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Abstract. We investigate a continuous Ising system on a lattice, equivalently an
anharmonic crystal, with interactions:

Σ (Φx~Φy)
2 + λ(φx-φy)\ 0 x eR, xeTLd.

<*,y>

We prove that the perturbation expansion for the free energy and for the
correlation functions is asymptotic about /L = 0, despite the fact that the
reference system (/l = 0) does not cluster exponentially. The results can be
extended to more general systems of this type, e.g. an even polynomial semi-
bounded from below instead of a quartic interaction. By a suitable scaling, λ
corresponds to the temperature.

I. Introduction

In recent years there have been several works giving a mathematical justification
to the high and low temperature (H.T., L.T.) perturbation theory frequently used
by physicists in statistical mechanics and quantum field theory, see for example
[4,6-9,11,13].

In all these cases the perturbation is made around an unperturbed system
which is explicitly known, e.g. a Gaussian field (λP(Φ)2 theories) or a product of
uncoupled systems (statistical mechanics in H.T. regime), and which is massive in
the sense that its correlation functions are exponentially clustering. No similar
justification has been given, however, for the case where the reference system is not
exponentially clustering. This occurs for example in the anharmonic crystal and
the n component Heisenberg (classical or quantum) spin system. In both cases the
lack of exponential clustering appears related to the invariance of the Hamiltonian
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under a continuous group. It is the purpose of this paper, the first of a series to
investigate such systems, to prove the existence of an asymptotic expansion for
such a case: the reference system is a massless Gaussian field on a lattice, for which
the covariance is not even summable.

Specifically, we consider a lattice TLd and the following Hamiltonian

ί (Φχ-Φy)2+ Σ (Φx~Φy)% 0)
>y> <*,y>

where the sums are over the nearest neighbour pairs, and φx is a real random

variable uniformly distributed on IR, β = — the recip

change of variable φx-+ ]/]ϊ φx, this is equivalent to

variable uniformly distributed on IR, β = — the reciprocal temperature. Making a

Σ χ y Σ
<χ,y> <χ,y>

We shall prove that expectations values of the form

T Π (ΦX-Φ>)

defined by adding a mass term to (II) and letting it go to zero in the thermo-
dynamic limit, have an asymptotic expansion in powers of T.

This can be viewed as a low-temperature expansion for the model (I) or an
expansion in the coupling constant for the perturbed harmonic crystal (II). It can
also be related to a low temperature expansion for the isotropic rotator model.
[One would expand cos(φx — φy) — 1, keep the first two terms, let φx run from — oo
to oo and change the sign of the quartic term to insure stability.]

The basic tool for performing this low temperature expansion is, as in the
massive case, the integration by parts formula for Gaussian measures (see
[5, 11, 13]). This has the advantage of expressing the remainder of the expansion
up to a given order in a form which is easier to estimate than the remainder in a
Taylor series. Because our covariance is not summable, we cannot proceed as
directly as in the massive case. What we do is to add and substract a temperature
dependent mass term to the Hamiltonian and perform the integration by parts
with respect to the massive Gaussian measure. By a suitable choice of the
dependence of the mass on the temperature, we can show that to each order n, the
remainder is indeed small compared to Tn.

The same method works for more general interactions of finite range of the
type (II) and also for any even polynomial semi-bounded from below instead of a
quartic.

Our method gives only an asymptotic, not analytic, expansion around T=0.
This is as expected since for T<0 the system is not stable. Indeed, for the one
dimensional case the equilibrium measure corresponding to (II) factorises into a
product of measures of the form exp[ — θ2— TΘ4~]dθ with θ = φx — φr where it is
known that the integral and moments are not analytic around T=0.

One would expect however, in analogy with the one dimensional case, that the
correlation functions are analytic in T for ReT>0, since this system is not
expected to have any phase transition for any T. Our method does not give such a
result.
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The outline of the paper is as follows: in Sect. 2 we describe the model.
Section 3 contains the statement and proof of the main theorems. Section 4 is
devoted to various remarks and simple extensions. We gather in the appendix the
estimates on the Gaussian lattice field that are used in the text.

Decay properties of the correlation functions for systems described by (II)
which are valid for all T>0 are given in Part II of this series [3].

Finally, a modification of these methods proves asymptoticity of the low
temperature expansion for the classical rotator model. This will be described in
Part III by the present authors and E. Lieb.

II. The Model

At each point x of a lattice Έd, there is a real random variable φx and we consider
the following Hamiltonian HΛ, with periodic boundary conditions on A, A being a
parallelipiped in TLά centered at the origin:

HΛ= Σ (Φx~Φy)
2 + T Σ J(x-y)(φx-φy)* (1)

(x,y)cΛ x,yeΛ

<x, j/> means that x and y are nearest neighbour, or that they are at opposite ends
of A, and T stands for the temperature, (β has been absorbed in H.) J(x — y)^0,
has finite range D. If J(x — y) = l when |x — y\ — l and 0 otherwise, we call it a
nearest-neighbour interaction.

