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Abstract. The paper considers the Schrόdinger equation for a single particle
and its discrete analogues. Assuming that the coefficients of these equations are
homogeneous and ergodic random fields, it is proved that the spectra of
corresponding random operators and their point spectra are dense with
probability 1 and that in the one-dimensional case they have no absolutely
continuous component. Rather wide sufficient conditions of exponential
growth of the Cauchy solutions of the one-dimensional equations considered
are found.

1. Introduction

Experimental and theoretical investigation of a large variety of disordered systems
has constituted in the recent decades a substantial part of the condensed matter
physics. One of the most common and efficient theoretical approaches in this field
now is the one-body approximation. In this approximation the solution of a
problem is reduced to consideration of different quantities constructed of eigenval-
ues and eigenfunctions of the one-body Schrόdinger equation or its discrete
analogues (see [1-3] for physical discussion and numerous references, and [4] for
the survey and discussion from a more mathematical point of view).

The usual approach which conforms to the general principles of statistical
physics is to consider operators defined by these equations and some selfadjoint
boundary conditions in a finite domain V and study, for F->oo, asymptotic
properties of the various physical quantities which are all constructed of eigenele-
ments of corresponding operators.

The random potential that models the influence of a disordered medium
should meet the following natural conditions:

a) spatial homogeneity
and

b) absence of statistical correlations between infinitely distant points.
In mathematical terms it means that the potential is realization of a random

field (a random process in one-dimensional case) which is
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A) homogeneous, and
B) metrically transitive (ergodic),

(for definition see, e.g. [5]).
It turns out that in such case the physical quantities of a macroscopically large

disordered system are nonrandom1 and can be expressed through the averaged
spectral characteristics of the limit operator H acting in the whole d-dimensional
space IRd (or the lattice Έd). This justifies a closer study of this operator which
moreover should be expected to reveal the spatial homogeneity more naturally
and completely.

The main object of this paper is to study the spectral properties of the operator
H acting in the whole space. As we shall see2, many properties are common to the
spectra of all such operators, though quite different from those of the ordered
counterparts, i.e. difference and differential operators with periodic coefficients.

The paper is organized as follows. In Sect. 2 we introduce and study a certain
class of operators (we call them metrically transitive or ergodic) including the
difference and differential operators with random ergodic coefficients as an
important subclass. Section 3 contains results for the one-dimensional case. In
Sect. 4 we study the relationship between the spectral characteristics of the
operators acting in the whole space and those of the corresponding operators
defined by the same equations in a large but finite domain. In Appendix we prove
the exponential growth of the Cauchy solutions of the one-dimensional difference
and differential equations with random weakly correlated coefficients. This is an
essential point of the proof of the absence of the absolutely continuous component
in the one-dimensional operator spectrum and even of the purely point character
of the spectrum (see [7]).

2. General Spectral Properties of Infinite Disordered Systems

To simplify our discussion, we consider as a typical but fairly simple object, the
multidimensional Jacobi matrices with random diagonal elements, but all our
statements as well as the essence of their proofs are valid also in much more
general situations.

Let l2(Zd) be the space of sequence {xk}, £ |x k | 2 <oo on the periodic
d * e R <

d-dimensional lattice ΊLd — Ik: £k α a α , k^eZ1 aa are certain fixed linearly inde-

1 l

pendent vectors of Rd > and H(ω) be the family of bounded operators of the form:

Here fc + δ are the vectors corresponding to the nearest neighbours of /c, vfc(ω) is the
real homogeneous metrically transitive bounded sequence:

(2)

1 This property of the physical quantities of large disordered systems will be called self-averaging
(the term was introduced by I. M. Lifshitz)
2 The main ideas and results of this paper were first published in [6]
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and ω is a point of the realization space Ω. As is well known [5], every
homogeneous metrically transitive sequence defines in its realization space Ω the
probability preserving group of the transformation Ύx satisfying the relation

This group of the transformations has no nontrivial invariant subspaces in Ω [5].
Such properties of random quantities υk(ω) give rise to the relation

H{Tιω)=UιH(ω)U_l9 (3)

where [//is the unitary group of shift operators in l2{7Ld)

( l / z χ ) k = χ f c + z .

The matrix form of Eq. (3) is

Hk + ltq + l{co). (4)

It is clear that if Eq. (3) holds for the family {H(ω)} it also holds for any function of
//, in particular for eιtH and for E(λ) where E(λ) is the spectral family (resolution of
identity) [8] of the operator H.

