (χ)H o ,
and if A0 = A$9 then we have A = OL®AQ9 where α is the two-by-two matrix

. This is the case which Hunziker discusses. However, as we will see in

Sect. 3, the matrix representation is not always very natural, and the more abstract
approach does in fact have some practical value.

Our abstract "free Dirac operator" is defined by

H0(c) = cA + mc2β. (2.3)

Here m and c are positive constants which we call the "rest mass" and the "velocity
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of light." Because of the commutation relations (2.1) and (2.2), we have the "Einstein
relation"

H0{cf = c2Λ2 + m2c4, (2.4)

so that the spectrum of H0(c) has a gap from — me2 to + me2. Let P + (c) and P_(c)
be the spectral projections corresponding to the positive and negative pieces
of the spectrum of H0(c). Then, because of the formulas

P + (c) + P_(c) = I

P+(c)-P_(c)=lH0(c)2Y1'2H0(c)

= (c2A2 + m2c4)-1/2(A + mc2β), (2.5)

it is straightforward to show that when c -> oo P±(c) converges strongly to P±(oo) =
P ± =(l±j8)/2.

Using the spectral theorem, it is not difficult to show that

in the strong operator topology, uniformly on bounded ί-intervals, as the speed
of light c tends to oo. Here (Λ2)+ = A0A* and (A2)_ = A*A0 are the restrictions
of A2 to the invariant subspaces H ± , H _. In this sense solutions of the free Dirac
equation tend to solutions of the free Schrodinger equation. It is important to
note the correction factors e±itmc2 and the splitting of the positive and negative
energy solutions in (2.6).

Next we introduce an operator V, representing a potential, and define

H(c) = H0(c) +V = cA + mc2β + V. (2.7)

We require that V be self-adjoint, bounded relative to A, and Vβ = βV. The

latter condition means that V is of the form + where V+, V_ are self-

adjoint operators on H + , H _ . (Usually HI + = H _ and V+ = F_ .) Since V is
bounded relative to A, if c is sufficiently large V will be bounded relative to H0(c)
with relative bound less than 1. Then H(c) = H0(c) + V will be self-adjoint by
the Kato-Rellich theorem. Henceforth we will assume that c is large enough
so that this is the case. Note also that A2/2m + V is a self-adjoint operator. For
our hypotheses on V guarantee that V is an infinitesimal Kato perturbation
of A2. Hence the operators

H±(oo) = (A2)±/2m+V±

are self-adjoint on the spaces H ± , H _ .

Lemma 2.1. Given any vector fin the domain ofH + (oo), there exist vectors . .

I_#(C)J
in the domain of H(c) such that, as c -> oo,

Ί Γ/Ί
] |_θj

f{c)
I-M Λ I

(2.7a)
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and

H^H B *Γ}
Proof. Note that D{H+(oo)) = D(A0A*). For/in this domain we set

f(c)=f g(c) = A*f/2mc.

Then (2.7a) is automatic. As for (2.7b), we use the matrix representation

A rfί T/ 'Λ 2 I *

4* F_ — 2mc _\

Applied to the vector [/(c),#(c)] this yields V+f+—A0A*f, — V_A*fl

so that (2.7b) is evident. •
With this in hand, we may apply Da vies' generalization of the Trotter-Kato

semigroup convergence theorem [4, Theorem 1.1] to deduce that

strongly, uniformly on bounded ί-intervals, as c -• GO . (We also get an analogous
result with the + signs replaced by — signs.)

Next, we examine the behavior of the spectral projections associated with
H(c). We need the following simple estimate.

Lemma 2.2. For φ in the domain of A,

|| VφII2 ^ a(c)||H0(c)φ||2 + b(c)\\φ\\2 (2.9)

where the constants a(c\ b(c) tend toO as c —• oo.