We also consider the Hamiltonian

HΛ,m = HΛ + m2ΣΦl (2)
xsΛ

For mφOwe define the expectation of functions of the type Y[ φn

x

x, π x e N , via
the formula: x

= Z~χ j fexp{-HΛιJY\dφx
Λ

RMI xeΛ

Notation

{ea} a = 1 ... d is a basis of Έd given by:

eα = (0. . .0 J l ,0. . .0) (1 in the αth column).

The difference variables Vχaφ = Φx — φx+eχ will be called gradients, ea will so-
d

metimes be replaced by e or, when used in a summation by ξ, i.e. ]Γ will be

written ]Γ.

If a is a finite subset of (Zd, {ea}) (with "repetition" to avoid the use of
exponents), we introduce products of gradients:

Π VfiΦ (3)
(x,ξ)eA
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Given a function / : TLd xZd~>IR, we define

K V;'f(x, y) = [/(x, y) -f{x + e, y)] - [/(x, y + e') -f(x + e,y + e')] (4)

We use below the letter C to denote a constant which may be different from
one formula to the other.

States

We now define the infinite volume states that we shall consider. The construction
differs slightly when d = l , 2 , and when dΞ>3.

When T = 0 in (1), we have a Gaussian model and, for d ^ 3 ,

limd

exists and is uniformly bounded in m. Since the measure < \ m is a log concave
perturbation of a Gaussian, it follows from the Brascamp and Lieb inequalities
[1, 2] that the same is true for TφO (modulo the fact that the limit A\TLd may have
to be taken via a subsequence). We therefore let for <2^3 < > denote any
expectation value defined on functions of the form Y[ φn

x

x obtained as a limit A\Έd

and then m JO (possibly via a subsequence).
The Brascamp-Lieb inequalities also tell us that, for d ^ 3 , the Fourier

transform of (φoφxy is bounded by const\p\~2 (p Fourier variable).
Using these inequalities one easily shows that the free energy P(T) exists (for

all d):

P(T) =\im lim \A\~1\ogZΛm. (5)

(See Sect. IV for more details.)
When d—\ or 2, we construct the infinite volume expectation values in the

following way:
Let / denote any function of the form (3). Define

That is, we put a mass term only at x0. We notice that (f}Λimo is independent of x 0

and m0, because, if we integrate all φx in (6) for x φ x 0 , the result is independent of
φXo. This can be checked by changing variables φx-+φx — φXo\/x + xo. In what
follows we let m0-*oo in (6); that is, we fix φXQ to be equal to zero. Again, by the
Brascamp-Lieb inequalities, for any / of the form (3), K/) y l m o = oo | is uniformly
bounded in A and we can take the limit A-^TLd via a subsequence. For d = 1,2, < )
will denote any limit obtained in that way. We define the corresponding free
energy for d = l,2 as that obtained with x o = O,

P ( D = l i m | / l | - 1 l o g Z / l j m o = 0 0 . (6b)

Actually, this definition coincides with the previous one (5), in particular P{T) is
independent of ra0:.
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III. The Results

Theorem 1. The free energy P(T) and the correlation functions I J~| (Vxφx)\ have
\(x,ξ)eA I

an asymptotic expansion to all orders in T whose coefficients are given by the usual
perturbation theory.

Theorem 2. For d^3 the correlation functions / f | φx

x\ (D, finite subset of ΊLd)
\xeD I

have an asymptotic expansion to all orders in T whose coefficients are given by the
usual perturbation theory.

Outline of Proof. Our expansion is based on the integration by parts formula (IP.)
[6,9,11,13]:

If {φz}
n

z = 1 is a set of Gaussian variables and μ is the corresponding Gaussian
measure with covariance Cxy, then I P . gives

£ ^ ^ ) d μ ( 7 )

for F a differentiable function of the {φ z}"= 1 and φyFeLι(dμ).
In order to give an idea of the proof, we restrict ourselves to nearest-neighbour

interactions and consider the zeroth order of (Ve

oφVe

oφ} in d^3.
We first consider finite volume expectation values and absorb the interaction

into the function F of formula (7). This yields

<riφrίΦ>Λ.m=reoKctbm-4τΣ Σ nctm<KΦ(Φx-Φ/>Λ,m- (8)
xeA \y-x\ = l

Grouping together the terms

KCkm«ΦίΦ, - Φx+ef>Λ,m + K c^^viΦiΦ^^ - Φx)
3>Λ,m

and taking /L|oo, (8) becomes

If we are interested in the zeroth order, we have to prove that the second term in
the r.h.s. of (9) goes to zero with T (uniformly in m).

Since we have uniform bounds on \{Ve

oφ(Vξφ)3}J by the Brascamp-Lieb

inequalities, it might be thought possible to bound £ Σ K^o^I^ox)! uniformly
xeZd ξ

in m. This is however impossible because after summing over x, this expression
diverges as him when m[0 [see Appendix, Proposition Al d].