Henceforth the family of the bounded operators {H(OJ)} in l2(Zd) will be called
metrically transitive (ergodic) if for almost all ωeΩ they satisfy Eq. (3) and if
quantity (Hx, y) is a measurable function of ω for x and y belonging to a certain
dense set in l2{Zd)3.

If Ω consists of a single point, then H is the difference operator with constant
coefficients, i.e. it is a particular case of the Toeplitz operator [9]. It is convenient
to consider further examples of our objects, which are more complicated, in the
continuous case (the Schrόdinger equation in Rd with random coefficients), with
restricting oneself, only for the sake of simplicity, to dimension 1.

Example 1. Let Ω be a circle of radius R, P( ) the Lebesgue measure on this circle,
divided by (2πR)~ \ Tx rotation by an angle x. Let v(x, ω) = v(x + ω) where υ(x) is a
2π.R-periodic function. In other words, {φc, ω)} is the set of 2τLR-periodic
functions with random origin ω uniformly distributed over a fixed interval of
length 2πR.

Example 2. Let Ω be an n-dimensional torus with incommensurable radii
Rv ...,Rn, P(') the normalized Lebesgue measure on it, Txω = {ωί + x, mod2nR0

z = l, ...,n}, v(x,ω) = F(Txω) where F(ω) is a function on the torus. Such v(x) are
called quasiperiodic functions [10] (the spectrum of such operators was studied in
[25] and in [27]).

Therefore all our results may be applied, e.g., to the Schrόdinger equation in Rd

with a periodic, quasiperiodic and even general almost periodic (n= oo) potential.

3 If operators H(ω) are unbounded for almost all ωeΩ, it should be required that almost all H{ω)
have the same domain D which is invariant with respect to C/,: UβcΘ for all leZd
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Proposition 1. Let P(ω) be a random ergodic operator which is an orthogonal
projection for almost every ω and let v be its dimension: v — TΐP. Then either
V = O ( P Ξ O ) or v = oo with probability 1. The former possibility is realized if and only
if E{Pkk} = 0 4, and the latter when E{Pkk}>0. Here Pkι is matrix elements of P.

Proof It follows from Eqs. (3) or (4) for P(ω) that

v(ω)= Σ W (5)
keTLά

is the invariant function on Ω: v(7]ω) ̂  v(ω). Since Tt is ergodic, v with probability 1
is independent of ω and E{Pkk} is independent of k [see Eq. (4)]. Thus, for an
arbitrary integer

v = £{v}^ X E{Pkk}=(2n+l)dE{P00}
\k«\S"

and if v< oo, then E{P00} = 0 and then by Eq. (5), v = 0. If E{P00} >0, then v= oo.
Applying Proposition 1 to the projection operator E(A) = E(λ2) — EiλJ, (λί,λ2]

being a semiclosed interval, we obtain the following theorem:

Theorem 1. Let A be any fixed semiclosed interval on the spectral axis. Then with
probability ί, the number of spectrum points of H(ω) belonging to A equals zero or
infinity. Which of these possibilities is realized, depends on whether E{Ekk] is zero or
not.

Let Σ(ω) be the spectrum of the selfadjoint operator H(ω\ i.e. the set of growth
points of the spectral family E(λ). Theorem 1 shows that with probability 1 the
spectrum of H(ω) is essential [8], i.e. every point of Σ(ω) is its limit point.

Theorem 2. Every point λ on the spectral axis either belongs to the spectrum of
almost all operators H(ω), or does not belong to almost any of them. The realization
of one of these possibilities depends on whether λ is or is not the growth point of the
non-decreasing function E{E00(λ)}.

Proof The first part of the theorem follows from relation

{ω:λeΣ(ω)}= f] {ω:(λ-ε,λ + ε)nΣ(ω)^O}
ε > 0

and from Theorem 1, since every event in the right-hand side has the probability 0
or 1 only.

Let us prove the second part of the theorem. If λ is a point of the growth of
E{E00(λ)}, i.e. for every ε > 0

o(λ + ε)-Eoo(λ-e)}>0

then with nonzero probability,

i.e. the interval (λ — ε, λ + ε) contains the points of Σ{ω). Since the probability of this
event is nonzero, then, as specified by Theorem 1, it equals 1. Then, with

4 The symbol £{...} denotes the expectation with respect to the probability measure P( )
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probability 1, the points of Σ(ω) are contained in (λ — ε,λ + ε) for every ε>0. Since
Σ(ώ) is a closed set, λ, with probability 1, is contained in Σ(ω) too.

