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Proof of a Multipole Conjecture due to Geroch

R. Beig and W. Simon
Institut fur Theoretische Physik, Universitat Wien, A-1090 Vienna, Austria

Abstract A result, first conjectured by Geroch, is proved to the extent, that
the multipole moments of a static space-time characterize this space-time
uniquely. As an offshoot of the proof one obtains an essentially coordinate-free
algorithm for explicitly writing down a geometry in terms of it's moments
in a purely algebraic manner. This algorithm seems suited for symbolic
manipulation on a computer.

1. Introduction

In the literature on General Relativity there have been several approaches to
multipole moments in the static or more general context, e.g. the one of Clarke
and Sciama [1], based on a certain eigenvalue problem. Another one, due to
Geroch [2, 3], which uses a conformal compactification of 3-space, has found
special attention because of the elegant geometric way in which the origin-depen-
dence of multipole moments can be expressed. Our work is based on Geroch's
approach.

Multipole moments in General Relativity provide, or should provide, an
invariant way of interpreting exact or approximate solutions to Einstein's equa-
tions. Of course, this is true only if such solutions are uniquely determined by
these moments up to isometries. The latter statement, which is the content of
Geroch's "Conjecture 1" [3], is proved in the present paper. Partial results on
this question have before been obtained by Xanthopoulos [4].

The strategy of our proof parallels the corresponding Newtonian proof.
There one proceeds in two steps: In Step 1 one shows that the so-called Kelvin
transform, which is the flat-space analogue of Geroch's compactification trick
leaves the field equation, namely Laplace's equation, invariant. Therefore the
potential, if it goes to zero for large distances from the source, is analytic near
the origin A of the compactified space. In Sect. 3 we prove an analogous result
within Einstein's theory. In the finite region the analyticity of the field variables is,
in fact, well known [5]. The situation is considerably trickier at infinity, due to
the fact that Einstein's equations, far from being conformally invariant, become
formally singular at the point Λ. (One faces a similar problem in the characteristic
initial value problem at null infinity [6].) The essential idea to overcome this
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difficulty consists in introducing the formally singular terms as additional field
variables and deriving regular differential equations for them in such a way that
the whole set of variables satisfies an elliptic system. This implies analyticity. It
is worth pointing out that all this can be done for n = 3-dimensional spaces
only (where the Weyl tensor vanishes identically). Quite contrary to Newtonian
theory, neither the analyticity theorem nor Conjecture 1 itself can be expected
to hold in general if n > 3.

Step 2 in the Newtonian proof consists in simply noting that an analytic
function is determined by it's value and the value of it's derivatives at a point.
The value of the suitably rescaled ("unphysical") Newtonian potential and the
trace-free parts of it's derivatives at A are, by definition, the multipole moments.
The trace parts have to vanish by virtue of Laplace's equation. In Sect. 4 we give
the general relativistic counterpart to Step 2. One of the new features is, that
the trace-parts of the derivatives at A of the unphysical quantities are nonzero
and, in any multipole order, have to be determined from the lower orders. As
expected, "orders" in this scheme correspond essentially to order in a 1/r-expansion
of the physical variables.

2. The Assumptions

We consider a smooth 3-manifold X endowed with a smooth, positive definite
metric g.j. We shall write: D. for covariant differentiation; A for the co variant
Laplace operator. D^D^ = ^Rijk

hVh , Rtj = Rk

ίkj and R : = R1. define the Riemann
tensor and its contractions. The tildes distinguish the variables in the "physical"
space X from those living in the compactification X. On X9 we are also given a
smooth scalar field [/, such that

Q (1)

^. = 20.0 DjU. (2)

These equations are equivalent to Einstein's static field equations in vacuo for
the metric

ds2 = e2ϋdt2 - e-^gdM. (3)

We now demand that (X, 17, 0. .) be asymptotically flat and of non-vanishing
mass m. This is equivalent to the following set of assumptions. First of all, there
should exist a manifold X, consisting of X plus one additional point Λ. Moreover
there exists a constant m Φ 0, such that the function ω= m~2U2 is C2 on X
and satisfies

B2) g.. = ω^ cjij extends to a C4'α-metric on X. (In particular, ω ̂  0 outside A.)
(A function is said to be of class CM, iff it's fc-th derivatives exist and are
Holder-continuous with exponent 0 < α < l . ) Furthermore

DίDjω\A = 2λij9 where λij: = gij\A.