The idea is then to add and substract in the Hamiltonian a mass term which is
temperature dependent. We write

Σ x y Σ
(x,y}CΛ xeΛ

-m

2(τ)ΣΦ2

x+τ Σ (
xeΛ (x,y}CΛ
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We expand the new interaction by I. P. with respect to the Gaussian theory
with mass m' = m + m(T). After letting Λ-^Έd, m->0, this gives:

< v%φ ve

oφy - v% ve

0 c$p=R(T)

Σ Σ
xeΊLd ξ

+ 2m2(T) Σ KC^P<KΦΦX>-
xeTLd

We can now by choosing m(T) very small as T->0, for instance
= exp(-(lnT)2), indeed prove that Ve

0V
e

Q C o o is the zeroth order term in the
asymptotic expansion.

The argument is in two steps:
i) we show that the Gaussian expectation with mass m(T) are close to the

massless one (Appendix B).

ii) We estimate R(T) using the Brascamp-Lieb bounds:

KV*oφφx>\^C (Sect. II).

Gaussian estimates then give (Appendix A)

Σ Σ

and R(T) is thus bounded by

C7Ίnm(T) + Cm(T).

Clearly, with our choice of m(T\ R(T)-+0 as T->0.

Proof of Theorem ί.l. The result for P(T) follows from the one for the correlation
functions and the formula:

0 ξ

(See Sect. IV for a simpler argument.)
2. For the correlation functions, we start with the case of nearest neighbour

interactions and d ̂  3. Take out a factor from γ[ Vξ

xφ (which, for simplicity, we
(x,ξ)eA

denote Ve

oφ) and call / the product of the other factors. We then integrate by parts
in {{Ve

oφ)f} and obtain, in analogy with (10),

Σ Σ κ n ^ i , (ii)
xeΈd ξ

+ 2m2(Γ) Σ V%C*?(fφxy. (ΠI)
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We see that I.P. produces three kinds of terms. The first term (I) comes from a
contraction with / and contains only a finite sum. The second one (II), the
temperature term, comes from the differentiation of the interaction T(Vφ)4 and is
bounded by CTlnm(T) (Proposition Al c and d). The mass term (III) is bounded by
Cm{T\ (Proposition Al b). Choosing m(7) = exp(-(lnT)2) (III) is smaller than any
power of T when T-»0, and can therefore be neglected in the expansion.

To get the zeroth order, we apply I.P. to (fVe

oφ} and then repeatedly to the I-
term produced until we have a fully Gaussian expectation value. (This is called
Step 1.) To obtain the coefficient of order 1, we apply the same procedure to the
(non Gaussian) expectation value of the terms produced by Step 1 which have a
factor T, producing then also terms with a factor T2. If we continue the procedure
until order n, the remainder R(T) (again neglecting mass terms) will be bounded by
a sum of terms of the form:

CTn+i J-J F ( χ ^
(x,ξ)eA

where

(ϋ)
(ii)

ξl,....,ξpx

with ^ Vx —
 n + l

xeA

We associate a graph to each F(x, ξ), given by the tree attached to each point
(x, ξ). This tree is made of vertices (x,ζ), (yl9 ξ J . Cy ,̂ ξ p j and of edges ((y^),
(j;J ξJ )) for (//) in the product in (11). (See Appendix B for a more detailed
construction.)

We have bounded I F - ^ C J <Ξ C to suppress the loops of the graph. For each
power of T, there has to be one new summation over a variable xs and a factor
^ϊ\~-\ Vl\Cx^χXs coming from the I.P. Only these factors are kept in (11).

The non Gaussian expectation value are also bounded by a constant (Sect. II).
Using Gaussian estimates (Proposition Al c and d):

and

We obtain then
n

<SVlΦ)f>= Σ αi(Γ)Tί +error of higher order in T,

where a^T) are the coefficient computed in a Gaussian theory of mass m(T). By
Appendix B, Proposition A6,

and α (0) are computed with a massless Gaussian measure. This finishes the proof
for d ̂  3 and nearest-neighbour interactions.

3. Now we turn to the case d^2 but still with nearest-neighbour interactions.
Since for d=l and nearest-neighbour interactions, the measure factorizes into a
product of measures over the gradient variables, we shall now consider only d = 2.
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In this case we integrate by parts with respect to a massive Gaussian measure
with mass m(T) = exp( —(lnT)2) restricted to a box Λo whose radius
r(T) = exp(T~1) grows as T->0. We put periodic b.c. on the Gaussian measure.
We write

HG

Λo= Σ
xeΛ0

HA.= Σ (Φ.-Φ/+ Σ (Φχ-Φy)2,
<xy>

xsΛo,yφΛo

- Σ (Φx-Φs)2 + τ Σ
xedΛo (xy}cΛ

-m\T) Σ Φ,2,
xeΛo

where x and 3c are at opposite sides of Λo.
We let x 0 in (6) be outside Λo and such that dist(x0, Λo) = 2. Let C^m be the

covariance of the Gaussian measure given by H^o.
Then, I.P. with respect to that measure gives:

xeΛ0 ξ

- Σ
xedΛ

xedΛo

-4T Λ

xedΛo

Σ ve rΛo>m{Veώώ ^ (\Ύ\
0 0 x \ O i r x / ' \ /

xeΛo

The second term can be estimated as before by CTlogm(T). The third, fourth and
fifth terms can be shown to be negligible to any order in T because all the
covariances entering the sums are of order exp( —mr), provided we suitably bound
the corresponding expectation values. The sixth term is bounded by

