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On the Adiabatic Limit for Dirac Particles
in External Fields

G. Nenciu*

Institut fiir Theoretische Physik der Universitat Zurich, CH-8001 Zurich, Switzerland

Abstract. An adiabatic switching formalism is proposed to bypass the difficul-
ties in defining the spontaneous pair creation in static electromagnetic fields.

1. Introduction

The interest in the basic theoretical problems of Q.E.D. (Quantum Electro-
Dynamics) in strong external electromagnetic fields has been stimulated in the last
years by the experimental facilities of the heavy ion physics. During the collision of
two heavy nuclei a very strong electromagnetic field is created and new phenomena,
absent in weak fields, are expected to arrise.

From the experimental point of view, the most striking phenomenon which is
expected to set in is the "spontaneous" creation of electron-positron pairs.

A rich literature exists [1-4] concerning Q.E.D. in strong fields, but most of the
results are based on nonrigorous treatments, analogies and speculations. In
particular, the mechanism of spontaneous pair creation is explained usually [3] by
a "gedanken" experiment as an adiabatic increase of the external charge, via the
analogy with selfionization of helium. In our opinion, it is very hard to put these
calculations on firm basis without relying on scattering theory. In fact the pair
creation, spontaneously or not, is a scattering phenomenon and must be treated as
such.

The main difficulty in the subject is the fact that one cannot use perturbation
theory with respect to the external field. On the other hand, if one neglects the
electromagnetic field created by the electron-positron field, the problem can be
treated by nonperturbative methods. This approximation is known as the external
field problem in Q.E.D. and there exist a lot of rigorous result about it (see [5, 6]
and references therein, also [7-10] for recent results for a review of rigorous
results, relevant to strong field phenomena see [11]).

Unfortunately, the discussion of the problem of spontaneous pair creation, in
the framework of the external field problem in Q.E.D., meets some difficulties
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because of the result of Bongaarts [12] that static fields are unable to create pairs.
(This fact has been noted earlier in the literature, see for example [13].)

The aim of this paper is to propose a new way of dealing with this problem, in
the framework of the adiabatic switching formalism. In Sect. 2, the problem is
described, the notions of "undercriticaΓ and "overcriticaΓ static fields are made
precise, and some conjectures are put forward. In Sect. 3, one of the conjectures,
concerning undercritical fields is proved.

2. Description of the Problem

Since all results of the external field problem in Q.E.D. can be obtained from
results about the classical Dirac equation via the machinery of second quanti-
zation, we shall start by fixing some notation for the Dirac equation.

The Dirac equation with time dependent potentials reads

t t (2.1)

the underlying Hubert space being J^2(IR3) = (L2(IR3))4 and

Vt(x)=-eφ(t,x) + e*A(t,x). (2.2)

φ and A are the electric and magnetic potentials, respectively. By H0 we shall
denote the free Dirac operator which is the selfadjoint extension of ( — iαP+βm) in
J2?2(R3). In what follows, we shall assume that for all ίeIR, V f is H0-bounded with
relative bound less than one so that H^Hφ + V, is self-adjoint on ^(H0) by the
Rellich-Kato theorem [14]. For a given potential V (not necessarily time
independent) S(V) is the scattering operator associated to the pair H0,

Finally let P°, σ = ± be the spectral projections of H0 corresponding to [m, oo)
and (—00, — m] respectively.

The following results will be relevant for our discussion.

Theorem 1. Suppose that V is time independent, Unbounded with relative bound less
than one and that S(V) exists and is unitary. Then

i) for σφσ'

P°σS(V)P°σ, = V. (2.3)

ii) Let Vε(ί) = exp(-ε 2f 2)V. Then S(Vε) exists is unitary and for all

(2.4)

Remark 1. The results stated in Theorem 1 are usually proved in the Schrόdinger
case, but it is easy to see that the proofs are the same in the Dirac case. The first
one is based on the well-known fact that the scattering operator commutes with
the free evolution. The second one is due to Dollard [15] and says that the
adiabatic theorem for the scattering operator is true in the weak topology.
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Let now J% be the Cook-Fock space for the free electron-positron field. One of
the basic results of the quantized theory is [5, 6, 16]