Now let λ be in Σ(ω) with probability 1 and let λ be not a growth point of
E{E00(λ)}, i.e. for some ε>0,

E{Eoo(λ + ε)-Eoo(λ-ε)}=0.

In accordance with Theorem 1, this equation implies that the interval (λ — ε,A + ε)
does not contain, with probability 1, the points of the spectrum of operators H(ω).

Corollary 1. The spectra of almost all H(ω) coincide, i.e. Σ is a nonrandom set.

The proof of the corollary immediately follows from the fact that every Σ(ω) is
the set of growth points of the nonrandom function E{E00(λ)}. Another way of
proving this corollary is to use Eq. (2) directly.

Let us show now that for the point spectrum of H(ω) [it is the set of the
discontinuity points of E(λJ], only the second possibility of Theorem 2 is realized.

Theorem 3. The event: any fixed point λ is the eigenvalue of finite multiplicity has the
zero probability.

Proof If λ lies in the point spectrum ΣP of H, then the projection operator P{λ)
= E(λ + 0) — E(λ)5 is nonzero. Since P(λ) is the strong limit for ε j 0 of the projection
operators E(λ + ε) — E(λ — ε) it satisfies Eq. (2) for every fixed λ, i.e. P(λ) is a
metrically transitive (ergodic) projection operator. Then by Proposition 1, άimP(λ)
= 0, oo only. Since, by supposition, άimP(λ)<co with probability 1, P(λ) = 0.

One may think that from this Theorem it follows that H has no point
spectrum, but it is not so. The point spectrum is just too "mobile" and "sensitive"
to the change of the potential set, and therefore this set varies with ω. Besides, since
it is countable, the probability for some fixed point to fall into this rather fine and
mobile set is zero. Loosely speaking, Theorem 3 means that the point spectrum of
H(ω) has continuous probability distribution.

However, if one considers the intervals instead of the points, it turns out that
the point spectrum ΣP(ω) has the property similar to that of the whole spectrum
Σ{ω). In order to prove this property, let us introduce quantity

Λkq(Δ9ω)= Σ l ^ ω ) | 2 , (6)
λeΔnΣp

where P(λ) = s-\im[E(λ + ε) — E(λ — ε)]. Since Pkq{λ) are the jumps of the bounded

variation function Ekq(λ) then by the Wiener theorem6 we find that

5 As is usual in spectral theory of linear operators [8], resolution of identity E(λ) is the left-
continuous function

6 This theorem is that if σ(λ) is a bounded variation function, δt are its jumps and m(t) is its Fourier
transform, then
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where

Bkq(t)=\eiλtdEkq{λ)
A

or Bkq(t) are the matrix elements of the operator eitHE(A). Thus, Akq satisfy Eq. (4),
i.e.,

q Ak + Lq + ι(A,ω). (7)

Theorem 4. With probability ί the number of eigenvalues in the fixed interval A is
zero or infinity. The first case is realized if and only ifE{A00(A)} = 0 and the second
one if and only if E{A00(Δ)} >0.

Proof Let

μ(Δ,ω)= Σ MΔM (8)
k,qeZd

By Eq. (6),

μ{Δ)= £ dimP(l)
λeΔnΣp

i.e. μ(Δ) is the number of eigenvalues in the interval Δ (with allowance for their
multiplicty). According to Eqs. (7) and (8), μ(Δ,Tι(ω) = μ(Δ,ω) and owing to
metrical transitivity of the group Tt it is independent of ω. Further reasoning is the
same as in the proof of Proposition 1 and uses relation E2{Akq] ^E{Akk} E{Aqq}.

The proved theorem shows, in particular, that the point spectrum, if any, has
no isolated points of finite multiplicity (discrete eigenvalues) with probability 1, i.e.
it is a dense countable set in which every point is a limit one.

Quantity Aoo(— oo, oo) was introduced in [11] where its positivity served as a
criterion of absence of "quantum" diffusion of the particles. Indeed, as
Aoo(— oo, oo) is the quantum mechanical probability for a particle which is at site 0
at t = 0 to return to this site after an infinite time, it is clear that if Aoo > 0 the initial
wave packet does not spread over all the volume of the macroscopically large
system but remains mainly localized in the vicinity of its initial position. It is
widely agreed that in such a case the states are localized. In the opposite case,
where the wave packet is gradually spreading over the entire space and therefore
disappearing from any finite domain, the states should be delocalized (extended).