The sign of m is fixed by U = - m\m\ω1/2.
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Remark. We have found it convenient to state our requirements and work always
in terms of a particular conformal factor. In the appendix we make contact with
conditions a la Geroch [3], where one assumes just the existence of some conformal
factor satisfying BJ, B2).

Furthermore, by extending the results in [7] and [8], it can be shown [9]
that BJ, B2) hold for static solutions which are asymptotically Euclidean in the
standard coordinate-dependent sense and of nonvanishing (Komar-) mass.

In Sect. 4 there will arise a potential difference to Geroch's work. Namely,
along with each choice of potential ($ in Geroch's case, U in our case) there
goes a particular definition of multipole moments which could, in principle,
be different. Consider, e.g. the one-parameter family of potentials Ua =

— sinh2aU(aεU). Our U is equal to U0. Geroch's {// corresponds to U1/4 and

Ul9Uί/2 are the static limits of the potentials chosen by Hansen [10]
and Hoenselaers [11], respectively. More generally, let/ :U -» R be any analytic

function satisfying /(x) = — /(— x) and — (0) = 1 and define a new potential
ax

γ by V =f(U). Then, using the methods of the following two paragraphs, it
should be possible to show that U and V produce the same set of multipole
moments for a given solution.

As to terminology, we finally remark that we shall sometimes refer to a solution
(U,g.) of (1,2) on X which satisfies B^\ B2) as "a solution". Two solutions will
be said to be equal iff the ί/'s in both cases agree and the g^s are isometric to
each other (these conditions being equivalent, of course, to the fact that the
4-manifolds in both cases are isometric).

3. The Analyticity Theorem

Theorem 1. For any solution (U,g^ there exists in X a chart defined in some
neighbourhood of A, such that g{., ω are both analytic.

Proof. Using standard formulas for conformal transformations, the field equations
(1), (2) lead to

Δω = 3m~2R (4)

ωR.. = ̂ m2D.ω/λω - D.D .̂ω + ̂ g^Δω. (5)

By virtue of B2\ (4) is elliptic with C2 ̂ -coefficients. Hence ω is C4'α on general
grounds [12]. Operating on the contracted version of (5) with D., using (4) and,
once more, (5) gives

D .# = m2RD^ - m2RijD
jω. (6)

Next we operate on (5) with Dk and antisymmetrize with respect to i and k. Using
(6) we arrive at
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The bracket vanishes outside A and, by continuity, also at Λ. Operating on this
expression with Dk once more, commuting derivatives in DkD.RkJ. and using

for the Riemann tensor in 3 dimensions, we find with the help of (4)-(7)

ΔR.. = ̂ RDfoDfo - m4DkωRk(iDj}ω + m2ωRikR
k. + 3RikR

k . - gtjRklR
kl

-RRij + gijR\ (8)

Now observe that the quantity

σ.. : = ω-^n^DfoDfo - Dfljco + fflf^ω), (9)

though undefined at Λ, can be extended to be C2'α there by virtue of (5) since
Rtj is C2'α. Because of (4) and (8), our static solutions satisfy the following system
of partial differential equations in the variables ω, gt. and atj(a : = σ1.)