Proof Since V is bounded relative to A, there are constants a0, b0 such that

for φ in <3)(A). Now we expand:

I H0(c)φ | |2 = ((cA + mc2β)φ, (cA + mc2β)φ)

= c21 A2φ || + m2c4 \\φ\\2+ mc3[(Aφ,βφ) + (βφ, / # ) ]

= c2 \\A2φ || +m2c* II"' '" 2

where we have used the commutation relation (2.2). Accordingly the assertion
of the lemma follows, with a{c) proportional to 1/c2 and b(c) identically 0. •

The estimate (2.9) of Lemma 2.2 allows us to apply a theorem of Heinz (see
Kato [7, Theorem VI.5.12]) concerning the spectrum of H(c) = H0(c) + V. Namely,
if c is sufficiently large, then the spectrum of H(c) has a gap containing 0. Moreover,
if Q+(c), Q~(c) are the spectral projections corresponding to the positive and
negative halves of the spectrum of H(c\ then || Q + (c) - P+(c) \\ and || Q~(c)- P~(c) ||
both tend to 0 as c-^ oo. Here P+(c), P~(c) are the corresponding projections
associated with H0(c). (Note: The cited theorem in Kato's book refers to pertur-
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bations of a fixed operator, but it is easy to see that the estimates given there are
uniform in c)

Now, from (2.5), we know that the projections P±(c) converge strongly to
P±(oo) as c-^ oo. Conclusions:

Q±(c)^P±(κ) (2.10)

strongly as c -> oo.
To summarize;

Theorem 2.3. Let H(c) = cA + mc2β + V where V commutes with β and is bounded
relative to A and A, β satisfy (2.1), (2.2). Then, for c sufficiently large, H(c) is self-
adjoint and has a gap in its spectrum containing 0. The corresponding spectral
projections Q±{c) converge strongly to P±(oo) = (1 + β)/2 as c-+co. Moreover,
we have

strongly, uniformly on bounded t-intervals, α s c ^ o o . Here

where the suffixes + , — denote restrictions to H + , H _ , the ranges of P+(oo)
andP~(co). •

Remark. It is important to note that Theorem 2.3 enables us to deal with "magnetic
fields" as well as "electrostatic fields" V with no additional effort. Indeed, as
we shall see in detail in Sect. 3, a magnetic potential is simply a perturbation B
which anticommutes with β, so we may regard B as a perturbation of A. To be
precise, assume that B is a self-adjoint operator on H which anticommutes with
β and which is bounded relative to A with relative bound less than 1. Then V is
bounded relative to the self-adjoint operator A + B, so that

H(c) = c(A + B) + mc2β + V (2.12)

is self adjoint for sufficiently large c, and the preceding theory applies verbatim
with A + B replacing A. The Schrodinger Hamiltonian is replaced by the "Pauli"
Hamiltonian

if (oo) = (A + Bf/lm + V, (2.13)

and all our results about resolvent and unitary group convergence apply to
this case. (This observation enables many of the complications in [6] to be dis-
pensed with.)

3. Applications: Concrete Dirac Operators

The abstract theory developed in the preceding section may be applied to a
number of concrete special cases. Among these are the usual Dirac operator
over flat space as well as more general operators of Dirac type over Riemannian
manifolds.
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A. The Standard Dirac Operator

This is the case discussed by Hunziker [6]. The Hubert space H is L2(IR3;C4),

which we may write as C 2 (x) L2(U3 C2). The Dirac Hamiltonian is given by

H(c) = cα®(<r(ίV - A(x)) + mc2β + V(x) (3.1)

where V is the gradient operator, σ 1 ? σ 2 , σ 3 are the Pauli spin matrices, and
α, β are the two-by-two matrices discussed in Sect. 3. A(χ) is the magnetic vector
potential and V{x) is the electric potential. (Our units are chosen so that h = e = 1
where e is the electric charge.) The theory of Sect. 3 will be applicable provided
that the multiplication operator σ A(x) is bounded relative to σ V with relative
bound less than one, and also the operator V(x) is bounded relative to σ V. It
is well known that this will be so provided A e L p + L00 for some p > 3 (cf. Prosser
[9]), while V may be of the form Vt + V2 + V3 where VxeLp, p > 3, K2eL°°, and
V3 is a sum of Coulomb terms (cf. Kato [7, V.5.10]). Then the non-relativistic
Hamiltonian is the Pauli Hamiltonian

i/(oo) = (σ (/V - A(x))2 + V(x) (3.2)

acting on L2{U2, C3). (In this case H + (co) and H_(co) are the same.)