As we have seen, the absence (or presence) of such diffusion in the neigh-
bourhood of some λ is equivalent to the presence (or absence) of the point
spectrum in the neighbourhood of this λ.

There is also another criterion of localization of the eigenfunctions. In order to
explain it, let us write the Kubo-Greenwood formula for the active conductivity of
free electron gas in the random (impurity) field. According to [12] (h2 = 2m=l).

),' — /, ε

2 + {/. - λ + ωf
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where n(λ) = (Qxp — λ — EF/T—l)~1 is the Fermi distribution function, EF is the
Fermi energy (see Theorem 13 below),

n

and λn and ψn(r) are energy levels and states of the finite system enclosed in the
volume V.

According to [1], the states in the neighbourhood of a given λ are localized, if
the static conductivity σaβ(0) for T= 0 and λ = EF is zero, and are delocalized in the
opposite case.

It is clear that the behaviour of oaβ(ω) for OJ-*0 is determined by the behaviour
of the limiting measure Faβ{Δ,Δf) on the diagonal in the (A,/Γ) plane. Using the
same line of reasoning as in the proof of the Loomis theorem [13] 8, one can prove

Theorem 5

σα/((0)=limσα/3(ω)= ]^^dΦJλ), (10)

where

and if there exists the limit in one side of Eq. (10), then there is one in the other side
too.

If the measure Faβ(Δ, Δ') is absolutely continuous with respect to the Lebesgue
measure,

Faβ(Δ9Δ')= J faβ{λ,λ)dλdλ (11)
Ax A'

then

(12)

7 As is shown in [4], Fγβ(Δ,A') is a selfaveraging quantity, i.e. it tends with probability 1 to
nonrandom limit as F-+oo [see Eq. (17) below]

8 This theorem asserts that, if /(z)= — f - . ImzφO, τ(λ) is a bounded nondecreasing function,
π λ — z

lim τ(λ + ε) — τ(λ — ε)

then limIm/(A + iε) = τ(~)(/,) where τ(~)(A)= — is symmetrical derivative of τ(λ) and

the existence of the limit in one side suggests existence of the limit in the other side
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i.e. σaβ(0) is indeed determined by the behaviour of the density faβ{λ, λ') near the
line λ = X in (A, λ) plane. For a free particle (v(x) = 0).

-λ')ρd(λ),λ,λ'^0

.
and corresponding static conductivity equals infinity. In the disordered case it is
widely believed that σaβ(0)\τ = o = σaβ(EF) = 0 in the one-dimensional case9. But in
the three-dimensional case, σaβ{EF) is zero only when EF lies in the low energy end
of the band. The boundary value Ec of energy such that σΛβ(EF) = 0 for EF<EC and
σα / i(£F)φ0 for EF>EC is called the mobility edge [2].

It was assumed in [1-3] that Ec is at the same time the boundary between
localized and delocalized states. As follows from Theorem 4, in such situation the
equality

E{Aoo(Δ)}=0, Δe(Ec,oo)

must hold 1 0.
These assumptions imply implicitly impossibility of coexistence of localized

and delocalized states for the same energy, however for slowly decreasing and
fastly oscillating potentials, such coexistence is feasilbe in terms of the operator
theory. Yet, such coexistence is usually the result of very subtle interference
phenomena, and therefore such states must be unstable and should disappear in
response .to even slight changes of the potential. Otherwise speaking, for a random-
chosen potential υ(x) this situation can hardly be the case.

It is of some interest that the calculation of both E{Λkq} and σaβ(EF) is reduced
to calculation of the measures of the diagonal in the (λ9 λ') plane:

%q(A,A') = Eί J dEkq(λ)dEqk(λ')

in case of Akq(Λ) and

dE(r,r\Δ) dE(τ\r,Δ']
Faβ{Δ,Δ') = E\ f

Rd dr'β
dx'

in the case of conductivity. But in the former case the density of SΆkq should have
the singularity of the form δ(λ — λ')akq(λ) with akq>0 for λ<Ec (in the ordered case
akq(λ) = 0 for all λ) and in the latter case the density of Faβ(λ, λ) [i.e. faβ(λ, λ) of Eq.
(11)] equals zero for λ = λ\ λ<Ec (in the ordered case, as we have seen, it has a
singularity of δ{λ — λ') type on the diagonal).