Aω = 3m'2σ (10)

Δσij = ιw4σ£>.ωJ5.ω - + 9ijσ (12)

Next we transform to harmonic coordinates which satisfy

Axl = Q (13)

with \dxri/dxj\ nonvanishing at A. Such coordinates can always be found in
some neighbourhood of A [13]. Since the coefficients of the elliptic equation
(13) are C3'α, the x'l(xj) will, on general grounds [12], be at least C5'α. Therefore
g ( . is still C4'α, σ'.. is C2'α and ω' is C4'α. Omitting the primes, we have a C2'α-solution
(ω, 0.., σ..) to (10), (11) and (12) which, in these coordinates, form an elliptic system.
(Due to the appearance of second derivatives of 0.. in (12), it is not strongly elliptic;
see [14] for the definitions.) Hence, from a theorem of Morrey [14], ω, gtj and σtj

are all analytic near A. This proves Theorem 1.

4. The Multipole Theorem

Following the scheme given by Geroch in [3] we define recursively a set P9Pt,
Ptj,.>. to totally symmetric, trace-free tensor fields by

P= -m

Ί
(14)

where p[TL j] denotes the totally symmetric, trace-free part of T. r The 2s

moment M f ι Λ is defined to be the value of P i ί f t m i at A. (Since P is constant, M.

vanishes so that we are automatically in the "centre of mass".) This construction
can be considered as mapping every solution (t7, g^) into the collection of tensors
(λ. ,M, M. = 0, M. 2 ). Among the set of all these collections, identify the
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elements which are connected by some element of GL(3, (R). There results a set
E of equivalence classes E = {e, /,...}.

Theorem 2. The map (U.g^-^e is an injective function, that is to say, if two
solutions lead to the same equivalence class e, they are identical at least in some
neighbourhood of A.

Proof. The idea is to reconstruct (C7, gtj) from e in the following way: We compute
ω, Rtj and their co variant derivatives at Λ. It then follows from a classical theorem,
a modern version of which can be found in [15], that 0.. is determined. Hence
g.j = ω~2gij and U = — m\m\ω1/2 are unique.

In order to start an induction process, observe that, by assumption B2 and
(4), R Λ = 2M2. Using this equation and (14), we have

Let us now assume that after n—ί steps we know Rtj (and hence Rhijk) and its
co variant derivatives up to order n — ί and ω and its derivatives up to order
n + ί. Then, taking Dtι Din _jy of (5) and commuting derivatives, if necessary,

by use of the Ricci identity, we obtain Dtι ... Din DΛω expressed in terms

of known quantities. (Since ω \Λ = 0, the π-th derivative of R.j does not contribute).
With the help of (4) we have the value of Dtl... DinR at Λ. Substituting back into

the n-ih derivatives of (5), we obtain all the n + 2-derivatives of ω. From the
definition (14) we see that

M
- — ρ(D. ...D. R. . ) = P. . + known terms.

9 *1 ln ln+ίln + 2' ll ln + 2

D(iί ..PinRίn+1in+2) is known up to trace terms of which there are three types:
a) Dtι .R, which has been just computed.

b) Dtι ...D
J'...Din _1^jn J can be reduced to a) by virtue of Ricci and Bianchi

identities.
c) Diι...A...Di 2Rt _ j f can be determined from known quantities by help of

the n — 2-th derivative of Eqn. (8).
D....D.R. . can be written as D,. ...D. R. . , plus terms involving anti-

l l In In + 1 In + 2 (ll In In + Hn + 2) * °

symmetrization with respect to at least one pair of indices. If both indices are
in the derivatives, we can again use the Ricci identity to reduce them to known
terms. If one index occurs in the Ricci tensor, we can appeal to the n — 1-th deri-
vative of (7) (with ω divided out). This finishes the proof.

