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A Mechanical Model of Brownian Motion

D. Diirr*, S. Goldstein**, and J. L. Lebowitz***

Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Abstract. We consider a dynamical system consisting of one large massive
particle and an infinite number of light point particles. We prove that the
motion of the massive particle is, in a suitable limit, described by the Ornstein-
Uhlenbeck process. This extends to three dimensions previous results by
Holley in one dimension.

0. Introduction

The erratic motion of a macroscopically small but microscopically large particle
(visible in a microscope), in an equilibrium fluid, e.g. pollen in a liquid or a smoke
particle in air, is a well known physical phenomenon going under the name of
Brownian motion [1]. The physical explanation and mathematical description of
this motion were first given by Einstein: it is due to the fluctuations in the force
exerted on the Brownian particle by its collisions with the fluid atoms and is
described by a diffusion equation for the displacement of the Brownian particle.
The ultimate mathematical idealization of this phenomenon is the Ornstein-
Uhlenbeck process for the position and velocity of the Brownian particle (Xt, Vt),
described by the stochastic differential equations

dXt=ytdt, (0.1)

dVt=-aYtdt+]/DdWt, α^O, D^O, Wt = Wiener process. (0.2)

The position process Xt converges in an appropriate limit (e.g. α-> oo, a2/D = const)
to a Wiener process.

A little thought shows that in order to rigorously derive the Ornstein-
Uhlenbeck process for the Brownian particle from the mechanical motion of the
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isolated system consisting of the Brownian particle plus fluid, one must consider a
"suitable" limit, in which the ratio of the mass of the Brownian particle to the mass
of a fluid particle becomes infinitely large.

We present here such a mechanical model for the Ornstein-Uhlenbeck process:
the motion of a heavy particle of mass M in an infinite ideal gas of point particles
of mass m in the limit M/m-> oo. This is an extension to three (actually an arbitrary
number of) dimensions of the one dimensional work done by Holley [2]. Previous
work on higher dimensional models [3, 4] considered only a non mechanical
Markov process.

The physical situation is as follows. Consider an infinite ideal gas of point
particles of mass m with independent velocities given by a probability distribution
F, which we assume to be absolutely continuous with respect to the Lebesgue
measure, i.e. F(dυ) = f(v)dv. We first consider the case in which f(y) is rotationally
invariant, e.g. a Maxwell distribution. The arguments we give also apply to general
distributions, considered in Sect. 6. We now place at time ί = 0 a heavy ball of
radius r and mass M into this ideal gas system. The initial position X and velocity
V of the center of the ball may be choosen arbitrarily.

The ball undergoes elastic collisions with the gas particles. The problem we will
be concerned with is to describe the motion of the ball in the Brownian limit (BL),
where ra—>0 and the gas has density λ~m~112 and velocity distribution given by

m3/2/( j/rai;). We shall prove that in the BL the velocity V(t) of the ball is given by
an Ornstein-Uhlenbeck process.

A heuristic central limit theorem type argument for this scaling, which assumes
that in the limit the collisions become essentially independent, may be given as
follows: When w-»0 the average energy m<z;2>/2 of the gas particles remains
constant due to the velocity scaling. Roughly speaking each collision changes the
velocity V of the heavy particle by δV~my with variance <(5F2> ~m. Hence in a
time interval of length T in which there are N collisions the total variance
<N><(5F2>~<JV>m will remain constant if <ΛΓ>-r2λT<|t;|>-m"1 or A~m~ 1 / 2

for T fixed.
To state our results more precisely we consider the sequence of stochastic

processes Fm, where VmJ is the velocity of the ball at time ί in a bath of particles of
mass m.

Theorem. 7/J \v\^f(v)dv < GO, then the"sequence"Vmconυerges in distribution (weakly)
to the Ornstein-Uhlenbeck velocity process in the limit m-»0.

It follows then that the position processXm>t converges weakly to the Ornstein-
Uhlenbeck position process. Because the collision equation is linear in the
precollision velocities V9 v and depends only on the ratio M/m, the BL is equivalent
to a different limit in which M-»oo, m, λ and the velocity distribution remain

constant, the time is scaled like M and space like j/M. Our theorem thus yields an

Ornstein-Uhlenbeck limit for the scaled process YM(t) = ]/MF(Mf), for which
process the limit theorems in the papers mentioned above were given.

The outline of the paper is as follows: In Sect. 1 we describe the model more
precisely. Section 2 presents the main result, for the case when the velocity
distribution of the light particles is spherically symmetric, which is proven in
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Sects. 3-5. The latter section is the heart of the matter - showing that the
mechanical motion can be approximated by a Markov process when w->0.
Section 6 generalizes the result to non-isotropic velocity distributions of the light
particles; the friction and diffusion coefficient are now tensors. The appendix
contains some technical details.

We have also extended our work to the case where the massive particle is not a
ball but has a general convex shape. The motion is now one of rotation and
translation. We derive the appropriate Ornstein-Uhlenbeck process and write
down the corresponding Fokker-Planck equation for this system. This may be
used to model the motion of a large molecule in a fluid and will be published
separately.

1. The Mechanical Model

Throughout this paper we will call the heavy particle the molecule and the light
particles atoms or bath particles. Let Γ = R3 xIR3 denote the one particle phase
space, &(Γ) its Borel algebra and μm an absolutely continuous measure on Γ,
defined by

dμm = λmdqfm(v)dy, g^elR3, v = \υ\, (1.1)

where

^ = •*/!/«, ^>0 (1.2)

and

/„(») = «3/2/(|/^>); (1.3)

f(v) is the density of a rotationally invariant probability measure. We assume that
the velocity distribution has at least four moments i.e.

j v4f(v)dy < oo .

The ideal gas of atoms with masses m is then described by a Poisson field
(Ω, ^% IPJ built on (Γ, 0S(Γ), μm) :lίNB = the number of particles with coordinates
(q,y) in Beβi(Γ), then

(1.4) ,

It follows that if B1 ...Bt are pairwise disjoint sets the random variables NBι are
independent [5]. Here ω represents a configuration of countably many bath
particles i.e. ω^^υ^.