Theorem 2. Suppose that 5(V) exists and is unitary. Then
i) the scattering theory of the quantized Dirac field in the external field V is

described by a unitary operator ^(V) in ̂ 0 if and only if P®S(V)P®, is Hilbert-
Schmidt for σφσ'. ^{V} is uniquely determined by S(V) up to a phase factor.

ii) The phase in ^(V) can be chosen such that, if Ω is the vacuum state in ̂ 0,
then

{0 if AA* has 1 as one of its eigenvalues

(2.5)

det(l+£v4,4*jB*Γ1/2 otherwise,
where

The formula (2.5) is the staring point of our discussion. Since 1 — (Ω, £f(V)Ω)2 is
the total probability of pair creation, (2.5) combined with Theorem 1 i) shows that
there is no pair creation in a static field of arbitrary strength. The inability of a
static field to create pairs has been noted early [13], and proved rigorously by
Bongaarts [12] in the C*-algebra framework. However, this result does not forbid
the "spontaneous" pair creation (as one could think at the first sight). The question
is whether the static field result is stable in the following sense. Suppose V is not
strictly time independent but varies very slowly in time. Is it then true that
(Ω,5^(V)Ω)~1? If the answer is negative, one shall say that a spontaneous pair
creation sets in.

The above idea can be formulated precisely in the framework of the adiabatic
limit. Let V be a time independent field, and Hε = H0 + exp( - ε2t2) V with S(Vε) the
corresponding scattering operator.

Definition 1. a) A time independent external field V is said to be undercritical if

lkg(Ω,«SP(V e)Ω)=l. (2.6)

b) A time independent external field V is said to be overcritical if

Ω)<l . (2.7)

In the rest of this section V will be considered |H0|
α compact for some α< 1.

Let V(x)=F(x)i, F(x)<0, i.e. V is the external field created by a static
distribution of positive charges, Vλ = λ\9 λ^ΰ and Hλ = H0 + Vλ. It is believed [11]
that when λ increases from 0 to oo eigenvalues appear at + m, moves continuously
to the left and dive in the negative continuum at — m. Let λc be the value of λ when
the first eigenvalue reaches — m. The common belief among physicists amounts for
the following:

Conjecture 1. VA is undercritical for λ<λc and overcritical for λ>λc. More
precisely :

1 for λ<λc

0 for λ>λc.
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The restriction to purely electrical fields is not essential and we shall always
consider general electromagnetic fields in the following.

Conjecture 2. Let V be time independent, and Hs = H0 + exp( — s2) V. Suppose that

there exist a continuous function /(s), hm /(s) = 0 and a constant d>0, such that

the spectrum Σ(s) of Hs has the property :

Then V is under critical.

Roughly speaking, Conjecture 2 says that a static external field is undercritical
if during the switching on and off, the spectrum emerging from the upper
continuum does not mix with the spectrum emerging from the lower continuum.
The above conjecture says nothing about the case when during the switching some
eigenvalues emerging from the lower continuum cross some eigenvalues emerging
from upper continuum. The most general conjecture is the following.

Conjecture 3. A static field is undercritical if and only if during the switching the
eigenvalues emerging from the upper continuum does not touch the lower continuum
and the eigenvalues emerging from the lower continuum does not touch the upper
continuum.

In the following section, we shall prove Conjecture 2. In fact our method
combined with the adiabatic theorem for intersecting eigenvalues [17, 18] can be
used to prove the "if part of the Conjecture 3. But the important problem which is
left open is the existence of overcritical fields.

3. The Results

Definition 2. φ(s\ seIR is said to be a switching factor if

i) 0<<p(s)< 1, lim φ(s} = 1, lim φ(s} = 0.
_ _ * r v / _ » s _ > 0 ^ v / s ^ ± o o ^ v /

ii) φ(s) is twice differentiable on IR and

sup
seIR

i (
— oo \^φ(s}ίφ(s)

<oo, lim -
?

S - ± G O d

2 d2

d?φ(s} ds<co.