In conclusion of this section we shall formulate, without a proof, a theorem on
the unbounded ergodic operators, supposing that all H(ω) have the same domain
D [8] with the property UficD for all leΈd.

9 This fact was proved recently by H. Kunz and B. Souillard for the case of independent vk [26]

10 We assume that ^400(— oo,λ) is left-continuous function of λ
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Theorem 6. A symmetric ergodίc operator H(ω) has, with probability 1, zero
deficiency indices, or with the same probability, infinite deficiency indices11.

3. One-Dimensional Disordered Systems

In this Section we shall consider the operator (1) in 12(— oo, oo) [or the Schrodinger
equation in J?2(R1)']. We begin by stating two theorems which are straightforward
corollaries of Theorems 6 and 3 of the preceding section.

Theorem 7. The operator H(ω) is essentially selfadjoint with probability 1 in the one-
dimensional case.

Theorem 8. The probability for any fixed point λ to be an eigenvalue of the one-
dimensional operator (1) is zero.

Let us consider now the continuous spectrum Σc(ω) of H(ω), i.e. the set of
nonisolated growth points of the spectral family E(λ) [8]. Rather an important
part of Σc is the absolutely continuous spectrum Σac. It is the spectrum of Hac

where

lac = {x:xel2(—oo,oo), (E(λ)x,x) is absolutely continuous with respect to the
Lebesgue measure}. It is known [14] that Σac = Σ in the ordered case. We shall
prove now that one-dimensional disordered systems have no absolutely con-
tinuous part of the spectrum: Σac = φ. This was proved first in [15] and later in
[16] and [6] (see below). All the proofs were essentially based on a certain
property of the solution un(λ) of the Cauchy problem for Eq. (1), i.e.

Un+l+Un-l+VnUn = λun> U_1=COSψ, U0=Smφ. (13)

Namely, we assume that for fixed λ and φ the limits

Um^Muϊ + ulJ^Λλ) (14)

exist with probability 1, are independent of φ and ω and are strictly positive for
this λ. If this assumption holds, we call the solution of the Cauchy problem (13) an
exponentially increasing solution with probability 1 for this λ. At first sight, such
property of un(λ) from (13) seems rather unusual. However it appears to be even
typical for metrically transitive vn with sufficiently fast decay of statistical
correlations between vn and vm as \n — m|->oo. This question will be discussed in
more detail at the end of this section (Proposition 2) and in Appendix.

Theorem 9. Let υn be such a metrically transitive sequence that the corresponding
Cauchy solutions for all λ increase exponentially at least at one of the ends of the

11 This theorem was proved by A. L. Figotin and the present author (unpublished)



188 L. A. Pastur

interval (— oo, GO). Then with probability 1, the spectrum of H(ω) has no absolutely
continuous component.
Proof. As is known in the spectral theory of difference operators [17], the spectral
function ρ(λ) plays an important role since it determines the Parseval identity and
is, in a way, a derivative of resolution of identity E(λ). The spectral function ρ(λ) is
characterized by the following properties:

a) for any xel2(— GO, GO) the nondecreasing function (E(λ),x,x) is absolutely
continuous with respect to ρ(λ) and hence if the spectrum of H has an absolutely
continuous part, then ρ(λ) has a component absolutely continuous with respect to
the Lebesgue measure

b) for ρ-almost every Λ, the Cauchy solutions ua n(λ) α = + 1 of (13) correspond-
ing to φ = 0, § satisfy inequality i 2 :

\uaJλ)\^C(lε)\n\ll2 + \ ε>0. (15)

Assume now that for some ω the spectrum of H(ω) has an absolutely continuous
component. Then the set of λ satisfying (15) for a given ω has the positive Lebesgue
measure. We shall see now that this fact contradicts the property of exponential
growth. Indeed, let P be the measure on the set of pairs (ω, λ\ ωeΩ λeR1, which is
equal to the product of probability measure P on Ω and the Lebesgue measure on
the spectral axis. It is clear that u2(λ) -f u2

+ ^λ) is a P-measurable function of (ω, λ).
Then, by our assumption, the set of pairs (ω,/), for which Eq. (14) holds, has the
full P-measure. Then its complement has zero P-measure, whence by the Fubini
theorem, for almost every ωe Ω, the Lebesgue measure of the set of λ for which (14)
does not hold, is equal to zero as well. But this set contains all the points λ for
which Eq. (15) is true, and therefore the set of such λ cannot have a positive
Lebesgue measure, in contradiction with our assumption.