Remark. We can think of the Poisson field as describing atoms independently
distributed in position space with density λm having independent velocities with
distribution given by fm(v). For the Maxwell distribution

/m/Λ 3 / 2

= - exp(-j8roι>2/2), j8>0. (1.5)
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Let us now put the molecule, a ball of radius r and mass M, at a position X°
with velocity F°. In so doing we remove all atoms from the configuration which
are inside the region to be occupied by the molecule.

To describe a collision between the molecule with velocity V and an atom with
velocity υ, we use the projection vn of v on the line through the center of the
molecule and the collision point on the surface of the molecule. Writing vt for the
tangential component, this gives

and similarly

Since the collisions are without friction, conservation of momentum and energy
then yields for the post collision velocities F', vr

K=Yt, v't = vt, (1.8)

, _ M-m 2M
- ~

•
For ωeΩ we define the velocity Fm ?ί(ω) of the molecule as a right continuous

function of ί : If the molecule starts with velocity F° then Ymtt(ω) = F° for t < τ1(ω),
the time of the first collision. The velocity changes during this collision according
to (1.8)-(1.10) and afterwards the molecule moves freely with the new velocity F1,
until the next collision at τ2(ω), i.e. Vm^(ω) — Vl, τ1(ω)^ί<τ2(ω), etc. Infinitely
many collisions in a finite amount of time, as well as simultaneous collisions of two
or more atoms with the molecule (multiple collisions) are problematical. We show
in the Appendix that they can be ignored.

For any / = [0, T], 0<T<oo, let D(I) denote the space of right continuous
functions with left limits defined on / and J>(D(/)) the Borel algebra for the
Skorohod-topology [6]. The above description defines a stochastic process Fm r,
ίe/, on (Ω, J ,̂ Pm), which we may regard as a D(I) valued random variable
Ym:Ω-+D(I). Thus F» = F>,-) = FMf.(ω).

Vm induces a measure Pm on D(I) :

Pm(A)=Vm({ω\Vm(ω)eA})9 (1.11)

for all Ae$(D(IJ). (Throughout this paper the letter / denotes an arbitrary interval
[0, T], 0 < T< oo. With slight abuse of notation, we do not distinguish between the
induced measures for distinct L We also denote by Pm the measure induced on
D([0,oo)).)

Remark. The process Vm is not a Markov process. The molecule can catch up with
"slow" atoms with which it has collided earlier and hence are carrying information
of past events. These recollisions may be real or virtual. The latter correspond to
collisions which are impossible if the past history of the molecule is known. Thus
Vm has a memory.
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2. The Main Result

Definition 2.1. The Ornstein-Uhlenbeck velocity process F0 (with state space IR3),
defined on some probability space (Ω0,J^0, IP0), is the Markov (diffusion) process
given by the stochastic differential equation (0.2). Its transition probability is

, (2.1)

where δ\t) = α(()=eχp(-αt). D

F0 induces the measure P0 on D(I\ i.e.

P0(A)=P0({ωeΩ0/70(ω)eA}) (2.2)

for all Aε3i(D(T)\

Definition 2.2. Let Pn, P be probability measures on (S, &(S)) where S is a metric
space and &(S) the Borel algebra. Then Pn converges weakly to P(Pn^>P) if for all

bounded continuous real functions h on S lim §hdPn = §hdP or, equivalently, if

liminfPn(G)^P(G) for all open G [6]. Π
Note that "weak convergence" depends on the topology of S. The following

theorem is concerned with weak convergence in the sense of the Skorohod-
topology, which does not in general imply weak convergence in the sense of the
uniform topology [6].

We set

Φi^SlvJfWυ, i = l , . . . ,4, (2.3)

Our main result is
where v = (vx,vy9vz).

Theorem 2.1. For any /, Pm => P0 on D(I), where P0 corresponds to the Ornstein-

Uhlenbeck process with F0(0)= F° and with parameters

16π . r2 16π r2

a= λ — Φ 1 ? D= λ—2Φs Π (2 4)

Remark. The convergence described in Theorem 2.1 can be expressed in terms of
the processes Fm and F0 as "Vm converges in distribution to F0", denoted by

K °
m

Remark. Letting £->oo in (2.1) we get the density of the stationary probability
distribution of F0: p s ί~exp(— V2a/D) which determines the "temperature" of the
molecule :

For the Maxwell distribution Φfax-(2j?π)-1/2

? Φf*x = (2/πβ3)1/2 and hence
βMax _ β^ j e ^e moιecuie js jn thermodynamic equilibrium with the bath. It is not
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difficult to see that other distributions would in general lead to different
temperatures i.e. M<F2> φm<ι;2>. The drift and diffusion coefficients in the case of
the Maxwell distribution are [11]

/2π\
= ~

2π\ 1 / 2 r2 /2π\ 1 / 2

T

Concerning the position process Xm we have

Corollary 2.1. Xm 4χo? where X0>ί = ] V0fSds+X°. Π
o

Proof. Define K :D(/)-»C(/), the space of continuous functions on /, by

yeD(I).

K is a continuous map from D(I) into C(I}. Let g be any bounded continuous real
function on C(I). With P^ Pf the induced measures corresponding to Xm, X0 we
have, by Theorem 2.1,

lίπτ ίg(x)dP«(x)= lΰn Λ

since g°K is a bounded continuous function on D(I). Π
Since the mechanical process Fm is not Markovian, Theorem 2.1 is concerned

with the weak convergence of non Markovian processes to a Markov process. The
proof we give consists of two steps. First we consider a modification of the
mechanical process, an abstract Markov process Vm, for which we prove

£ΛΓ0. (2.5)

In the second step we establish the closeness of the paths of a suitable realization
Yή of Vm to the paths of Fm as m goes to zero. It is indeed the central part of this
work to find a "mechanical version" V^ of a Markov process Vm converging to V0

which is close to the true mechanical process Vm in the following sense : V^ and Vm

are realized on the same probability space (Ω, ̂ ", Pm) in such a way that for all
ε>0 and any /

lim FmfίωeΩ/sup|Fm(ω,ί)~Fm(ω,ί)|^ε^ -0. (2.6)
m-^O \[ / ίe/

Theorem 2.1 easily follows from (2.5) and (2.6) [6].