The following is a trivial consequence of Definition 2.

Lemma 1. Let φ(s) be a switching factor. Then

1 d
lim sup
ε->0 ίeIR

<00,

T+at
dt<oo.

(3.1)

(3.2)

(3.3)

(3.4)
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Remark 2. The usual switching factor exp( — ε\t\) is not contained in Definition 2,
because the second derivative contains a δ function. But the reader will realise that
all the proofs below can be extended to cover also this case.

The following result has a preparatory character.

Theorem 3. Let H0 be the free Dirac operator, V a time independent external field
whose matrix elements J^ (x) are in Z/(IR3)nL2(]R3) for some p>3, and φ(s) a
switching factor. Then

i) for all 2^

| | |H 0 Γ«V| |<oo. (3.5)

In particular V is H0-compact and

j imlKHo-ΐαΓ^HO. (3.6)

ii) For α / / 2 ^ α > 3 / 2

ll |HoΓ"V| | H .s .<oo, (3.7)

where \\ - ||H s means the Hilbert-Schmidt norm.
iii) For all ε, ίeIR, Hε(ί) = H0 + φ(ε£)V is self-adjoint on 0(H0).
iv) For all ε, £0eIR the equation

ijtUE(t, ί0) = Hε(ί)t/ε(ί, ί0) C7ε(ί0> ί0)= 1 (3.8)

has a unique solution which is a strongly continuous family of unitary operators.
v) The Moller operators

Wε

±=s lim t/*(ί,0)exp(-iίH0) (3.9)
t-> + oo

exists and are unitary.
vi) The scattering matrix

= (WΪ)*W~ (3.10)

can be computed as

S(Vε) = s- τ\im^ exp(iΓH0)L/ε(7; - Γ)exp(iTΉ0). (3.11)

Proof of Theorem 3i and ii). Use Young, Hausdorff- Young inequalities, and the
fact that the integral kernels of |H0|~

α are essentially Bessel potentials Gα(x) and
then

G^L^IR^nL^lR3) for l^<3/(3-α).

The H0-compactness follows from (3.5) (see the proof of Lemma 5.1 in [21]). iii)
follows from i) and the Rellich-Kato theorem [14]. For iv) see [14]. The proof of v)
is identical with Dollard's proof for the Schrodinger case [15]. The last point
follows from the definition of S(Vε) and the fact that W^ are unitary.

Our main results are contained in the following
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Theorem 4. Besides the conditions of Theorem 3, suppose that there exist a
continuous function f(s\ lim f(s) = 0, and a constant d>0 such that the spectrum

s-> ±00

Σ(s) of H(s) = H0 + φ(s)V has the property:

Then for σή=σ'

Pσ°||H.s^O. (3.12)

This theorem, combined with Theorem 2, implies that V is undercritical, which
proofs the Conjecture 2.

Remark 3. There exist several proofs of the fact that P°S(Vε)P° is Hubert-
Schmidt, but no one seems to be appropriate for our purpose. Most of them [5, 6,
9, 10] are based on the Dyson series which is difficult to control in the adiabatic
limit. Another method we are aware of, still requires compact perturbations [19].
Our proof is a generalization of the adiabatic theorem of quantum mechanics [17,
20, 18].

Proof of Theorem 4. A finite number of constants will appear during the proof.
For the sake of simplicity, we shall denote all of them by the same letter c. They do
not depend on t and ε During the proof, some of the technical points are stated as
lemmas which are proved at the end. Note that since V is H0-compact
σess(Hε) = σess(H0) and then \f(s)\^m-d/2.

Lemma 2. Let Pε

σ(t), σ= ± be the spectral projection of Hε(ί) corresponding to
Σε

σ(t) = Σσ(εt). Then

i)

lim ||P*(r)-P°||=0. (3.13)
1 -* co

ii) Pε

σ(t) is norm differentiate as a function of t and

^c—φ(εt). (3.14)

Using (3.11) and (3.13) one can see that

Pa S(Ve) P$ = /-^ exp(iTH0) Pε

σ(T) UE(T, - T}

Let Kε(t) be defined by

(3.15)
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Lemma 3.