ΎeoΦΦx>\ (13)
xeΛ0

(by Appendix Alb).
The expectation values can be bounded because

<(ΦX -Φy)2>^ const In \x-y\ (14)

as one can see, using the Brascamp-Lieb inequalities and the explicit computation
for the Gaussian measure. If we take y = x0 in (14), since φXo = 0 we have that, for
all ^ ^ ^ ( φ ^ ^ ^ c o n s t O n l x ^ ^ ^ c o n s t l T " " 1 ! 1 / 2 . Using this and the Schwartz
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inequality one proves that (13) and the third, fourth and fifth terms in (12) are
negligible to all orders in T.

We repeat the procedure for all higher orders and the only estimate we have to
check is that the Gaussian coefficients [in Λo with mass m(T)'] are close to the
massless infinite volume ones. This is done in Proposition A7.

4. In the general case where we have interactions of range D we do not get
gradients of the covariance as in (12) but differences COx — COy where x and y are
at most at a distance D. These differences can be written as a finite sum of gradients
and the estimates on the way the sum over the lattice diverges with m remain
unchanged except for factors of D.

For d = 1, we use in this case the same method as for d = 2 above. But we take
r(T) = exp(f(InT)2) so that m(T)r(T)-+ oo and m{T)r(T)l/2->0 as T-+0. Indeed,
instead of (14) we have a bound {(Φx — Φy)

2}ύ const \x — y\ and

Proof of Theorem 2. We first consider the simpler case of nearest-neighbour
interactions in (1) below and then explain how to extend the proof to general
interactions (2).

1) Let us start with <φo> a n c ^ do m o r e general expectation values later. As in
the proof of Theorem 1, we add and subtract a temperature dependent term,
m2(T) £ φf, and perform the integration by parts with respect to the massive

Gaussian. The integration by parts reads:

<</>0

2>=c$,r)-4τ Σ
xeZd,ξ

-2m2(T) Σ C^\φoφx). (15)
xeZd

To obtain the zeroth order of our expansion, namely lim (φl} = C00, we use

the fact that

Σ WiCSP\^ and Σ C = i
xeΈd,ξ m xeZd m

(Proposition Al a and b).
The second term in (15) is thus of order T/m. To bound the third term we can use

the fact that Kφoφx}\ < T—^ for some k>0 (actually, for any k< 1, see Theorem 2 in

[3]). As we show in 2), we can avoid the use of this theorem, but it simplifies the
proof.

By Proposition Ale, the third term is of order mk. Now, we can let m(T)->0 in
T

such a way that >0. We know that C^{J]-^C00 as m->0 with an error of order m

(Proposition A2). This finishes the proof for the zeroth order. Let us remark that in
this case we have a constraint in the choice of m(T) namely Tm'1(T)-^0, so we
cannot take m(T) = e~ilnT)2 as in the first theorem.

For the higher orders, let us call as before the first term in (15) the I-term, the
second one the temperature term and the third the mass term. If we want the
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asymptotic expansion up to order n, we start with (15) and leave the first and third
term as they are, and integrate by parts one Vxφ in the second term. This gives

- 4 7
y

-2m 2 £ VlCxy(φ0(Vxφ)2φy), (16)
yeTLd

where the first two terms are /-terms.
We insert (16) back in (15) and then we apply the following rule: repeat the

integration by parts of all factors Vxφ that occur in the expectation value of (16)
until all the terms are either
- pure Gaussian [e.g. C o o in (15)].

n+ϊ
- multiplied by a factor T\ 1 = + n + l , for some fc<l

- multiplied by a factor m4,
- do not contain any more gradients Vxφ in the expectation value [e.g. the third
term in (15)].

To obtain an asymptotic expansion up to order n we isolate all pure Gaussian
terms which have coefficients that are powers of T up to order n. These, as we
know (Proposition A6), converge to the same expression with m = 0, and the error
is of order m. We shall choose m(T) = T{n + 1)/fc, so that the error is small compared
to Tn (k is less than one). So we have only to show that all the other terms are small
compared to Tn. We treat them one by one:

a) The remaining Gaussian terms are trivial to estimate: the series are
uniformly bounded in m and they come with a coefficient which is a power of T
larger than n.

b) For the terms with a factor T\ each of them is bounded by a series of the
form:

° L Γxi^Oxil 1 1 VXi Vxj
xι,...,xιeZd (ij)

ξξ

(17)

where the graph associated with the vertices {1,...,/} and the edges (ij) in the
product form a connected tree [as in (11)]. We use as before (V^'Cxy)^C to

avoid loops in the graph and we disregard the possible mass factor, m2 ]>] ^CXιy

yeld

which is of order m (there is at most one such factor because otherwise we would
have a factor m4 and this case is treated below). Now from the estimates in the