3. The Markov Approximation

Let us consider the mechanical process Um in which only collisions with "fast"
atoms, namely with precollision velocity v satisfying \yn\^cm = m~115, have an
effect on the motion of the molecule in other words collisions of "slow" atoms
(bj<cm) "don't count". Until \Umft( )\^cm any fast atom which collides with the
molecule cannot have collided earlier, as may be seen by tracing the paths of the
atom and the molecule from the collision point backwards in time. Thus all atoms
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which recollide with the molecule are slow and by our rules they have no effect.
Consequently the process Um has no memory until \Um>t( )\^cm. We shall now
define a Markov process Vm based on these rules for collisions. We will use an
informal definition of the events in which we are interested, leaving a precise
mathematical definition to the reader.

We define ι>π,7ΛeIR by

where en is directed towards the molecule. Let θe[0,π] be given by

e-en, (3.2)

where e is the unit vector of some fixed direction in space, and let φe [0, 2π) denote
an azimuthal angle, so that

dS= -r2dΩen = -r2sinMBdφen (3.3)

is a surface element of the molecule. As a consequence of the translation invariance
of the Poisson field we have

Lemma 3.1. Suppose that at time t the molecule has velocity V and is surrounded by a
bath of atoms having the Poisson distribution described in (1.4). The probability
pm(dt, dv, dΩ,V) for the collision of an atom with velocity yεdy with the molecule in a
surface element dS = — r2dΩen in [t,t + dt] is given by

Vn) + dtfm(v)dy, (3.4)

where (vn-Vn)+ = max(υn-Vn,Q). D

Proof. For the occurrence of the collision, an atom with velocity υ edy, has to be in
a volume element r2dΩ(vn — Vn} + dtdy of the phase space, whose measure in view of
(1.1) is given by (3.4). Π

It is convenient to integrate (3.4) over the tangential velocity components, so
that we obtain the probability for a "collision with normal velocity vnedvn",

pm(dt, dvn, dΩ, V) = λmr2dΩ(vn - Vn) + dtf\vn)dvn , (3.5)

where f1 denotes the density of the one dimensional marginal distribution of the
velocities of the atoms.

We set

00

^(vn}dvn, (3.6)

where dΩ is defined as in (3.3), and let

1 ,

A simple calculation shows that Nm(V] = Nm(0) for \V\ίgcm. Setting

Λ» = V2^m(0), (3.8)
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we define a probability for "collisions" with normal velocities vn, \vn\^cmί

pm(dt, dvn, dΩ, V) = λmdtdΩgm(V,vn)dυn , (3.9)

which equals (3.5) for |F|^cm.
Using the collision Eqs. (1.8)-(L10), gm(Y,yn)dvndΩ can be transformed into a

transition kernel Gm(Y,dV), giving the jump probability from V to V'edV in one
"collision".

Definition 3.ί. Let Vm be the Poisson jump process, defined on the probability
space (ί2, ̂ , IPm), with mean waiting time λ~ 1 and transition kernel Gm(V9 dV). Let
Pm denote the measure induced by Vm on (D(I\ @(D(I))\ Π

In the next section we shall prove

Lemma 3.2. £,m=t0F0. D

Remark 3.1. Note that (3.5) is the probability for collisions with fast atoms in the
process Um until \Um ,|3:cm; thus the measure P^ on D(I) induced by Um agrees
with Pm on the set

f / m = e D ( / ) s u p | x | < c 1 ,

Q

which is open in D(I). From this it follows easily that Um => VQ9 by noting that for

every open set GcD(I)

Pv

m(G) ^ Pv

m(GπHJ = PJGnH J ^ Pm(GnίίB) ,

and by Lemma 3.2

lim inf Pu

m(G) ^ lim inf PM(GnHB) ̂  P0(GπHn) .
m-*u m-^u

Since this is true for all n, we can take n-»oo, to obtain

from which the result follows (Definition 2.2).

Remark 3.2. The reason for using the Markov process defined by p in (3.9) rather
then the "more natural" one described by (3.5) is mainly technical, e.g. the details
in Sect. 4 are easier to handle.

4. Proof of Lemma 3.2

We shall use some facts from the theory of probability semigroups. Let Z denote a
Markov process on D(I) having transition probability Qt(x, dy). To Z corresponds
a contraction semigroup Tt defined on B, the Banach space of bounded measurable
functions h :IR3-»IR, with the sup-norm || ||,

Let C0 denote the Banach subspace of B consisting of continuous functions
vanishing at oo. Suppose C0 is invariant under Tt and Tt on C0 is strongly
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continuous: 7JC0£C0 and lim \\Tth — h\\ = 0 for all heC0. Then Z is called a

Markov-C0-process [7].
The (infinitesimal) generator A of Z is given by

Ah^lim7^-^- (4.1)

on the domain Δ(A] consisting of all heC0 for which the limit exists in the sup-
norm topology.

Remark. A diffusion process is a Markov-C0-process. The restriction of the
generator A of a diffusion process to Q°, the set of infinitely differentiate
functions of compact support, is an elliptic differential operator. For the generator
A(Q} of the Ornstein-Uhlenbeck process VQ we have

, V = gradient, (4.2)

where α, D are given by (2.4).