£'(£)* = Kε(ί), (3.16)

[P:(ί),/Cε(ί)] = -i^P^(t). (3.17)

Let Aε(t, t0) be defined by

i jf A*(t, t0) = K*(t) A\t, g Λε(ί0, ί0) = 1 . (3. 18)

Equation (3.18) has a unique solution satisfying [14, Theorem X69]

^(MoΓ^^tMo)*-

Using (3.17) and (3.18), one can see that

~με(ί,g*p:(t)^(t,ί0))=o

which implies

P'β(t0) = A'(t,t0ΓP'a(t)A'(t,t0). (3.19)

We shall define U£(ί,ί0)by

U,(t,t0) = A'(t,t0)*Ut(t,t0). (3.20)

By direct computation

- Kε(t)] A*(t, t0) ϋt(t, t0) Ut(t0, ί0) = 1 . (3.21)

Clearly Σ(Λε(ί,t0)*Hε(ί)Λε(ί,ί0))=2;(Hε(ί)), and by (3.19), F=(t0) are the spectral
projections of /lε(ί,ί0)*Hε(ί)^ε(ί,ί0) corresponding to Σε

σ(t). By (3.14), (3.15), and
(3.3)

||Kε(ί)||^ΦI (3.22)

and then for small enough |ε|
Σ(Aε(r,t0)*[Hε(t)-Xε(ί)]Λε(ί,ί0)) has two disjoint components ίε(ί) and for all

λeΣ*β(t),di!Λ(λ,Σ'σ(t))^Φ\
We shall perform the above procedure once more defining Bε(t, t0) by

i ~ B*(t, ί0) = Lε(ί) Bε(t, g B*(t0, g = 1 , (3.23)

l ( t ) , (3.24)

where Qε

σ(t] are the spectral projections of
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corresponding to Σε

σ(t). In order (3.24) to make sense, we need information about
££(£)• The following technical lemma is the heart of the proof

Lemma 4.

-Φ(εί)

ii) Qε

σ(t) is norm differentiable and

<c
H.S. at

φ(εt)
d?*(βt)

As for Aε(t, ί0) one has

QBM=B*(t,t0)*Q*σ(t)B*(t,t0).

Let now Φε and ίP be defined by

(3.25)

(3.26)

(3.27)

By construction

and

(3.28)

(3.29)

(3.30)

Writing (3.31) as an integral equation and estimating with help of Lemma 4ii), one
obtains

H.S. =<r=c

df

df (3.32)

Using (3.19), (3.20), (3.27), (3.29), and (3.30), one gets the following identity

A*(t, g Bε(t, g Φε(f, ί0) [ p(r, g- 1
+ A\t, ί0) J5ε(ί, ίo) Φε(ί, g [P ,(ί0) - β« (ί0)]

+ Aε(t, ί0) [Q«(ί) - P«ff(ί0)] 5ε(ί, ίo) Φε(ί, ί0)

+ P«(ί) Aε(t, ί0) Bε(t, ί0) Φε(ί, g [1 - ΨM, (3.33)
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From (3.33) and Lemma 4, one obtains the final estimate for σή=σ' and ί, £0eIR

d

Ttφ(εt}<c

(3.34)

Lemma 5. Let An be a strongly convergent sequence of Hubert-Schmidt operators in
a separable Hilbert space, MJHS ^cn, c= l imc n<oo and ^4 = 5-limv4n. Then A is
Hilbert-Schmidt and

(3.35)

From (3.1Γ), (3.34), and Lemma 5, it follows that

Ttφ(£t} *—
dt2 dt

which together with (3.6) finishes the proof of the theorem.

Proof of Lemma 2. Let Rε

t(z) = (H f i(ί)-z)~ l

9 R0(z] = (H0 - z)~1 be the resolvents of
Hε(ί) and H0 respectively. We shall denote by x the midpoint of the gap
between Σ\(t) and Π(ί) Note that dist(x, {±m})^d/2.