We finally remark that one knows the explicit expressions for the Taylor
coefficients in normal coordinates of an analytic metric in terms of the curvature
and it's derivatives [16], whereas for the scalar ω we simply have

00 J

ω = λijx
ixί+ £ —Diι...Dirω\Λx

ίl...xίr

r=3 T'

in normal coordinates xl centered at Λ.
The reduction procedure above seems suited for algebraic computer manipu-

lation. If one was lucky, one might even find general recursion formulas for
(Ω, gtj) or (U, g.j) in terms of the moments.
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5. Remaining Problems

We have not touched so far Geroch's 2nd Conjecture [3]. In the present context
it should mean that the equations for the "unphysical" variables ω, gtj can be
formally satisfied to all orders by the above inductive scheme without further
restrictions on the multipole moments. Although it is quite suggestive that this
is the case, a formal proof seems to be a nontrivial algebraic problem. One has
to show that the quantities Dti . Rin+ίin+2 which are computed in the proof of
Theorem 2, satisfy the consistency conditions such that they
a) belong to a metric which, together with ω,
b) satisfies all the equations. (In this connection, compare [17].) On top of that,
c) one must find suitable fall-off-conditions for large order on the moments

such that the power series' in terms of which the formal solution is written
down have nonvanishing radius of convergence.

If these problems are solved (partial results, using a different approach, can be
found in [9]), the "physical" space with the metric U: = — m|m|ω 1 / 2 and
g..: = ω~2gij can be constructed (ω is positive near A because of DiDjω\Λ = 2/L).

Another problem is to find the extension of our considerations to stationary
space-times with or without additional zero-rest-mass fields [10, 11]. There
arises the question of specifying the conformal factor Ω in order to get an elliptic
system similar to (10), (11) and (12) for Ω9gij9R.j and some suitably defined
potentials.

Appendix

We intend to outline the relationship between our assumptions B^\ B2) and
requirements which are more in the spirit of Geroch's original paper [3]. We
assume that there exists on X a C2-function Ω such that
^) 0^ = 0,^0(^ = 0.

A2) g.. = Ω2gtj is a C4'α-metric on X and (D.Dfί - 2g.)\A = 0.

A3) Ω~2R is C2 on X and nonzero at A. Finally,

A4) ΰ -»0 as the argument approaches A.
We first show that B^BJ^AJ to A4). Setting Ω = ω9Aί) and A2) are

satisfied. To prove A3)9 note that R/ω2 = R = σ, which, from B2\ is C2. Moreover,
σ\Λ = 2m2 =/= 0, A4) is immediate from ω = m~2U2.

To go the opposite way, we first show that U = Ω~ 1/2U is C4'α in X. Writing
Ω~2R = κ4, we have, by specializing (2.20) of Hansen [10],

(15)

where Cijk is the Bach tensor. From (15) we see that K is C3'α (since Cijk contains
third derivatives of gr). Furthermore, from (1), U satisfies

in
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Now draw a sphere Σ enclosing the point A and seek a C4'α-solution W of (16) In X
with U = W on Σ. For sufficiently small Σ, this H/ will always exist. Defining
Z=U — Ωί/2W and going back to the physical space X, we have

Now observe that Z vanishes on Σ and, by A4\ also at A Hence the maximum
principle implies that Z = 0 in X. Therefore U can be extended to a C4'α-solution

of (16) by setting U Λ = W\Λ.
From (2) we have

Ω~2R = Ω-1U2DίΩDiΩ + 2UDίΩDiU + 2ΩDiUDiU. (17)

Hence Ω~2R Λ = 2U2

 Λ ^ 0, using ΓHospitaΓs rule. Setting m = - U \A, it can
now be seen that ω = m~2U2 satisfies B^ £2), at least in some neighbourhood
of A, which is all we need for our purposes.

As a final remark we note that Geroch's potential \l/(\j/ = 2 sinh U/2) which
satisfies the conformally invariant equation

= 0 (18)

can be shown to be C4'α without requiring K to be C2 in A3). So we could have
used Ω = M~2ψ2 in the whole of this work instead of Ω = ω. It turns out, however,
that A3) then has to be used at some other place in the proof of the analogue
of Theorem 1. Furthermore the equations become more complicated. So we
chose to work in terms of Ω — ω.
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Note added in proof: The stationary case has meanwhile been solved by the present authors.