Lemma 4.1. Consider a sequence Zn of Markov processes with sample paths in D(I)
and generators A(n\ Suppose Z is a Markov-C0-process with sample paths in D(I) and
generator A. Let K be a core for A and suppose that hεK implies that heA(A(n)) for
all sufficiently large n. Suppose that the initial distributions of Zn converge weakly to
the initial distribution of Z and that

lim sup|A ( π )h(x)-Ah(x)|=0 (4.3)
n->oo .xeIR3

for allhεK. Then

Zn-^Z D

Remark. A core for A is a linear subspace K of A(A\ such that A is the closure of
the restriction of A to K. K is a core if, for example, K is dense and TtKQK [8].
For the generator of a diffusion process cores can be found using regularity
properties of the solutions of the parabolic equation for the transition density. For
example in the case of the Ornstein-Uhlenbeck process one can conclude that
IJCo £ CQ, where C\ denotes the set of twice continuously differentiable functions
vanishing at infinity together with the first and second order derivatives. Since CQ
is dense in C0, CQ is a core. It then easily follows that C* is also a core.

Remark. Lemma 4.1 is stated for a slightly more general situation in a paper by
Kurtz [8]. Similar results have been given earlier by Skorohod [9]. Conditions for
a set to be a core and its role in the convergence of semigroups can be found in [8]
and in [10].

We now turn to the proof of Lemma 3.2. Let A(m} be the generator and 7J(m) the
semigroup of Vm. By Lemma 4. 1 it suffices to show that

lim \\A(m)h-A(0}h\\=Q, for /ιeCc°°.

Let us denote by E^( - ) = E(m\ \ Fm(0) = V°) the expectation for the process Vm

starting at V°. Then

)) for hεB
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and

for heΔ(A(m}).

For the case of a Poisson jump process this becomes very simple, since the
probability for more than one jump in time t is of order 0(t2). Hence in the above
expectation we only have to consider terms involving no more than one jump. We
obtain, according to Definition 3.1,

A(m}h(Y°) = lim ~(e" ~λ^h(Y0) + e~ ~λmtλmt J Gm(F°, dV)h(V) - h(VQ)

m(F°, dY)h(V) . (4.4)

Note that Δ(A(m)) = CQlC?.
In view of (1.10), we set Y—Y° — qmun, where

qm = 2ml(M + m) (4.5)

and un = vn—V®. A Taylor expansion for h around F° yields

h(V° + qmun) = h(V°) + qmun Fh(V°) + (ί/2)q2

m(un F)2h(V°) + (l/6)^(«n Vγh(V>) ,

where Y'=y° + γqmun, ye [0,1].
Introducing this into (4.4) the integral becomes, with

yn-¥°n=(vn-Vn

ϋ)+en, (4.6)

and after replacing GW(K dV) by gm(V,yn)dvndΩ, a sum of four integrals of the form

where V^V0 for i=l, 2, 3 and F4 = F'.
In the computations we shall use the fact that for i— 1, ...,4

00 00

lim mi/2 j x^Wdx = lim J y'f x(y)dy - Φi . (4.8)
m"^° cm m->0 cmj/m

Since heC™, we may assume /z(x) = 0 for |x |>fe and we choose m so small that
cm>b

We start by showing that J4 goes to zero uniformly in F° as m goes to zero.

For F°^cw, J4^0(m1/2) since J y*f
cm

λmr2~m-1/2, sup \(en F)*h(V')\<κ, and

[Expressions of the form 0(mk) denote quantities depending perhaps on h but not
on F°.]

For V°^cm we are in the complement of the support of h. Since Y' = Y°
+ yqm(vn — FM°), vn must be such that for the post collision velocity V we have \V\ < b,
and the "easiest" way for this to occur is if F° = — V°en. A simple calculation using
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(1.10) shows that |F|^b implies that for m sufficiently small

\vn\ ^-b(M + m)/2m + F°(M - m)/2m > F°

for all F° ̂  cm. Thus J4 can be estimated as follows :

1/ ) 4π

 eιι™PR3 Ik- W)l J0 <ϋ» + F

snce
For J3 we observe that

m-o 3M2 ό

uniformly in F°, since

4π

(1 = 3 x 3 identity trace of tensor product e^n = 1.)
For J2 we obtain

00 00

ί t>BV>JdP

uniformly in F°, since j i/i2fn = 0.
We complete the proof of Lemma 3.2 by noting that in view of (3.6) J\ cancels

the first term on the r.h.s. of (4.4).

5. The Closeness of the Paths

Throughout this section we set M = 1, λ = 1, r = 1 to simplify the notation. Our aim
is to define a realisation F^ of the Markov process Vm which is close [in the sense of
(2.6)] to the true mechanical process. We will call a simultaneous realisation
(coupling) of both processes for which (2.6) is true, a good coupling of Vm and Fm.
There exist many couplings of Vm and Fm. One natural choice is the process t/m,
which is naturally defined on Ω by the prescription of not counting collisions with

slow atoms, and by Remark 3.1 Um=>V0. Actually a similar coupling was used by

Holley in the one dimensional case, but in higher dimensions this coupling is not
as useful for the following reason: The effect of a collision in higher dimensions
involves the impact parameter of the collision, i.e. it depends on the collision point
on the surface of the molecule. If we consider now two identical copies of a bath
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configuration and compare the motion of the "Markov molecule" in the
Um-process with the motion of the "mechanical molecule" in the ^-process under
the same initial conditions, their velocities will differ after some time due to
collisions with slow atoms in the ^-process. Hence after some time the molecules
will be in different positions. Then a fast atom which collides with the molecule in
both cases, will collide at different points on the surface of the molecule (as well as
at different times) and hence with different normal velocities. A rough estimate
shows that this effect will cause an error in the velocities which is not sufficiently
controllable to show (2.6).

We obtain a good coupling by constructing V'm in such a way that collisions
with fast atoms will "usually" occur at the same time and at the same point as in
the actual mechanical process Vm.

Recall that the Markov process Vm is a Poisson jump process with mean
waiting time λ~1 and jump distribution determined by gJ^V.v^dυ^Ω, i.e. it may be
characterized by the (collision) rates

rm(Y,Sn) = λmdm(Y,υn). (5.1)

By the same argument as given before for the process Um, we have for the
mechanical process Vm that until \Ym}t\^cm a fast atom which collides with the
molecule cannot have collided earlier. Hence until \Vm t\ ̂ cm the fast atoms with
which the molecule collides are all Poisson distributed so that the collisions
between the molecule and fast atoms are also governed by the rates (5.1). Note,
that due to slow atom collisions (5.1) does not describe the mechanical process
even before \VmJ^cm.