Appendix Proposition Ale and d, it follows that (17) is of the order of— (logmV ~ *.
m

With our choice of /, and m, this multiplied by Tι is small compared to Tn.
c) For the terms with a factor m4 we have a bound of the form (17), with

possibly a smaller power Tv, v^l, (and only v summation variables) but with a
factor

m 4 V \VξιC \\VξJC \
yι,y2£id

(i and j may coincide).
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This sum (times m4) is of order m2 (Proposition Alb). Multiplied by the factor

— coming from Σ \V^C0xίl it still gives a contribution of order m, which is

small compared to Tn.

d) Now we consider the case where there is a term with no more V!*φ to
integrate by parts. This is bounded by a series of the form

CTW Σ KCOxι\U\V^CXiX)\V^CxJKΦoΦy>\, (18)
xi,...,xv,yeZd (ij)

where the product over (ίj) is as in (17). Indeed, we know that we have exactly one
mass term, because, if there was none, it is easy to see that either the term would be
purely Gaussian or there would be gradients left in the expectation value and if
there was more than one, we would be in the case of the factor m4 considered
above.

By Proposition Ale and Theorem 2 in [3]
m Σ WtCxJ\(φoφyy\^cmk. (19)

yeΈd

On the other hand the sum over x2, ...,xv, involving only factors with two
gradients diverges at most like (logm)*1"1 and the sum over xί multiplied by m is
bounded. So, with our choice of m(T), this term is also small compared to T",
which finishes the proof for <</>Q)

Now in the general case, / γ[ φ\, the procedure is exactly the same. We start
\xeD I

by integrating by parts one φx; we keep on integrating φjs in the /-terms
produced by that integration until either we have a Gaussian expectation or a
temperature or mass term. Then, after that, we integrate only gradients as before.
This leads to the same four kinds of terms. The only differences with <</>o> is in
Case d: in (18) (φoφy} is replaced by / Y\ φxφy\ for some D'QD. Using Theo-

\XGD' I
1rems2 and 3 (or 4) in [3],

XGD'

^ const kl2. Then the same arguments
'\y\k

as before hold with k changed into k/2 in the choice of m and /.
2) For non nearest-neighbour interactions, we do not know whether

Theorem 2 of [3] holds, but we have the following Lemma, which we prove after
the end of this proof:

Lemma. Let \x — y\ = Tn+1. Then the function (φxφy} (depending on T via < > and
via \x — y\) is of order Tn.

We use the Lemma to bound (18). [(15) is similar.] As a matter of fact, the
proof of the Lemma establishes the asymptotic expansion for any two point
function, so we consider (18) directly for general functions with Y[ φx instead

xeD'

oϊφ0.
First we restrict the sums in (18) to |xf| ^ m ( ~ 1 - ε ) i= 1 ... v and \y\^m"1"8 for

some fixed ε>0. The error made on (18) by such a restriction is of order
exp( — m~ε) which, since m is chosen to be a power of T turns out to be negligible in
the expansion. This is easily seen because all the covariances are of order
exp(-m|x|).
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Now if we look at (19) with the restrictions on xv, y, and γ[ φx instead of φ0,
we split the sum over y into xeD>

I,, < ? — = Σ,_ + χ Σ '

where d = dimension of the lattice; the first sum contains m~ 1 / 2 terms; so
multiplied by m, this term is of order m1 / 2. For the second sum we use F.K.G.
inequalities [3] and the Lemma to show that / J"] φxφy\ is of order (logm)m

xeD

l/2d

since \y\^m 1/2d and m is a certain power of T. Since the sum £ | P ^ v

v C X v y | ^

1 y

(19) holds in this case for any k< —. It is easy to see from the proof of Part 1) that,

if we choose m(T) = T2(n+1)lk with k< —, this is sufficient.

Proo/ o/ ίfte Lemma. We integrate by parts φ y and the gradients as we would do
for a fixed y in the nearest-neighbour case. The main point is that in the expression
corresponding to (18) we have

Σ Σ v%
... y'eΈd

We may directly estimate

uniformly in x by going to Fourier transforms and using the p 2 bound given by
the Brascamp-Lieb inequalities [1]. The result is that it diverges at most like logm.
We estimate the other sums as before and we get a result of order m times some
power of logm. The mass term in (15) can be handled in a similar way. It is easy to
check that the estimates on the temperature terms are uniform in y and also on the
m4 term. For the Gaussian terms, one easily checks, by using Fourier transforms
that

dpG™{

where Gm(y) is any massive Gaussian term coming in the asymptotic expansion of
iΦoΦy}- So, all the Gaussian terms are bounded by \y\~1logm.

IV. Remarks

1. If we restrict ourselves to the free energy [defined in (5)] then our method works
very easily in any dimension.

Suppose we simply add to (1) (and do not substract) a term m 2 ( T ) ^ φ 2 with
X

m(T) = exp( — (logT)2). Then we carry out the integration by parts with respect to
the massive Gaussian and we obtain the correct asymptotic series (we do not have
any mass terms to worry about because we did not substract the mass). All we
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have to show is that the free energies at TΦ 0 with the mass and without the mass
are close with an error of order exp( — (logT)2). This is easy because (with periodic
b.c.)