Our arguments in fact prove a stronger statement, such that Theorems 3, 8 and
9 are simple corollaries to it:

Theorem 10. Under the conditions of Theorem 9, with probability ί, the measure
which is determined by spectral function ρ(λ) is singular (disjoint) with respect to any
fixed (nonrandom) measure F(λ) on R1.

Loosely speaking, this theorem asserts that the probability of coincidence of
ρ(λ) with any fixed nondecreasing function F(λ) is zero.

The existence of such generalization of Theorem 9 was suggested by Y. G. Sinai
and proved by the author of this paper under some additional assumptions.
I. Goldsheid pointed out that the proof of Theorem 10 in fact repeats that of
Theorem 9.

Now discuss some cases of exponential growth of the Cauchy solutions of (13).
According to [18], for every fixed λeR1 and φe{ — f,f] there exist with probabili-

12 This inequality can be obtained by taking it into account that the generalized eigenfunctions of H

are elements of/2(—oo, oo) with the weight |rc|~(1 + 2 ε ), ε>0, i.e. the extension of the usual l2 for which
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ty 1 both the limits:

lim ~\n(u2

n+u2

n+1) = Z + (λ,oj,φ) (16)
n-+±cc \n\

and each of them as a function of φ takes on two nonrandom values ± 3 +(/I)
)^0) in the case of metrically transitive vn. Let

i.e. Ω(λ, φ) consists of such ω for which the Cauchy solutions have exponential
growth at least at one of the ends of the interval (— oo, oo). The complement Q! of
Ω(λ, φ) consists of ω for which the solution of (13) exponentially decays at both the
ends of (—GO, oo). In this case the correspondent λ is an eigenvalue of H. By
Theorem 3, P{Ω'} = 0, so that P{Ω(λ, φ)} = 1 for every λ and φ. We see now that, if
3 + (/)>0, for λeΣ, then the condition of Theorem 9 is fulfilled. In Appendix we
prove

Proposition 2. // vn is an ergodic and invertible Markov chain (for definitions, see
Appendix), then the quantities 3 +(A) are strictly positive for all λ.

Thus we have

Theorem 11. If the random sequence vn satisfies the conditions of Proposition 2, then
the operators H(ω) with probability 1 have no absolutely continuous spectrum.

In particular, 3 + (Λ,)>0, for statistically independent vn. In this important case,
the exponential increase of the Cauchy solutions was proved in [19], using results
of [20] for the asymptotic behaviour of the random matrices products.
Positiveness of 3±(Λ,) is also essential to prove that the one-dimensional operator
H(ω) (and its continuous analogue, the Schrodinger equation) have with probabili-
ty 1 a pure point spectrum (Σ = ΣP) iϊvn is a sufficiently smooth Markov chain [7].

4. Asymptotic Properties of Large Finite Disordered Systems

Till now we have dealt with the operators H(ω) determined by operation (1) on the
whole lattice TLά. Let us consider now the (2π+l) d dimensional space l2(Cn) of
sequences

and the operator Hn(ω) in it:

(H) =\Hkq,\qal\kΛ\^n9Va
q \θ,\qJAK\>n for some α.
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Let En{λ) be the resolution of identity of Hn, and

where λ^ή) ^ ... g λQ(n), Q = (2n -f l)d are eigenvalues of Hn.

Theorem 12 [4]. Let vn be a homogeneous and ergodic random seguence satisfying
(2). Then there exists such a nonrandom nondecreasing function N(λ) that with
probability 1

UmNn(λ) =
n-* oo

at every continuity point of N(λ) and

) = E{E00(λ)}. (16)

If Ω = {0} (ordered case), H is a Toeplitz operator and Eq. (16) is a particular
case of rather general theorem of Szego [9].

The function N(λ) [N'{λ) is called the density of states of operator H] can be
calculated in many cases, especially in one-dimensional situations (see, e.g. [21,
22]).

A similar theorem holds for more complex quantities constructed of eigenele-
ments of H [4, 23]. In particular, equality

lim Ff (λ, λ') = E{(pβ{λ)PβE{λ')) (0,0)} (17)
F-+G0

is true with probability 1 for function Fyβ(λ, λ') of (9), where p = — V is the
momentum operator, and E(λ, x, y) is the kernel of operator E(λ).

Theorems 12 and 2 imply

Theorem 11. The point λ belongs or does not belong to the spectrum Σ of H with
probability 1. The realization of either possibility depends on whether or not λ is a
growth point of N(λ).