Using the integral representation of the spectral projections, and the resolvent
equation

0 (3-36)

(3.37)

(3.38)

R*t(z)-R0(z)=-φ(εt)R0(i

one obtains

pβ ( ί )_po=_σfM f j

2π -oo

By the functional calculus for self-adjoint operators one has for

Taking δ= - and combining Theorem 3i) and (3.38) one obtains

which together with (3.37) and the definition of φ(s) finishes the proof of (3.13).
We remark now that Rε

t(z) is norm differentiable and

(3.39)
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Differentiating (3.37) with respect to t and using (3.39), one has

From (3.6) it follows that there exists 0 ̂  y0 < oo such that ||VJ^0(
all xe[-m + d/2, m-d/2].

Then

- R0(x + iy0) [1 + φ(εt) V ̂ 0(

Moreover from the functional calculus

sup
+ d/2, m-d/2]

Combining (3.41) and (3.42) one obtains

From (3.40) and (3.43) one has

<c Ttφ(εt}

J

(3.40)

| < 1/2 for

(3.41)

(3.42)

(3.43)

(3.44)

and the integral on the r.h.s. of (3.44) has been estimated in the proof of (3.13). This
finishes the proof of Lemma 2.

Proof of Lemma 3. See [20].

Proof of Lemma 4. Let RE

t(z) = (HE(t)-KE(t)-z)~1.
Noting that Pε

σ(t0) are the spectral projection of

for all t one can write
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- (A\t, g* (H.(ί) - κ\t)) A\t, g - x - iy) - l

t, g* f KJ(x + i» Kε(t) R*(x + iy) </3> Λε(ί, g . (3.45)
[-00 j

Combining (3.15), (3.45) and the following form of (3.40)

one gets

Qε

a(t)-

= - 7^2 (4
4-7Γ \αt

•R*t(x + iv) Pε

σ, (t) Rε

t(x + iy)} Aε(t, ί0) . (3.46)

The essential property of this formula (3.46) is the appearance of the operator

Rε

t(x + iy)Rε

t(x + iv)\ and of — φ(εt) in front.

In fact, one can see by inspection that (3.25) is proved if

, g* Σ ί d jΆ> Λ?(χ + iy) R*,(χ + iv) v

^ c[_(y2 + d2/4) (v2 + J2/4)] ~ ι; 1 6 . (3.47)

Inserting

z) (3.48)

in (3.47), one sees that all the resulting terms contain R0(x -f iy) R0(x -f iv) V. Taking
into account (3.6) and (3.43), the only thing we have to prove is

\\R0(x + ίy)R0(x + iv)V\\H^cl(y2 + d2/4)(v2 + d2/4)r11^ (3.49)

which follows from (3.7) and (3.38) taking α = 7/4 and <5 = l/8.
This finishes the proof of Lemma 4i).
For the proof of Lemma 4ii), let us examine the terms one gets by differentiat-

ing the r.h.s. of (3.45). (Warning: the contour of integration in the spectral
projection integral formula is kept fixed during the differentiation.) Taking into
account (3.39) and

d , Λ, r d „ f , , / o r m-τ-φ(εί) V- — Xε(ί) Rf(z) (3.50)
dί / df

d
df ^Z'~~ ί(^

one observes that

1. All terms contain at last either I — φ(εt)\ or —^
\dt 1 dt

2. Writing the integral formula for — Pε

σ(t) or —-̂  Pε

σ(t) which appear in Kε(t)

and — Kε(t) respectively, the factor Rε(x + iy) Rε

t(x + iv) V arises. Then all the terms
dt
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can be estimated as in the proof of Lemma 4i). Note that the norm of VR\ (z) can be
easily controled using

This finishes the proof of Lemma 4.

Proof of Lemma 5. See [22, Chap. V, Theorem 15] and the fact that for a finite
rank operator F,

Jim Tr(AnF) = Ύr(AF).
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argument needs an additional condition on φ(s), namely j φ(s)ds<cc, but in this case, a stronger

result is obtained

PjS(V f) JPJ, = H.S.- lim exp(i7Ή0)Pl(T) Uε(T, - T) •?',(- r)exp(iΓ H0).
T , T' — > oo
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