1 m 1

m' \/l\ xeΛ

In the thermodynamic limit, using the Brascamp-Lieb inequalities [1, 2].

S \ d=l.

So for all d,

lim Urn ~-\logZΛm-logZΛJ^m.
m'iO yltoo \Λ\

2. We can consider, for d ^ 3 , the theory with m = 0 in (2) and Dirichlet
boundary conditions (i.e. φx = 0 outside A). When performing the integration by
parts in a finite box A, we would have a boundary term but it would disappear in
the thermodynamic limit because the covariance is massive and we would get the
same formulas as in the proof of Theorem 1. We can also handle other
"reasonable" boundary conditions (e.g. \φx\SconstxφΛ) for functions of the
gradients.

3. One generalization of Theorems 1 and 2 (for nearest-neighbour interactions)
is to replace in (1) and (2) (φx — φy)

4 by an arbitrary even polynomial Q(φx — φy)
whose coefficient of highest degree is positive. The first remark is that, even if the
polynomial is not convex, we can still use the Brascamp-Lieb inequalities [1] : let
us write

The matrix of the second derivatives of

is

Q" is positive for large values of the argument (because the coefficient of highest
degree is positive) and, for T small enough, 1 + TQ" is everywhere positive, which
implies the Brascamp-Lieb inequalities.

Using such a Q we obtain the same formulas as in (9) and (10) with 4(Vξ

xφ)3

replaced by Q'(Vξ

xφ).
Notice that F.K.G. inequalities also hold in this case (see [3]).
On the other hand, we do not know how to deal with non-even polynomials

because then some terms on the perturbation series are only conditionally
convergent.
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Appendix: Gaussian Estimates

A. Sum of Covariances and Their Derivatives

We collect here some formulas which are used in the proof of Theorems 1 and 2.
They concern sums of expectation values of the (infinite volume) Gaussian lattice
field on 7Ld given by the covariance:

Proposition Al

a) Σ KΦoΦx>\= Σ <ΦoΦx>=\
xeZd xeΈd ™

Σ KΦo(Φx-Φx+J>\ = 2 Σ <Φo(Φx-Φx +

xeZd χεZd

_ / l \ π

Γ dk

\2)

\2π) _π 1 — cos/c + m2 sinhm

where m is defined by cosh in— 1 =m2.

= Σ
xeZd,xe

-2
/ 1 \ * (l-cosfc) „ 4(l-e "

= 4 — ; ~dk=—:
\2π !„ 1 —cos/c + mz smhm

w/ί/z m as m b).

d) Σ \<(Φθ-ΦMΦχ-ΦX+e )>\
dxeZd

= 4

= 4 _ f e

\2π) _π l -cos fc e +l-

e) For 0<fc<l,

k = m2~k '

1 . C9

where Cv C2 are constants independent of m. Similar estimates hold if we replace

( Γ + ϊ x j ) * b y (ί+\χy\f f o r a n y y e Z " ( C l : C l ίndePendent °f y)
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Proof. The proof of a) is immediate, since (φoφx}^0 and summing over xe

amounts to putting ke = 0 in the integral (Al). For b) we notice that
(φo(φx — φx+~)}^0 (resp. ^0) for xe^0 (resp. <0). This follows from correlation
inequalities (Theorem 1 and Corollary 1 in [10]). We write explicitly

+ π pikx(\ _pike\ d

<Φθ(Φχ-Φx + e)>= ί -Λ " " Π^
- m 2 < = 1

The sum over xe,, e'Φβ puts ke, = 0 in the integral and the sum over xe cancels
exactly the factor (1 — eike), using the Riemann-Lebesgue lemma. The integral can
be computed by contour integration, introducing the variable z = eιk.

For c) and d) the proof is the same; one uses the method of [10] to determine

the signs of the terms. The formula for {(φ0 — φe) {φx — φx + e)y *s

" (l-^')(l-e-ikήeίkx *

ί — Udki-

For e) we use the explicit computation

_ 1 I eίkia

sinhm

So we have to estimate

together with |x| ̂  |x j . (A2)

Σ —ΰ~ which is of order m
a=ί

For the next estimate we use the same method, knowing the sign of
oo p — ma

(ΦoiΦx — Φx+e)} Obviously, sums like £ -—• —^ satisfy similar estimates as

a=ι (1 + \a — b\)
with b = 0.

B. Rate of Convergence of the Coefficients in the Asymptotic Expansion when m->0

With each coefficient produced in the expansion, we shall associate a set of graphs.
In this section, (Vξ

xφVξ

yφ) or (φxV
ξ

yφ) denote Gaussian expectation values.
Whether <( ) is massive or massless is indicated by the context.

To see how we assign graphs, let us first consider an example: one second-
order term in the expansion of (Ve

oφV\ φVξ

2φVξ

3φy will be

<fi0Ί»Σ Σ WΦrϊΦXrίφrϊΦy
ξiξ2 y,xeZd

^ ) 2 } . (A3)
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We want to represent (A3) by

(A4)

O g

(0, e), (1, e') (2, ξ), (3, ξ) will be called external points because they do not enter into
a summation over the lattice, (x, ξ^, (y, ξ2) will be called internal points or vertices.