Theorem 13. //dim P(λ)<oo,/or all λeΣ for almost every ω, then function N(λ) is
continuous.

The proof follows from the relation

the Proposition 1 and the left continuity of N(λ).

Corollary 2. The function N(λ) corresponding to the one-dimensional difference and
differential operators is continuous.

Theorem 2 and Corollary 2 in somewhat different formulation, for operator (1)
in Z2(0, oo) were proved in [15, 16]. The authors of [15, 16] concluded from these
two conditions that the spectrum of H cannot contain isolated points. In our
scheme this fact is the direct corollary of Theorem 1 which, in turn, is a simple
consequence of the properties of spatial homogeneity and decay of correlation.
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Theorem 14. Let λ^n)^ .. .^λQ(n) be the eigenvalues ofHn. Then with probability 1
there exists the limit

lim n-\λx{n)+ ... + λk{n)) = EF{Q),
n-κχ>,k/n^>ao

where

and

is the inverse function to N(λ). EF(ρ) is the Fermi energy of the ideal (noninteracting)
Fermi gas in the random field.

Proof By Theorem 12 and Lemma 3 from [24], the sequence Ln{τ) = inϊ{λ:Nn(λ)
^ τ , Orgτ^l} converge with probability 1 to L(τ) in the =^(0,1) metric, i.e.

lim f |Ln(τ)-L(τ)|έϊτ = 0 (18)

with probability 1. Now Theorem 14 follows from (18) and from relation

k K k/Q

ι = l y 0

This theorem was first proved by Shubin (see, e.g., [23]).

In conclusion we shall show that the analogue of Theorem 10 in the space
/2(0, oo) is the consequence of Theorem 11 and Proposition 2. Indeed, by definition
of the spectral function ρ(λ) in this case [17]

for any A=(λί,λ2) where ρn(λ) are the spectral functions of operators Hn

converging to ρ(λ) as n-»oo [17]. The expression in parentheses tends to infinity
for almost every ω as n-> oo for almost all λ. Then, by the boundedness of Nn(Δ) for
any Δ due to the exponential growth of the Cauchy solution uk(λ), the set of the
growth points of the limit function has a zero Lebesgue measure, hence the
spectrum of H has no absolutely continuous component.

Appendix

Here we sketch the proof of the strict positiveness of 3 +(A) of (14) for the case of vn

as a stationary, ergodic and invertible Markov chain. First remind these notions
[5].
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Starting with the stationary Markov chain, i.e. a random sequence whose
transition probability P(v\v') = Pτ{υn+1 ^v\vn = v'} does not depend on n, one can
construct stationary (one-dimensional homogeneous) sequence if there exists an
invariant distribution function F(v) defined by the following equation:

oo

F{v)= j P(v\v')dF{v')
— oo

F(— oo) = 0, F(oo)=l. Assume that this integral equation has no nondecreasing
solutions but F(v) and that the resulting random sequence is metrically transitive13.
These two assumptions, generally speaking, are not independent. For instance, if
P(v\v') satisfies the Deblin condition, then they are equivalent [5].

A stationary sequence is called invertible if all its finite dimensional
distributions

are invariant with respect to transformation (k1, . ..,/c /)^( — fc1? ...,/cz). F o r the
M a r k o v chain it gives relation

j P(v2\υ)dF(υ)= jf Pip^dFip). (19)
— oo — oo

Thus, the operator P determined in the space of functions of v which are square
integrable with the weight F(v) by the formula

oo

(Pf)(v)= j P(v\v')f{v')dυ'
— oo

is selfadjoint, λ=l being its maximum and simple eigenvalue and the correspond-
ing eigenfunction being a constant (we take it equal to 1).

Since quantity 3α(Λ,, ω, φ) of Eq. (16), for every α can take on only two values
±3α(/l), then 3α(x)^£{3α(/, ω, φ)} and it is sufficient to prove positiveness of
£{3α}. In virtue of stationarity and invertibility of vk.

and hence it is sufficient to prove inequality

E{\(λ,ω,φ)} = I(λ)>0. (20)

Introduce

Then

Qί

13 The simple sufficient condition for this property is the strict positiveness of the transition

probability P(I\v) for any interval I
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and

1= \imn'1E{\nρ^}= limn'1 Y £{lnz2}.
π -> c o n -• oo fc = 1

Introduce the variable φk by relation

zk = cos(φfc + β)/cos φk,

where β is a fixed angle. Such a variable for another problem was used in [19]. We
have