B. Operators over Rίemannian Manifolds

Let M be a finite dimensional C00 Riemannian manifold, and let ξ be a Hermitian
vector bundle over M — a complex vector bundle equipped with a smoothly
varying inner product on each fiber ξχ. We will work with operators on the
Hubert space H = L2(ξ) of square-integrable sections of ξ with the inner product

(Φ,Ψ)=S<φ(x),ψ{x)>dV
M

where dV is the Riemannian volume element.
A first-order differential operator L can be expressed in local coordinates by

Lφ= fjAi(x)^ + B(x)φ

where the coefficients are matrix functions of x.

We recall that the symbol σ of L is defined as follows (cf. Palais [8]): for each
point XGM and cotangent vector veT*M we have a linear map σ(v,x) on the
fiber ξχ given by the formula

σ(υ, x)e - L(gφ)(x) - g(x)(Lφ)(x) (3.3)

where φeC^iξ) is any smooth section of ξ such that φ(x) = a, and geC™(M)
is any smooth function with differential dg(x) = v. In local coordinates we have

n

σ(υ,x)= Σ tfA ix).
i=ί

For example, if L is the usual Dirac operator [R3, we have the formula
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σ(υ, x) = σ(v) = ι^1α1 + v2oc2 4- ι;3α3

where the α. are the four-by-four Dirac matrices: α. = α(χ)σ..

Definition. By a Dίrac-type pair of operators we mean a first-order linear differen-
tial operator D on L2(ξ) together with a zeroth order operator β such that the
following conditions are satisfied:

(i) D is formally skew-symmetric; that is, (Dφ, φ) = — (</>, D^) for any sections
φ, φ which are C00 with compact support. Note that as a consequence the symbol
σ(v, x) is a symmetric operator on ξχ.

(ii) The symbol σ of D obeys the Clifford algebra anticommutation relations:

σ(v9 x)σ(w, x) + σ(w, x)σ(ι;, x) - gx{v, w) - Σ0y(x)ι>V,
y

where g is the Riemannian metric of M.
(in) The parity operator β is defined by (βφ) (x) = βxφ{x), where βχ is a symmetric

linear operator on ξχ, varying smoothly with x, such that β2

x = /. We require
that βD + Dβ = 0. In particular it follows that βχ anticommutes with σ(v, x) for
every v in T*M.

Condition (iii) says that the vector bundle ξ has an orthogonal direct sum
decomposition ξ = ξ+ © ξ~ such that D maps sections of ξ+ into sections of ξ~
and vice-versa. The operator /? is + 1 on ξ+, — 1 on ξ~. D thus splits into two
operators D + , D~ where D + maps ξ+ to ξ~ and D" maps ξ~ to ξ + .

A special case of [1, Theorem 2.2] is that if M is a complete Riemannian mani-
fold and D is a Dirac-type operator over M, then the operator iD, with domain
C™{ξ), is essentially self-adjoint on the Hubert space L2(ξ). We can then define
a free Dirac Hamiltonian of the sort considered in Sect. 2 by

H0(c) = ciD + mc2β. (3.4)

We introduce lower-order perturbations corresponding to scalar and vector
electromagnetic potentials as follows.

The scalar potential V is given by multiplication by a function V(x) defined
on M. (More generally, V(x) might be a symmetric linear map on ξχ which
commutes with βx.) For V to be bounded relative to iD it suffices that V be locally
in L (M) for p > n (the dimension of M) and that V be bounded at infinity. The
proof is essentially the same as that for U3 (cf. [9]).

Now suppose that a(x) is a vector field on M. Using the Riemannian metric
g we can regard a as a field of cotangent vectors (or a 1-form) on M. Then, for
each x in M, define

= σ(a(x),x) (3.5)

where σ is the symbol of D. Then, for each x in M, A(χ) is a symmetric operator
on ξχ and A(χ) anticommutes with βχ. We define A to be multiplication by A(x)
on ξχ. A is the operator corresponding to the vector potential a on M. Thus
our Dirac Hamiltonian is

H{c) = c(iD -Ά) + mc2β + V. (3.6)

(The general question of self-adjointness for such operators is discussed in [2].)
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C. The De Rham Operator

This is perhaps the simplest example of a Dirac-type operator over a general
Riemannian manifold M. Let ξ be the complexified exterior bundle of the cotangent
bundle T*M; thus sections of ξ are complex-valued differential forms. The
Riemannian metric of M induces a Hermitian structure on ξ. Let d be exterior
differentiation and let δ be its formal adjoint. Then D = d — δ is a formally skew-
symmetric first order differential operator on ξ. The symbol σ of D is given by

σ(v)e = v A e + ίυe (3.7)

where Λ is the exterior product and ί is interior multiplication (cf. [18]). It is
easy to verify the anticommutation relations

σ(v)σ(w) + σ(w)σ(v) = vw.