The line a which connects two external points will be called an external
contraction. The lines b, c which connect an external point to an internal one are
external lines. The lines d and / which connect two different internal points are
internal lines.

The line g connecting an internal point to itself is a tadpole.
The graph (A4) which represent a second order term has two vertices because

of the two lattice sums.
In general, we are interested in an expansion for

((Ve

a

aφ)...(Ve

n"φ)} (n external points), (A5)

or for

<Φa~~Φn> (A6)

[In this case, the external points are not pairs of symbol (x, ex).~]
If we want to exhibit a term of order N in the expansion, we first draw a graph

with n external points, and N vertices. As it is well known, the graph must be an
union of connected subgraphs, each of which is connected to a different subset of
external points, and each vertex is the intersection of four lines (a tadpole
represents two lines).

To compute the graph we apply the usual rule: [We first give the rules for case
(A5)].

0) To each external contraction ((α, ea), (b, eb)) we associate a number

<κaΦKhΦy
1) To each tadpole ((x, ξ), (x, ξ)) we associate a number {(Vξ

xφ)2}. We then take
it out of the graph.

2) To each external line ((a, ea), (x, ξx)) = / we associate a variable fcz and a
function /|(fc;) which is the Fourier transform of {Ve

a

aφVξ

x

xφ}.
3) To each internal line ((x, ξ), (y, ξ')) = n we associate a variable kn and a

function fn(kn) which is the Fourier transform of (Vξ

xφVξ

yφ}.
4) To each vertex x, we associate a ^-function δί^kλ where fex means

l = {{x9ξ)9{y9ξ'))oτl = {(y9ξ')9(x,ξ)). ^ >
5) We do the product of all the functions and ^-functions and integrate over all

the variables [from ( —π to π)]. We then multiply the result by the product of
numbers associated to the tadpoles and to the external contractions.
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For expectation values of (A6) the only changes are rule (0) and (2) which
become :

(0') At each external contraction (a, b) we associate a number (φaφby
(2') At each external line (α, (x, ξ)) — Z, we associate a variable kt and a function

/[(kj) which is the Fourier transform of (φaV
ξ

xφy.
Explicitly if

(pίke _ i \ (pihe> __ 1 \

if
(eike'_l)

ξ

(m may be 0 or not To precise this fact we shall sometimes use fx m or fx 0).

Remark. In the following we shall use the following bounds:

2
1— cosj/g: —2^ , y e [ — π,π] ,

^ y 2 , J > e [ - π , π ] , (A7)

Notation. Let Gm(/1.../p) be a graph, computed in a Gaussian theory of mass m,
appearing in the expansion of (A5) /1.. lp are the lines of the graph. G^(/x.. .lp) will
denote a graph (computed in a Gaussian theory of mass m) appearing in the
expansion of (A6). When a statement is valid for both Gm and G'm we shall express
it using G*. Also f*m(ke) will represent /z>w(fe) or /;>m(kz).

In this Sect, we want to estimate zlG* = G* — G*. Since disconnected com-
ponents of G* factorize, we shall restrict ourselves to one connected component.

By using a triangular inequality, ΔG*(lγ...lp) may be estimated by sums of Al{

G*(l1...lp) where l (]'4= 0 are lines with associated function ft α if they are internal
lines and / * α if they are external lines. (α = m o r α = 0.) The line Zf has an associated
function /Zι w—/ ί f 0 if it is internal and / z * m ~ / * 0 if it is external.

Proposition A2

Suppose a connected graph has n external lines labeled by 1, ...n with associated
variables kv ...,kn. Then it may be computed as

G = ) dkι...dkJlm(kί),...j:jkn)δ(Σaiki)F(k1...kn)
— π

where ateIR and F is a bounded function for all m^O.

Proof. We may consider that G is constructed by the following procedure: to each
external point is associated a tree. In this case the number of lines equals the
number of vertices. Since the graph is connected, there exists at least n—ί lines
connecting the different trees. So there exists at least n — 1 independent variables
after having integrated out the <5-function of the graph. Clearly these variables can
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be attached to the external lines. Because the interaction we consider is an even
polynomial, each time a vertex appears, a new line must also appear. So there
exists no line where the momentum k is constrained to be zero. (No zero
momentum line.)

F(kι...kn) is then obtained by doing integrals over bounded regions of
bounded functions and so is bounded.

Proposition A3

MG m (/ 1 . . .g |^constm 2 .

Proof. As remarked above it is sufficient to estimate

Suppose e and e' are the two directions fixed by the line /.

