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A Lower Bound with the best Possible Constant
for Coulomb Hamiltonians*
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The reason for stability of matter with Coulomb interactions has become more
transparent once it was recognized that the no-binding Theorem of Thomas-
Fermi (TF) theory is the key to the problem. In fact, in [1] it was conjectured that
TF-theory always gives a lower bound to the ground state energies of Coulomb
systems. Unfortunately one inequality on which this conjecture is based has
resisted all attempts of proof or disproof. On the other hand one knows that for
large nuclear charges Z TF-theory becomes exact and one could hope that at
least for large Z the TF-energy is a lower bound. More precisely the question is
the following. Suppose we have a neutral system, M nuclei with charges Z,
JV = MZ electrons. For the ground state energy E(M, Z) one knows [4]

lim £(M, Z)jZηβ = - MεΎF

where

εTF = 0JΊme4/h2 = 0.385 in our units with 2m = e = h = l.

For stability of matter one considers the other limit M -* oo, Z = fixed. In ref. [1]

E(M, Z) ^ - (4π) 2 / 3 Mε T F Z 7 / 3 (1 + O(Z~2 / 3))

was proved. (The value (4π)2/3 was subsequently improved to (4π)2/3/1.5 [2].)
In this note we shall produce a family of inequalities which among other things
imply

JB(M, Z) ̂  - Mε T F Z 7 / 3 ( l + O(Z" 2 / 3 3 )) .

Thus the constant in front is the best possible, the correction O(Z~ 2 / 3 3 ) is probably
not.

Our general strategy is to split the Coulomb potential into a regularized
long-range part υr and a short-range singular part vs

-r = vr(r) + vs(r\ vr = g2d*g2, g2(x) = e~^ (1)

* Work supported in part by Fonds zur Forderung der wissenschaftlichen Forschung in Osterreich,

Project No. 3569

0010-3616/81/0079/0001/S01.40



2 W. Thirring

For υr the classical bound with εTF will hold for Z -> GO whereas the corrections
due to vs go with a lower power of Z. We keep the notation of [1] (xυpp σ. =
coordinate and momentum and spin of the i-th electron, jRΛ, Zfc = coordinate
and charge of the fc-th nucleus) but study the family of Hamiltonians

+ (α -l)vs(Xi - Xj)) + Σ ZkZJ\Rk ~ ̂ J " 1 + (« " W^k ~ RJ)'

(2)

We are actually interested in H(l) and shall use the concavity of the ground state
energy [3] E (α) of H (α) in the form

EM^EM + QL-^EW-Eiΰ)) Vα^l . (3)

1. The No-Binding Theorem

For our estimates we shall need the no-binding theorem of TF-theory with Yukawa
potentials e~μr/r. The proof for μ > 0 proceed exactly as for μ = 0[4], the sub-
harmonicity argument being also applicable [5] since Δe~μr/r + 4πδ(x) =
μ2e~μr/r > 0. The theorem states that the TF-energy is always above the sum of
the energies of the isolated atoms and reads in formulae

3? M d3xe~μ^x ~Rk\ d3xd3v

: - Σ Φ,y,Zk) (4)

k= 1

fc>w

where

Rk-R

X — V

By scaling one sees that ε involves only an unknown function of one variable,

( Z \
ε(μ, 7, Z) - y6μ7/ -^-7 and TF-theory tells us

\y μ J

ε(0,y,l) = -ε T F (3π 2 ) 2 / 3 = 3.68/y. (5)

+) We adopt the usual mathematical conventions:

* = convolution (/* g) (x) = §d3x'f(x - x')g(x%

|| ||p = p-Norm: | |/||p = [f ̂ xl/ίx)!*]1 7 ', 1-' = {/: | |/||p < »}
. . . , , -/where/ ^ 0
\f\ = negative part: /1 = . ,

0 otherwise

f= Fouriertransform:/(/c) = \d3xeίkxf{x)
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For large μ the repulsion becomes unimportant. Then the bound

Ml 5/3 ^ - Z5 / 24(2π/5)3 / 2 = - c Z 5 ' 2 (6). 1 1 | || 5/3 _
5 II n II 5/3

5/2

and thus ε < c y 3 / 2 μ 1 / 2 Z 5 / 2 will be sufficient.

2. Bound for E(0)

Taking (4) for μ = 0, Zk = 1, M = JV, and integrating with
J ^ 2

- ^ ) . We learn

ϋ r(χ. - x ) ^
1

)z;g(x - x.) - - J

d3xd3x'

(7)

1

or, upon substitution in (2)

H ( 0 ) ^ v - ' " 2 vr{Xi - Rk) + μ3xn(x)vg(x - xΛ - ^ N
) 7
J 3 V J3^/

k>m

Here hi is the Hamiltonian of the i-th particle in an external field. Using the coherent
states \q,k} with wave function e'kx g(x — q) it can be written as [5]

l - ^ (8)

For spin 1/2-electrons we obviously have

and general trace inequalities [5] tell us

cd
3qd3k

(2π)3

(9)

(10)

In our case the fe-integral is easily performed and we find

r* » , cd3xn(x)

x-q\
*2

(11)
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So far the inequality holds for any neL5/3 and we shall now optimize