In the following we denote by (Me) the mechanical molecule, in the mechanical
process Vm, and by (Ma) the Markov molecule, undergoing the Markov process V'm
which we now define. We use Y(V') as the generic variable for the velocity of
(Me) ((Ma)). (Me) and (Ma) have the same initial conditions. Given a configuration
ω and thus the motion Fm>ί(ω) of (Me), we specify the corresponding motion of
(Ma) in two steps.

(i) We observe the motion of (Me) when, and only when, (Me) undergoes a
collision with afast atom, with normal velocity υn, the velocity of (Ma) is changed
as if it too had suffered an identical collision, i.e. according to (1.8, 1.10) with the
same υn.

Using this prescription the velocities V and V coincide until (Me) suffers a
collision with a slow atom. In particular (until \V\ ̂  cm) the collision rate for (Ma) is
given by rm( F', vn) = rm(V, vn). Afterwards the velocities of (Ma) and (Me) will differ,
since collisions with slow atoms affect (Me) but not (Ma), and the collision rate for
(Ma) will no longer be given by rm(Vf, vn); rather it will continue to be equal to
^(K^JΦ^nίF7^). Since however we wish V'm to be a realisation of Vm it should
have rates rm(V', vn). This necessitates modifying the prescription given in (i), which
we now do.

(ii) To obtain a process with the correct rates we modify (i) by either ignoring
some collisions [so that they produce no effect on (Ma)] or adding some "extra
collisions", depending on whether rm(V\yn) is greater or less than rm(V,yn): Let
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(a) The rate for the occurrence of these extra collisions is

Q) for t<τ (5.2)

and is rm(V'9vn) for ί^τ.
(b) The probability that a collision of (i) counts (i.e. is not ignored) is

for ί<τ (5.3)

and is 0 for ί^τ.
Prescription (i) modified as in (ii), yields a process V'm governed by the rates

rm(¥',yn) (which is therefore Markovian).
Note that the realisation V'm of Vm has mechanical as well as purely stochastic

aspects. To a path Fm(ω, t) of the mechanical process corresponds a set of paths in
the 1^-process whose distribution is determined by the rate for random extra-
collisions and the probability of collisions counting for the Markov molecule.

Let (Ω, ̂ , Pm) be a probability space on which Vm and V^ satisfying the above
description, are both realized; in particular Wm({ώeΩ\V^(ώ)eA}) = Pm(A), for all
Ae£$(D(I)) and V'm differs from Vm only by virtue of the rates Rm and the
probabilities pm. [We may think of Ω as a product space Ω=ΩxH, where the
purely stochastic effects are represented by H, so that Vm(ώ) = ¥m((ω, h)) = Vm(ω\ for
ω = (ω,Λ)eΩ, and P( x H) = Pm( )•]

We now have a good coupling.

Lemma 5.1. For any I and for all ε>0

lim Pm /ίώe Ω sup |iς t(ώ) - Fm ,(ω)| ̂  εl\ = 0. Q (5.4)
m-O \| ίe/ ' ' /;

Proceeding as in Holley [2] we first prove

Lemma 5.2. 7/ί0^0 is such that

lim Pm l{ sup |iς , - Fm ,| ̂ f il\ = 0 (5.5)
m->0 \|0<ί<ίn I /VI — — J/

/or α// ε > 0, then

lim Pm/{ sup \V't-Vmt\>s\\ -0 (5.6)
... ,Λ

 mnΛ^*^f , _ l~m»ί -m,ίi— > v /

/or all ε>0, w/zere z=l/(128πΦ1). D

Remark. Lemma 5.1 follows easily from Lemma 5.2 : Since 1̂ (0) =Vm(0), so that for
ί0 = 0 the hypothesis of Lemma 5.2 is fulfilled, we obtain that (5.4) is satisfied for
/ = [0,z]. Again applying Lemma 5.2 with t0=z, we obtain (5.4) for / = [0,2z].
Iterating until Tis surpassed we obtain (5.4) for any / = [0, T].

Proof of Lemma 5.2. Fix ε>0 and ί0 and introduce the stopping time

(5.7)

Since V^(t) and Vm(t) are right continuous

K(ί*)-Fm(t*)|^ε. (5.8)
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Observe that

I sup |Fmι(-_Fm, t |^εl = {t*^t0 + z}
jθ^ί^ίo + z J

= {t* ί ί0 + z ;|iς(f *) - ym(ί*)| 5ϊ ε} (5.9)

and that

IK,,s-ΓmJ<ε, for 5<ί*. (5.10)

By Lemma 3.2

where

P
sup Γra,t(ω)|<f>cml, p>0.

\
Therefore to establish (5.6) it will suffice to show that

lim Fm({ί*^ί0 + z, |I^(ί*) — J^(φ|^ε}nG^) = 0. (5.11)

If we pick p = 1/8 and s<cmβ, then on G™

sup|Fm > f |<cm/4

so that with (1.9), if \υn\^cm

for m< 1/10. This means that on G™ a fast atom which collides with (Me), bounces
off with normal speed \y'n\>cm/4 and therefore cannot recollide with the molecule
during [0,ί*].

Remark 5.1. Consequently we have that on G™ within [0, £*] the only atoms with
which (Me) can recollide are slow atoms, both for the original collision and for
recollisions.

This remark, which will be helpful for estimating the effect due to recollisions,
follows by noting that (on G™ within [0, ί*])

(1) a fast atom cannot recollide with (Me);
(2) an atom which was slow in the first collision will also be slow in

recollisions. This may be seen by tracing the paths of (Me) and a colliding fast
atom from the collision point backwards in time.

We now compare the velocities of (Ma) and (Me).
There are three effects which cause V' to differ from F :— tn —m

(1) The change in Fm(ω) directly caused by collisions with slow atoms. Let <fm(ί)
denote the change in Vm during the time interval [0, ί], produced by collisions with
slow atoms.