(eίk°-l)(eik°'-l)m

2

M • (A8)

ξ (l-cosfcξ)

ξ JU

Since there is no line of zero momentum (see proof of Proposition A2),

2lZlG(/1...g = f(/Zifm-/IiiO)(fe)F*(fc)dfc, (A9)

where F* is a bounded function (see proof of Proposition A2).
Introducing (A8) in (A9), and using \F*\oo < oo,

urn MI 1(^-1)(^-1)1 |F*(fc)|
\Λι.G(l1 ...I) < s u p m 2 - ^ - — ~-lι λ p ^ [ ^ ( l c o s / ^ ) + m2] J

Using the bounds (A7) we have,

izlZ i.G(/1...y|^ const m 2 .

Proposition A4

Proof. In this case, one has to be more careful, and distinguish between internal
and external lines. As before let us examine Λι.G'{lι ...lp).

1) /.is an external line.
Let //(fej the function associated to lv

By Proposition A2,

A,G= ] dk1...dkn_ιgί(kι)&(k2)...

(k1...kH_1). (A10)

m2)f: ( - Σ — ) dk2 is bounded ink, k,...kn_,
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uniformly in m because of the Schwartz inequality, f'2 and f'neL2\_—π,π\. Then

\ΔUG\ύconst {dk.dk, ...dkn_ 1(^1(^1))/3/(^3).../„'_±(fcn_ J

(because each //eL 1 [ — ππ]).

Let e the direction fixed by /., then

(eike-l)m2

π π π

Using the estimate (A7),

Izl .GI^const § § § d3k-^—i
— π—π—π K \K

By scaling k' = rnk, one finds

\AhG\^ const m. (All)

[Remark: If n = 2, we directly do the scaling into (AlO) and get (All).]
2) /. is an internal line.
By Proposition Al,

(A12)

/• being an internal line, enters in the computation of F(k1 ...kn_ί). Suppose that
after having integrated out the ^-functions in G, /. is represented by a function of r
variables

k1...kn_1kn...kr:f=fl":Zbiki+ Σ
\i=l i = n

Expliciting this fact in (A12), we have:

)( cik) F(k1...kr)
Iί = l " n / \ > = 1 i = n

with F' being bounded.
Let g(k)=fjk)-fo(k)

\ ί = 1 ί = n

For z = {zei ...ze% z' = (zfei ...z'ed\ ze* and z / e ' e [ - π , π ] . Define

z, z') = f 5 J /;(&!)/„'(&! + z ) ^ ! + z'Jd^! . (A 13)
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We want to prove the bound uniform in z and z!

\H(z,z')\ ̂  const m. (A14)

The integral (A13) contains three singularities at k1 =0, k1= — z, kx= — zr. Clearly
the worse situation is when these singularities coincide.

Let us consider a case when this may happen, the other cases being easier:
Assume

|zeι|<Ξf
and estimate:

t
7 f[(km

-π/2

Suppose that j[ represents a line lί=(ai(x, ξ)\ /„' represents a line ln = (b,(x\ ξ2)), f
represents a line lt = {{y9 ξ3),{yf

9 ξ4)).
Using (A7) we have,

Ί
-π/2

= J m
k " Λ

by scaling

ί = k'm

^ m const.

We then have

ί = 2 i = 2

\F(kί...kr)\dkn...dkr.

Using (A14), (A15) is bounded by:

(A15)

| ^ const m.

In order to be complete we have also to control the speed of convergence of the
tadpoles and of the external contractions. For that it is sufficient to estimate
CQX — CQX

= ° where C™x is the covariance of the Gaussian field of mass m.

Proposition A5

\£m const.
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Proof

I
d

7 π

f ikχ d3k(-2m') ,
J J e ~V7 /22dkdm

π, d3km'
SCzm sup J —

By (A7) by scaling

π/

Γ

m' d3/c'
-c2msup J π

^ const m.

In Sect. Ill we proved that

<SVe

a

aφ) ...{Vrrφ)y = a0(rn) + a1(m)T+ ... + ak{m)Tk + o(Tk

and

where α.(m) and b (m) are the usual coefficients given by perturbation theory but
computed in a Gaussian theory of mass m.

Using Proposition A5 one proves:

Proposition A6

|α (m) — α (0)| ^ const m2 ,

^•(m) — ί? .(0)| ^ const m .

Proposition A7

.(m, r) — α.(0, oo)| ^ const(m 2 + m~ 1r~x),

where a^m, r) are the Gaussian coefficients in Λo with mass m introduced in Part 3 of
the proof of Theorem ί.

Proof By Proposition A6 and the triangle inequality, we have only to estimate
imCΓ), r(T)) — aJimiT), oo)|. Using the graph representation, we have to consider

Λo is a square of size (2r(T)+ Vf and the dual Λ* is the set of k such that

k =^+Ί) ».=°.1-^
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By Proposition A2,

Gm(lv...,lp,r)

=κ>r Σ G*^,...,^),
kι,...,kPKsA*

where G* is bounded uniformly in m.

π

Gm(L, . . . , / „ , oo) = ( 2 π ) ~ d f elk* ...dknG*(ku . . . , k n ) .
— π

The difference between the Riemann sum and the integral is bounded by:

SUP12Γ+1)- 1

-G(/c1?...Λ)

By inspection one sees that

d
< const mdkeJ

which finishes the proof.
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