Note that D2 = A, the Laplace-Beltrami operator for M. The operator β is
induced by space inversion on each cotangent space T*M. Thus βφ = ( — l)pφ
if φ is a p-form. It follows immediately that β anti-commutes with d and δ separa-
tely, hence with D. The bundle ξ splits into ξ+ ®ξ~ where ξ + = forms of even
degree, ξ~ = forms of odd degree. Accordingly, (D, β) is a Dirac-type pair in the
sense of our definition. The corresponding "Dirac equation" is really a generaliza-
tion of the Maxwell equations; the case of 3-dimensional space illustrates this
most clearly.

D. The Dirac Operator for a Spin Manifold

Suppose that M is an n-dimensional oriented Riemannian manifold with a spin
structure—a reduction of the structural group of the tangent bundle T(M) from
SO(n) to its double covering group Spin(rc) (cf. [8, Sect. 10]). The group Spin(rc)
has a unitary representation Sn of dimension 2m, where n = 2m or 2m + 1, gotten
by considering the action of Spin(rc) on the Clifford algebra of Un. This represen-
tation is called the spin representation. If n = 2m + 1 is odd, then Sn is irreducible.
On the other hand, if n = 2m is even, then Sn decomposes into a sum S* © Sn

of irreducible subrepresentations of dimension 2m~1 called the half-spin repre-
sentations of Spin(2m). (For details see [14, Sect. 1].) Suppose now that n is even,
and let £f be the bundle associated with the spin representation Sn, so that ίf =
^ + ®^~ where <9^+, £f~ are associated with the two half-spin representations.
The Dirac operator D maps 5^+ to £f~ and £f~ to y + it is a first order skew-
symmetric differential operator on 9* whose symbol is σ(v) = Clifford multipli-
cation by v; in local coordinates,

D= terVex (3.8)
i = 1

where {e.} is a local orthonormal frame, V is covariant differentiation associated
with the Riemannian metric, and the dot denotes Clifford multiplication. The
operator /5 is + 1 on £f+, — 1 on £f~.

Odd-dimensional manifolds are less interesting. We can still define a Dirac
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operator Do on the spin bundle Sf, but we then have to take ξ = ¥ 0 ίf with

Σ
p o

D \ D DQ
 a n d ^ = o - l •

as discussed in (A))

4. The Klein - Gordon Equation

The Klein-Gordon equation for a relativistic particle of spin zero and mass m
in an external electromagnetic field (V, A) is

(4.1)

As with the Dirac equation we choose units so that h = e = 1 where e is the electric
charge of the particle. We can write down an abstract version of this equation
as follows:

(4.2)

where A and V are self-adjoint operators on some Hubert space H o . The "free"
equation is the case V = 0:

d2φ/dt2 = - L(c)2φ (4.3)

where L(c) = (c2A2 + m 2 c 4 ) 1 / 2 . The free equation can be solved explicitly and its
behavior as c -• oo treated by means of the spectral theorem; we omit the easy
details.

We turn now to a careful treatment of the abstract equation (4.2). Let A and
V be self-adjoint operators on H o , and define L{c) as above. Then (4.2) becomes

φ= - L(c)2φ + V2φ + 2ίVψ. (4.4)

We convert (6.7) into a first order system in the usual way by defining φλ = φ,
φ2 = φ. Then we get

d

Jt

0 I

V2-L2 0

0 0

0 -2iV
(4.5)

We want to interpret this rigorously on an appropriate Hubert space, namely
that given by the "energy" norm associated with the abstract Klein-Gordon
equation (4.4).