(2) The change in Y^(ώ) directly due to the extra-collisions for (Ma) and the
change in Vm(ώ) due to those fast collisions which don't count in V'm ("extra-
collisions" for (Me)). Let E(E') be an index set for extra-collisions for (Me) ((Ma))
within [ί0,ί*].
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(3) The effect on V' and the effect on V of the fast atoms which collide with
(Me) and are also counted in V'm depend respectively on the velocities of (Ma) and
(Me), which may differ. Let B be an index set for these fast atoms which collide
within [ί0,ί*].

With W(i)(W'(i)) denoting the change in the velocity of (Me) (Ma)) due to a
collision with a fast atom having index i we have

ieB

+ Σ Wm(ί)-Σ W
ίeE' ieE

where

ieE'

ieB

Then

and (5.11) follows from (5.5) if

lim JPm(G™n{t*^t0 + z}n{^1'(ί*)^£/4}) = 0, (5.12)
m-^0

lim ΪPm(G;n{ί*^ί0 + Z}n{P^2>(t*)gε/4}) = 0, (5.13)
m->0

lim Pm(G™n{t*^t0 + z}n{W^3)(t*)^ε/4}) = 0, (5.14)
ni"^ 0

since lim Ψm({\Y^t0)-Ym(ΐ0)\^e/4})=0 by hypothesis.
m-> 0

We now establish (5.12)-(5.14) for p = 1/8. All of the estimates in the remainder
of Sect. 5 are for ώeG™, p = 1/8, cm/8>ε, and m< 1/10.

Consider (5.12). We first estimate the total absolute change of the momentum
of a slow atom with velocity v(t) :

\Ap\=m\y(t*)-y(t0)\;

we show that

(5.15)

This gives, by conservation of momentum, an upper bound for the total change in
the velocity of the molecule produced by one slow atom within [_t0,t%]. We
distinguish two cases :

(1) The tangential component l^1^ of the velocity y(1) of the slow atom in its
first collision after ί0 is ^ cm.
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First observe that the effect of a collision on the velocity υ of an atom is always
to decrease its normal component vn. We claim that the same effect is produced
between successive collisions, i.e. that

ι#)( + )^!ί+1)> (5.16)

where v(*\v®( + )) denotes the normal component of the pre(post)collision velocity
of the atom in its i-th collision in [ί0, £*]. If this can be shown we easily obtain that

since if the normal component becomes smaller than — cm/4, further recollisions
are impossible : We have that if the atom undergoes fe collisions in [ί0, ί*]

Therefore

\v(t*) -ί(ί0)l ̂  Σ *?( + ) - »L°I ̂  cm + cm/4 + 1«
ί=l

where we have used the collision equation (1.9).
To establish the claim (5.16) consider an "equator", on the surface of the

molecule, perpendicular to υ[1} and passing through the point of the first collision
with the atom in [ί0, ί*]. Suppose the southern hemisphere is in the direction of
υ(

t

l\ Since \υ(

t

l)\^cm and on G™ \Vm^cJ4 for t<t* the collision point in
subsequent recollisions will always be in the southern hemisphere and the speed of
the atom will remain at least as large as cm. Now consider a plane perpendicular to
the velocity v(l\ + ) of the atom after the z'-th collision passing through the point of
the i-th collision and fixed in (i.e. moving with) the molecule. Since v(ί)( + )\^cm

and \V\^cJ4 the next collision (if there is one) with the atom must occur on the
side of the plane in the direction of y(i)( + ), i.e. (5.16) holds.

If the tangential component grows bigger than cm at some time tί gί*, we can

apply (1) : A little thought shows that 1^(^)1 ̂  ]/2cm and we obtain with \v(t0)\^2cm

IMΦ -v(t0)\ = \v(φ -iKί x)| + liKf J -v(t0}\ = 4cm + 2 ]/2cm .

If the tangential component is always less than cm, |j;(ί*)|^2cw, since the absolute
value of the normal component cannot become bigger than cm + cm/2. Then

this combined with (1) proves (5.15).
To estimate the total effect H^1}(φ of the slow atoms, we have to multiply

(5.15) by the number AΓ(ί*) of distinct slow atoms which hit (Me) in [ί0, £*]. But in
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view of Remark 5. 1 N(ί*) ̂  Nm = the number of first collisions with slow atoms
within [0, T] in which (Me) has a speed V^cm.

Nm can be estimated using the rates (3.4), since for the rate of first collisions of
slow atoms with the molecule Lemma 3.1 provides an upper bound. Setting in (3.4)
(vn—Vn)+ =2cm we obtain with E( ) as expectation (λ = r2 = 1)

and we obtain using (5.15)

= Pm({Nm ̂  ε/(28mcm)}) ί 28mcmE(Nm)/ε ~ c2

mm^ T/ε .

Since cm = m~1/5 the r.h.s. of the last equation goes to zero with m.
Next we establish (5.13).
For the rate of the occurrence of extra collisions, including "extra collisions"

for (Me), we have

Since sup \V' J<cm/8, sup \Vm t\<cJ4 and \vn\^cm for the extra collisions, we
t<t*n ' ί<ί*m

obtain using (5.1) and (3.4)

Rm(Y', V,vn) = m-^\Vn - yB|/>B) .