)

15π2

The formal variational derivation vanishes when

5/2

2 J y\χ-y\

n(q) =
1 cd

3xn(x)

x-q\

3/2

(12)

and TF- theory guarantees that sup is actually attained. From (12) we learn
n

^ v jηίγλ 5/2

Substituting a linear combination of the two versions back into (11) and using the
generalization of (7) for Zk ^ 1, N ^ M, we find the desired bound:

- y R.)

k>m

3. Correction Due To

Since g2 has the Fouriertransform ^2(/c) =

and therefore

Thus

with

(k2+μ2)2

μ8 4π
•2 I ,,2\4T2

, we have

'rV" (k'+μ2)

1+-
μ2 , μ* , μ6

vs= Σ

.2 , ,,2\3(k2+μ2)

* /J o
p = l

dζK0(Qζ,

L2P~μr
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M

Since the/ p are positive we may again multiply (4) with ΠΛ^xfe ~~ ^ a n < ^ m t e "

grate: Substituting n = m*fp and using || m*/ | | 5 / 3 ̂  || m | | 5 / 3 || / || t = \\ m | | 5 / 3

we get a "no-binding" Theorem for the fp * */p-potential, however with

the binding energy of the Yukawa potential. Adding these four inequalities to the
one with μ = 0 gives a no-binding theorem for the υr + αι?s-potential.

—-Jd3xm5/3(x) — Σ Zk)d3xrn(x)(\x — xk\
 1 + (α — l)i^s(x — xfc))

** k=l

k>m

, xkeU3, 0<y'<y. (14)

Upon inserting this for Z, = 1, M = ΛΓ5 into (2) we generalize (7) to

+ (α - lK(x - x,.)) + Σ ZkZj\Rk - Rj-1 + (α - l)r,(Rk - Λm))
k>m

- ^$d3xm5l3(x) - f \d3xd3ym{x)m{y)(\x - y^1 + (α - 1 » - y))

Taking the expectation value of H(α) with any ̂ (x χ , . . . xN σ 1,... σN) the potential
will be integrated with the one-particle density

p(x) = N Σ ^ 3 x 2 .^ i V | ιA(x,x 2 , . . .x i V ,σ 1 ? . . .σ i V ) | 2 . (16)

For the kinetic energy we employ the inequality [1,2]

<Ψ\ΣPΪ ^>^A(3π) 2 ) 2 / 3 fd 3 xp 5 / 3 , /=(4π)2/3/1.5. (17)
3^ί = l

Thus, setting m(x) = p(x), using (14) again and the bound (6) for ε we conclude

£(α)= inf < ^ | i f ( ) | ^ > ^ ^

R j - 1 + (α - lK(x - Rk

- y\'x + ( α - l)t;s(χ -
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ΊΨ
 r

At the end we have rescaled the γ's to introduce εTF according to (5). Inserting (18)
and (13) into (3) gives the Lower Bound for the Coulomb Hamiltonian

H(l)> - ε T F

( α l ) μ

4 α β T F

Vα > 1,0 < yί < 1,0 < y3 < y2 < - - y4, y4 > 0, μ > 0,
1

7
/ = (4π)2/3/1.5 = 3.6, c = 4(2π/5)3/2 = 5.6

Remarks. 1. For α = 1, y3, γ4 -> 0, y~1 =/(l + (^Z^/3/JV)1/2) we recover the result
]

E(l)^-fετF.

2. Optimizing (19) over all parameters is an extensive numerical job. However,
the allegation made at the beginning is obtained easily by putting α = Z 2 / 3 3 ,
μ = Z 7 / 1 1 , and, say, yi = Z~1/2, y2 = y4 = 2y3 = 1/3/ Then the first term is

M

k=l

and all the others are 0(Z~2/33).
3. The stability proof can be extended from potentials of the form ^e .e . v(x. — v.)

to potentials with spin and isospin, f.i. Σ (τ.τ^ ^ σ ^ φ c . — Λλ). Then (7) would

prove stability of nuclear matter with Yukawa potentials but without hard core.
4. If one could prove the no-binding Theorem for vs in the form that ε is the atomic
energy for vs and not for the Yukawa potential then the numbers in the terms
0(Z~ 2 / 3 3) could be improved.
5. The physical reason why stability and no-binding requires potentials of positive
type is that v ^ 0 implies v(0) ^ v{r)ir > 0. If v(r0) were > v(0) for some r0 > 0
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one would easily construct a trial function such that even for fermions

iV->oo i=l i>j

Just concentrate N/2 positive and JV/2 negative charges in balls with radius ro/10
and separate them by r 0 : For large N the interaction — e2v(r0)N2/4 wins over
their self-energy e2v(0)N(N - 2)1 A and kinetic energy N 5 / 3/(r 0/10) 2.
6. The physical reason why the contribution of vs does not increase as fast as
Z 7 / 3 is that e~~μr/r does not bind as many particles. Even neglecting the electron
repulsion the atomic energy is sum of all binding energies ^ — c \\ vs \\ ]j2

2 ~
Z5/2μ~1/2. Thus if μ increases faster than Z 1 / 3 then υs does not contribute to the
leading order in Z.
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