As with the Dirac equation, we assume that V is bounded relative to A. Then,
when c is sufficiently large, we will have the inequality

Vφ\\^a\\L(c)φ\\ (4.6)

for all φ in 3){A) — @{L{c)\ where α can be made as small as we like. (Note: in
the calculations that follow we will write L for L(c).)
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Although V is a small perturbation of L, V2 need not be bounded relative
to L2. However, L2 - V2 can be interpreted as a self-adjoint operator using
quadratic form perturbation theory (see [5] or [7] a similar approach has been
taken by Weder [13]). Indeed, we have

1(L2) = 2{L) = 9{A) c Sf[y) = £(V2)
and,forι/un^(L2),

(V2φ, φ) = {Vψ, Vφ) g a2(Lφ, Lφ) = α2(L2(A, φ)

where we can assume that α < 1 by taking c sufficiently large. Thus

(1 - a2)m2c4{φ, ψ)^(l- oc2){L2φ, φ) ̂  ((L2 - V2)φ, φ) g (L2φ, φ)

in the sense of quadratic forms. Accordingly 3)(A) = =S(L2) is complete with
respect to the inner product defined by L2 — F 2 , and so there is a well-defined
positive self-adjoint operator on Ho, which we will denote by M{c)2 or (L(c)2 — V2\
such that @{M{c)) = £{L2 - V2) = J(L2) = 9{L) and such that M(c)2 = L{c)2 - V2

in the sense of quadratic forms.
Now form the Hubert space H = 3)(A) Θ Ho with the inner product

2,*A2) (4.7)

With respect to this "energy" inner product, the operator

(4.8)

with domain @(S) = @(M(c)2)Φ@{A\ is skew-adjoint. (This is a standard fact;
cf. for example [2, Proposition 3.1].) Moreover the operator

, _ Γ o o l
"Lθ 2iVJ'

T= : " , (4.9)

with domain @(T) = @(A)®@(V)9 is also skew-adjoint.

Lemma 4.1. T is bounded relative to S(c), and the relative bound is less than 1
if c is sufficiently large. Hence S(c) + T is skew-adjoint ifc is sufficiently large.

Proof. lϊφ = (φί, φ2) is in 0(S), then φ2 belongs to 2(A) £ 9(V\ so φ is in 3){T).
Moreover, by equation (4.6),

|| Tφ II2 = 41| FιA2 | |2 - 4(F 2 ιA 2 , ^A2) ^ 4α 2(L 2ιA 2, ̂ 2 )

so that

Thus || TiA ||2 S 4α2/(l - α2)|| Sφ \\2. The constant here will be less than 1 when
c is large. •

It follows that S(c) + T generates a one-parameter group of operators on
H which are unitary with respect to the inner product [, ] c . This inner product
depends on c, and so it will be useful when examining the nonrelativistic limit
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to transform to a new Hubert space with an inner product independent of c.
(Veselic [11,12] has a different approach, working on the Hubert space 3){A) Θ Ho

with a fixed indefinite inner product related to the Klein-Gordon conserved
density. His methods appear to require extremely strong conditions on the scalar
potential V, and he does not consider magnetic vector potentials.)

Define D-D x = Ho © Ho with the direct sum inner product and define an operator
U(c) from H to Hχ by

Note that we have

"1
I/J

M(c)"1

/2L *7 -a
One easily checks that U(c) is unitary with respect to the inner product [, ] c on
H and the usual inner product on D-D ί .

Now consider the self-adjoint operator H(c) on D-D x defined by

iH(c) = U(c)(S(c) + T)U(c)-x. (4.12)

We have Sf(H{c))= U{φ{S{c))= 2(A)®3(A\ independent of c. Moreover we
compute

UiΦicMcy^il^ _ ^ ( c ) l = ̂ o(c) (4 1 3 a )

and

U(c)TU(c)~1 = i\ ~ \ = iW. (4.13b)

Thus we have the self-adjoint operator

We can deduce the limiting behavior of eιtH{c) by methods similar to those employed
in Sect. 2 for the Dirac equation.

Lemma 4.1. Given feΘ(A2\ there are vectors f(c\g(c) such that, as c ^ co, we

havef(c) ->/, g(c) -• 0, and

.9(c)

where H(oo) = A2/2m + V.