In view of (5.10) \V^ — Vn\ ̂  ε (for t < f *) therefore we consider the Poisson field Ύm

on the ί — vn space determined by the rates

l^(ε,ι;π) = m-1/Vm

1ω, (5.17)

which majorizes the rate Rm(Y'9Y,vm) of the actual process of extra collisions.
Hence the correlation functions for the extra collisions in the actual process within
[ί0, ί*] are less than those of the process Ym. This may be seen by introducing a
new "independent" process Ϋm defined by the rates

so that Ym arises by "combining" Ϋm with the actual process of extra collisions. For
the change ΔVm of the velocity of the molecule due to a fast atom we have
according to the collision equation (1.10) (FrgcJ

Using Ym we obtain for (5.13) the inequality

(5.18)
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where (υ(^\ ...,^N)) represents the "extra collisions" in [_t0,t0 + z~] arising from the
Poisson field Ym and v® = \y®\. With Em( -) denoting the expectation corresponding
to Ym we obtain using (5.17)

= (4m/ ί + m)4πεzm~ 1 j jtf^dv ^ lόπezΦi ̂  ε/8

for our choice of z = (128πΦ1)~1. Hence the r.h.s. of (5.18) can be estimated as
follows : With

J:=ΣX°, (5 19)
;=ι

Prob ί J £ e/4 ^ Prob ( J ̂  2£m( J)) = Prob ( J - Em(J) ^ Em(J))

(5 0)

by Chebychev's inequality. Using (5.19) and the independence of the "extra
collisions" in the process Ym we obtain with

fe=l,2

and some basic properties of Poisson random fields

For the r.h.s. of (5.20) we thus obtain £m(N)~1<^>/<ϋn>
2-^ι:^>0, since

(O-mΛ <ιO~m-1/2 and Em(N)~m-"2.
In view of (5.20) and (5.18), (5.13) follows [in case <ι;n> -0, (5.13) is trivial].
We are left with (5.14), and because of the coupling we have chosen this is an easy

estimate. With W£W!) as the effect of atom i, which collides with (Me) ((Ma)) at
time s rg ί* with normal velocity y(*\ we have

W-KHJKfe-J-lj^Kfe-H-

2m

l + m ' "v

using (5.10).
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Hence

where Nm(z) is the number of collisions involving (Ma) within [ί0, t0 + z]. Since the
total rate of collisions for the Markov process is lm, we obtain

E(Nm(z))= JV^^z^πzm-^ . (5.21)

We therefore obtain

f £ N z 84 = f N2

£ JPM({Nw(z)>2#mp,})= Vm({Nm(z)-Nmt,>NmtZ})

^ E((Nm(z) - Nm Z)2)/W2

 2 = Nm Z/JV2

 z = N~ \ -»0,

by (5.21), using the fact that z is such that (1 +m)/8m>2]Vm z. This completes the
proof of Lemma 5.2. Π

6. General Velocity Distribution

In this section we extend Theorem 2.1 to a general, i.e. not necessarily spherical
symmetric, velocity distribution f(v). Whenever possible we use the same notation
as in the previous sections. Clearly the description of the mechanical process Vm is
the same as before. Moreover, what has been done in the previous sections can
easily be adapted to this slightly more general setting. In particular, the treatment
in Sect. 5 of the closeness of the paths applies without essential modification. We
now describe the major differences.

Throughout Sects. 3-5, f^ should now be replaced by /^n, the distribution
of en y. Note that N_m(V) [Eq. (3.6)] now need not equal ΛΓm(0), even for \V\^cm.
Thus, defining λm = λm(V) by

^sup NM(FO

in place of (3.8), the Markov approximation Vm (defined exactly as in Definition
3.1) will now have a process dependent mean waiting time I"1.

00

Integrals of the form j ykf^(y)dy, appearing in Sect. 5, which are not already
a.

embedded in an Ω-integration should be replaced by

OO

ί (en y)kfm(v)dv
?n y^a

Definition 6.1. Let j/, Q) be real 3 x 3 matrices, symmetric and positive semidefinite.
The (generalized) Ornstein-Uhlenbeck process F0 is the diffusion process with
generator A given by

A\c^=-Y ^ V + \V g> V . Π (6.1)
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We now give the extension of Theorem 2.1:

Theorem 6.1. Let f(y) be any probability density with §v4f(v)dυ<co and

$\v\vf(v)dy = 0. (6.2)

Then

where F0 is the Ornstein-Uhlenbeck process with drift and diffusion coefficients
= unit matrix and vv = tensor product)

(6.3)

- dv D

Remark. The condition (6.2) is needed for the existence of the limit lim A(m} (recall
m-»0

that A(m} is the generator of Fm) the l.h.s. of (6.2) may be interpreted as the net force
acting on the molecule due to collisions with the atoms. We will see below that
without (6.2) the drift becomes infinite. As a side remark let us mention that (6.2)
can always be fulfilled by choosing an appropriate coordinate system, i.e. if (6.2)
does not hold one can find an a such that for f(v) = f(y — a) (6.2) is fulfilled. [The
scaling should then be applied to f(v\ i.e. fm(v) = m3/2f(m1/2v)==m3/2f(m1/2v — a}.~]

Proof of Theorem 6.1. All that remains is to establish

Lemma6.1. Fm4>F 0. D

Proof. We establish the convergence of the generator as in Sect. 4. We note first
that the generator ^4(m) of Vm is given by

+ J G(F°, dY)h(V))

on the domain AA(m) = C0.
This follows from the observation that

2)

= (1 - λm( y0)t)h(¥°) + lm(F°)tί Gm(V°, dY)h(Y] + 0(t2) .

We write the integrals Jf [Eq. (4.7) with f-n replacing /*] in the form

We assume h(x) = 0 for |x| > b and we choose m so small that cm > b. Using the fact
that

we obtain, as in Sect. 4, that J4 — ̂ — ̂ 0, uniformly in F°.
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For J3 we have

?/lr 2

uniformly in F°, using (k = 0, 1, 2, 3, . . .)

For J2

 we obtain, again using (6.4),

J2 = 4m V
2 \dυfm(υ)(v - 27°) - ( J dΩ(en v)ene\

uniformly in F°, using (6.2). Π
We conclude the section with two remarks :
(1) It is not necessary to assume that the radius of the molecule is fixed. All

that our argument requires is that λr2 ~m~1/2, so that by appropriately scaling λ
with m, the radius of the molecule can be scaled as well.

(2) The absolute continuity of the velocity distribution is not essential. It is
used (in the Appendix) only to preclude multiple collisions, which render the
definition of a natural deterministic time evolution for the mechanical system
problematical. However, if we do not insist on a deterministic evolution, the
motion can easily be continued past multiple collisions: randomly choose the
order in which the collisions are to occur. Everything which we have done in this
paper then applies essentially unchanged.