1= l i m n " 1 Y £{lncos2(φfc + β) — lncos2φ fc}
1 1 - 0 0

n " 1

1 1 - 0 0

β π/2

= -2\dx \ tg(φ +x)P(dφ),
0 -π/2

where

and Pk(φ) is the distribution function of a random variable φk. We obtain from Eq.
(13) the recursion relation for φk:

n x vk + 2cosβ
tan φ k + x = tan(φfc + β) +

S1Π u

from which the equation for the limiting joint distribution P{φ,c) of the random

• i i Λ vk + 2cosβ

variables φk and ck = — — — — follows:

f Φ(tan φ, c)P(dφ, dc) = \Φ(d + tan(φ + j8), c)P(dc;|c)P(dφ, dc),

where Φ(x, c) is a certain (trial) function. From the latter equation and Eq. (19) we
obtain

g(o, s, c) = \eisc'g{oi, s, c')P(dc'\c), (21)

where

π/2

g(x,s, c)= j exp{zstan(φ + x)}P(dφ|c)
-π/2

and P(φ\c) is the conditional distribution of φk as fc->oo. It is easy to find that

<32# _ 1 δflf

δs2 is δx'

Multiplying this identity by g*, subtracting the complex conjugated expression
and integrating the resulting relation over se(0, oo) we get:

5
gs WV-5-ί^/ ,. j _ J Λ l6 f(-X ;

;

5

5

C)l
s =o i ax 0
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or, after taking into account relations:

dg π/2

0(x,O,c)=l, /

OS

β nil

l=-2\dx j tcm(φ + x)P(dφ\c)F(dc)
0 -π/2

= ]-F(dc){\g(β,s,c)\2-\g(0,s,c)\2}. (22)
o s

Equation (21) permits to transform (22) in the following way:

i=l-{\\g\\2-\\Pg\\2}, (23)
0 S

where g(s, c) = etscg(β, s, c) and the symbol || || denotes the norm in the space
J2?2(— oo, oo, F(dc)}. Since | |P| | rg 1, then 7^0. Our assumption about P means that
the quality 7 = 0 holds if and only if g is independent of c. From Eq. (21) it follows
that 0(0,5, c) is also independent of c. Since gf(O, s,c) determines P(φ\c) uniquely,
P{φ\c) and, hence g(β,s,c) does not depend on c. But g(β,s,c) and g(s,c)
= eιscg(β, 5, c) cannot be independent of c simultaneously.

In the particular case, where vk are independent identically distributed random
variables, Eq. (23) takes the form:

GO J . 00

r f _\a(β s)\2(l-\f(s)\2) f(s)- ί eiscF(dc)
0 S —oo

from which it follows that 7 > 0 if t?fc takes on at least two different values. This
result was obtained in [19] by applying some results of [20].

Using similar arguments it can be shown that in the continuous case of the
Schrόdinger equation, with random invertible Markov potential υ(x).

0 5

where Lv is the infinitesimal operator of the Markov process,

GO

q(s,v)= J eιszp(z,v)dz, z = ψ'/ψ.
- 00

(,) denotes the scalar product in the Hubert space 5£2{~ oo, oo, p(v)dv) and p(v) is
the density of the stationary distribution v(x).

In a similar way we arrive at an analogous relation for the potentials of the
form

where u(x) = 0, \x\^d, lj = Xj+ί — Xj^2d are independent identically distributed
random variables with the density /(/) (/(/) = 0, l^2d) and for potential υ(x) which
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takes on only two values 0, v0 > 0 on the random intervals, which are independent
random variables with densities /0(Z) and f^ΐ). We have respectively:

ds

0 ύ 2d

q(s,ξ)- $ dξ'f{ξ')φ,ξ:
2

where a = \lf{l)dl, F(ξ)= f f(l)dl
2d ξ

q(s,ξ)= J e^pίz.ξJ
— GO

p(z, £) is the joint probability density of random variables z{x) = ψ'(x)/ψ(x) and ξ{x\
the latter being the separation of x and x. which is the closest to x on the left

*i) Σ
0

where

pr{z,ξ) is the density of random variables ξr(x), z(x) = ψ'(x)/ψ(x\ ξr(x) is the
separation of x and the left-neighbouring jump of v(x),

ar=]lfr{ί)dl9 Fr(ξ)=lfr(l)dl.
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