Proof. We can take f(c)=fg{c)= - [M(e) + me 2]" * F/ From (4.14), the first
component of the left side of (4.15) is

(M(c) - mc2)f+ Vf+ V[M{c) + me2] " x Vf
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while the second component is - V[M(c) + mc2~]~1Vf. Thus we need to prove

{M(c) - mc2)f-> A2f/2m (4.16)

and

V[M{c) + mc2YlVf-+ 0. (4.17)

Because. V is bounded relative to A we have the inequality (in the sense of
quadratic forms) for some constants α, β:

V2^a2A2 + β2.

Accordingly,

L(c)2 - a2A2 -β2^ L(c)2 -V2 = M(c)2 ̂  L(c)2. (4.18)

Hence, for c large (so that m2c4 > β2 and c2 > α2), we have

(c2-u2)A2SM(c)2.

From this it follows that || 4M(cΓ * || ^ ( c 2 - α 2 ) " 1 / 2 and a fortiori \\A[M(c) +

m^Y'Wsic2-*2)-112.
Hence, for fe@(A), we have

|| V[M(c) + me2] - 1 F / || ^ α || A[M(c) + mc2~] ~' Vf \\ + β \\ [M(c) + me2] " x 7/ ||

^ [α(c2 - a 2 ) " V2 + β(mc2)-x] || Vf \\.

This establishes (4.17).
Turning to (4.16), we begin with the formula M(c)2 - m2c4 = ( c 2 ^ 2 - V2)

(form sum) so that

M(c) - m e 2 = [ M ( c ) + m e 2 ] " 1 c 2 A 2 - [M{c) + m c 2 ~ \ - γ V V (4.19)

where the right side is now an operator sum. Moreover [M{c) + mc2~\~1V is a
bounded operator with norm equal to that of its adjoint, namely, as calculated
above,

|| V[M(c) + me2]'11| S α(c2 - a2)'1/2 + β{mc2γ\

This tends to 0 as c -• GO . Hence in (4.19) we are left with the term
[M(c) + rnc2Y1c2A2.

We claim that c2\_M(c) + mc2]~1 -> l/2m strongly as c->oo. Indeed, from
the inequalities (4.18) together with the formula for L(c)2 we get

m V - β2 S M(c)2 S m2c4 + c2A2

so that we have

mc2]-1 ^ {mc2+φr^c4 - β2~\ ~\ (4.20)

Here we have made use of the monotonicity of the square root on positive operators
[7, Theorem V. 4.12].

From inequalities (4.20) it follows easily that c2[M(c) + m e 2 ] " 1 - > l/2m
weakly as c -• GO . But since the lim sup of the norm of c2[mc2 + M(c)]~ * is l/2m,
weak convergence implies strong convergence. D
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We may finish the discussion of the abstract Klein-Gordon equation along
the lines of our treatment of the abstract Dirac equation. Thus we may introduce
the spectral projections P+(c),P_(c) associated with H(c) and prove that
P + ic)-* P± strongly as c -> oo by the argument used in Sect. 4.

Moreover "magnetic potentials" can be introduced by altering the operator A,
just as in the Dirac case. The Klein-Gordon operator is slightly more complicated
however, if for example A2 = A\ + A\ + A\ then we introduce magnetic potentials
Bγ,B2, B3 so that our new A is given by

(AT = (A, - BJ2 + (A2 - B2f + (A3 - B3)
2

in the sense of quadratic forms. We want the perturbation B = (B1,B2,B3) to
be such that S)(A) = 2{A). A simple estimate using quadratic forms shows that

/ y/2
this is guaranteed provided B = \ΣB2 \ is bounded relative to A with relative

V
bound less that 1 this is essentially the same condition as in the Dirac case.

The following theorem summarizes the main results.

Theorem 4.2. Let A and V be self-adjoint operators on a Hilbert space H 0 where
V is bounded relative to A. Define M(c) by the quadratic form relation M(c)2 =
m2c4 + c2A2 - V2. Let H{c) be defined on H x = H o 0 H o by

~M(c) 0 Ί V-V V~

0 - M(c) J + |_ V - V

Then, for c sufficiently large, H(c) is self-adjoint and its spectrum has a gap containing

0. The corresponding spectral projections P±(c) converge strongly to P±= \ \,

0 0Ί
\ as c^> co. Moreover, if H^ = A2/2m + V, we have

e+ίtmc2

eitH(c)p±sc\^ e±itH°°p±

strongly, uniformly on bounded t-ίntervals, as c -» oo. •
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