Appendix

The mechanical process Vm has been defined only for good configurations of the
Poisson field, describing the atoms. These give rise, in any finite time interval, to at
most finitely many collisions none of which are multiple collisions. We denote the
set of such configurations by Ω (Ω of course depends upon X° and F°).

Proposition A.I. IPJβ) -1. Π

Proof. We first consider systems (consisting of a "molecule" undergoing elastic
collisions with "atoms") in which the number of atoms is finite (n\ which we call
finite systems.
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Lemma A.I. For finite systems at most finitely many collisions can occur (in any
time interval). Π

This is a special case of a result of Vaserstein [12], concerning the number of
collisions in systems with repulsive interactions.

Lemma A.2. For any initial position X° and velocity V° of the molecule in a finite
system, the Lebesgue measure of the set of bath configurations giving rise to multiple
collisions is zero. Π

Proof. Label the atoms by i= 1, . . . , n. We first show that

where ^ClR6("+1) is the set of phase points for which a multiple collision occurs,
and for any JV, μN denotes the 6N dimensional Lebesgue measure. Clearly

n

JΐC (J Jfi9 where ^ClR6(n+1) is the subset of Jί for which the first multiple
i = l

collision involves atom i.
For any f, consider the set M$) of phase points in Jί{ for which the first

multiple collision is also the first collision involving atom i after time t. Let tk be an
enumeration of the positive rationals. Then

.̂ C

and to establish (A.I) it suffices to show that

0 (A.2)
for all ί.

Consider the section

where ξe!R6(λI+1)"3 represents all the coordinates except the position g. of atom i.
The path of the molecule until either a multiple collision or a collision with atom i
occurs is completely determined by ξ. Since by Lemma A.I only finitely many
collisions can occur, it follows that for fixed ξ the first collision involving atom i
can occur as the first multiple collision for only finitely many times t(k} and
positions X(k) of the molecule. Since vt is fixed, it follows that Jt% is contained in a
finite union of hypersurfaces (spheres). Thus Jί^ has vanishing Lebesgue measure,

Let φt be the evolution mapping, from time 0 to time f, arising from the
dynamics of elastic collisions. On M z (ί) φt is well defined and preserves Lebesgue
measure. Moreover, φ^Jif^t)) C ̂ (0) (A.2), and hence (A.I), follow.

The lemma asserts that

μn(^Qί0,Γ0)HO (A.3)

for all X0,F°elR3, where

(̂r̂ Mίfi!,̂ ,...̂ ,̂

It follows from (A.I) that (A.3) holds for almost allZ°, F°. Since the sets Jί(XQ, F°)
for different values of J^°, F° are related by translations, the lemma follows. Π
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We now turn to Proposition A.I. Without loss of generality we may assume
that Λ,= l, m = l, andX°=0, and we write P for Pr Since, at least initially, the
number of atoms in a finite volume is (almost surely) finite, our concern is with
atoms coming from far away. The key ingredient is establishing the fact that atoms
far away from the molecule are well located in the sense that they cannot come
close to the molecule in a finite amount of time.

Consider the set AkcΩ(keN) of configurations for which there is at least one
atom (2,1?) with (ε>0 is fixed)

k<\q\^k+l and |ϋ|^εk. (A.4)

We first show that
P(limsup,4fe) = 0. (A.5)

According to the Borel-Cantelli Lemma (A.5) holds if ^ P(^4fc) < oo. Let Nk denote
k

the number of atoms satisfying (A.4) (at time 0). Then

J f(v)dvdq
|υ |^εfc

f f{v)dv9

\v\^εk

where we have used (1.1). But j" f(v)dυ^(εk)~4§\y\4f(v}dy~k~4, since the
\v\^εk

velocity distribution has a finite fourth moment. Thus £ ΊP(Ak)< oo, and we have

(A.5).
Let τ = sup {s=^0: the evolution X(i) of the molecule is well defined for all

O^ί^s}, i.e., τ is the time at which the evolution ceases to be well defined.
Proposition A.I is equivalent to the statement

τ=oo, almost surely. (A.6)

For any T>0, and integers fc>j>0, let AkjcΩ denote the event that no atom
outside the sphere \q\ = k is transported by free motion into \q\^j by time T.

It follows from (A.5) that for any j and any T>0

= 1. (A.7)

Note that it easily follows from (A.7) that τ>0 almost surely. To use (A.7)
effectively for times greater than 0 we must show that the molecule cannot move
too far.

For T > 0, let τr = τ Λ T and let BJ C Ω be the event that the molecule leaves the
ball \q\ rgj before time ττ. In order for Bj to occur, the molecule must attain a speed
V>J=j/T, i.e. an energy U>^Mj2 = U, by time ττ. Therefore

Bjcί sup U(t)>U\ = {t*<ττ},

where

Γinf{0^£<τT :£/(£)>£/}, if sup C7(ί)>L7

ί*=| °-^ττ

τ r, otherwise.
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Thus

since {t*<ττ}C{U(t*)^U}.

Observe that for the change ΔU in the energy of the molecule due to all
collisions with a single atom whose initial speed is v, we have

/2. (A.8)

Let υί9 ...,yN denote the initial (t = 0) velocities of atoms involved by time £* in
collisions in which the molecule has (precollision) speed V^j. We obtain from
(A.8) that

Π>{t*<τ r; U(t*)ZU} Z IP I M ? - 2 L 7 ( 0 ) - rg

Using the rates (3.4) we obtain

since f(v) has a finite third moment. Therefore, for all Γ>0

lim IP(#) = 0. (A.9)
j->oo

It easily follows from (A.7), (A.9), and Lemma A.I that if τ< oo, then, almost
surely, the molecule suffers at most finitely many collisions before time τ and the
evolution ceases to be well defined at τ only because a multiple collision occurs at
τ. Since the velocity distribution of the atoms in the Poisson field is absolutely
continuous, it is not difficult to see that by Lemma A.2 we must therefore have
τ = oo almost surely.
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