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Abstract. A constructive proof of complete integrability of spherically sym-
metric self-dual equations in Euclidean space R^ for an arbitrary embedding of
SU(2) in an arbitrary gauge group G is given on the base of Lax-type
representation and representation theory. The equations are solved explicitly
for the case of simple Lie groups G.

1.

The aim of our paper is to give a constructive proof of complete integrability of
spherically symmetric classical self-dual equations in R 4 for an arbitrary embed-
ding of SU(2) in an arbitrary gauge group G of rank n. The technique for dealing
with this essentially nonlinear two-dimensional partial differential system involves
Lax-type representation [1] (see also [2]) and representation theory, which enable
us to reformulate the integrability problem in terms of the main notions of the
representation theory of the corresponding group and to solve the equations
explicitly. In this the spherically symmetric instantons in JR4 and monopoles in
Minkowski space R3Λ (with Higgs Scalar field in adjoint representation of G) in a
classical sense form a special subset of our solutions under the relevant boundary
conditions. All our previous results [3] concerning the construction of exact
solutions to the spherically symmetric self-dual equations for the minimal

n

embedding of SU(2) in G with ]~J (x) U(l) invariance subgroup are consequences of
1

the general scheme of the present paper.
Note also that in static case the corresponding system of equations for the

minimal embedding of SU(2) in G describes generalized (finite, nonperiodic) Toda
lattice (see e.g. [4]). In the framework of our consideration [5] the solution to this
system as well as its two-dimensional generalization arise as a particular case.
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2.

Let us consider Yang-Mills field configurations Λμ(x), 0^Ξμ:g4, in R43X, spheri-
cally symmetric with respect to the total momentum operator I = M + L, where
M = — ίx x V represents space rotations and L generates some SU(2) subgroup of
G. Then there are four operator structures Wa=Wa(r,t\ o^a^3,r= ]/x2~, ί = x0,
scalar under the action of total momenta I, [I, Wa~\_ = 0, which parametrize field
components Aμ(x\

Λ0 = W°, A = nWί+MW2 + nxMW\ (1)

where n = x/r. The electric E and magnetic H gauge field strengths are constructed
by the ordinary rules, and in the system n = (0,0,1) have the form

r9

E± -H±=ί(z+ -z_)-\Dz^ W% E± + H±=i(z+ -z_y\Dz± W±)

Here

{£0, E± } = {£3, Ex ± iE2), {Ho, H± } = {H3, H± ± ίH2}

h^ίL3; 2z±=t±ίr; {DZ±W)=WZ±~IWZ±9W]_

are covariant derivatives. It follows from formulae (2) that E0 = (2i)~1Fz + z_ is
gauge field Wz± tensor in two-dimensional space, E+ and H+ are covariant
derivatives of the sources W± in curved space and HO = (2Ϊ)~1V plays the role of
interaction of the sources. The action S and topological charge Q are defined in
accordance with (2) by the expressions

•ί(Dz+W-)(Dz W+) + (Dz+W+)(Dz W-)-]},

(3)
d ί ( ) 2

•Sp {Fz + z_V-(z+ -z_Γ2[(Dz+ W+)(Dz^W-)-(Dz+ W~){DZ_ W+)~]},

(compare with those of [6] for the SU(2) case). Thus the Lagrangian of the system
describes the interaction of charged fields W± and gauge field Fz+Z_ in curved
space, which satisfy the following equations of motion:

1,
(4)

lDz+,Fz+zJ_=lW+,(Dz+W-ft_-lW-,(Dz+W+)-]_.

The self-dual equations represent a special subset of general system (4),

( J D Z τ ^
± ) = 0, ίDz+,DzJ_=[W-,W+-]_, (5)
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and arise as a result of equating the components of the electric and magnetic fields
(2)1. (The anti-self-dual equations can be obtained by the obvious replacement
W + <± W ~.) Owing to the relations [h9 Dz J _ = 0, [Λ, W ± ] _ = ± 2 W ± the system
(5) reduces to the form

\_d/dz+ - Wz+ - W+, d/dz__ - Wz_ - W~]_ = 0. (6)

The latter one is the Lax-type representation for the spherically symmetric self-
dual Yang-Mills field (compare with [7]) for an arbitrary embedding of SU(2) in G,
which enables one to fulfil the complete integration of the system.

It is easy to show that the topological charge density —lβπq defined by the
integrand (3) can be rewritten for the self-dual fields in a form

+ ίZ_-Wz_iZ+)h-]. (3')

Let us stress that up to now we did not make any assumptions about the
properties of the gauge group except that it must contain SU(2) subgroup. This
circumstance will allow one to construct in further a wide class of the complete
integrable system of two-dimensional nonlinear equations and to obtain its
explicit solutions.

3.

Let us sketch briefly the general scheme of the integration of self-dual system (5)
for an arbitrary embedding of SU(2) in a compact simple Lie group G with Lie
algebra g and Cartan subalgebra ϊ). The embedding of SU(2) in G is canonical and
determined by its Cartan element h (or embedding vector) [8]. In this the
generators L* and h, which correspond to the subgroup SU(2), satisfy the usual
commutation relations [h,L±~}_ = + 2 L ± , [L + ,L~]_=/ι . The subset of the
generators corresponding to the positive (negative) roots of g, which commutes
with h will form the invariance subalgebra g0 together with the elements of ί). The

corresponding group will be called invariance subgroup Go. Note that for the

minimal embedding this group is Y[ (x) U(l).\ Let Z ± ( Z ± ) be the maximal nilpotent
i \

subgroups in G (Go) and let Z j be the factor group Z±/Z±. The superscript tilde
will appended to the symbol of the corresponding complex hull of these groups,
and small letters - for the relevant algebras.

An arbitrary element g of G can be represented by a modified Gaussian
decomposition,

g = N+

0N^g^M-M+g™. (7,)

From (7J there follows an identity

(MoJ-^o^Mj^^-^JVo)" 1 , (72)

1 In this it is needed to carry out an additional substitution WZ±^>WZ± — h/2(z+ — z_),
W±-+-i(z+-z_)W± which straightens the space and liquidate the term -ih/2(z + -z_)2 in Ho
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where {N^,M^}eZ^, {g™\g%)eG0, owing to which the parameters of elements
MQ, NQ and g^(g^)~1 are the algebraic functions of the group parameters oϊ MQ,
NQ. The representation (6) means the gradientness of the vector Wz± + W±, i.e.

Wz± + W±=g-'.giZ±. (8)

The operators Wz± are spanned by the generators {z±,h}, while W± are
decomposed over the elements corresponding to positive (negative) roots of g
having the order + 2 with respect to h, whose totality will be noted by R^2y In the
parametrization (7X) expression (8) takes the form

, + - 1 < z + (9)

(there is an analogous relation for Wz_ + W~ up to the change M for N). The
absence of generators corresponding to the negative roots of g/g0 in the
decomposition Wz+ + W+ spanned by the elements of g gives (MQ )~XMQ>Z+ = 0,
i.e. the group parameters of Mo" depend only on z_, MQ =MQ(Z_). By the analogy
with it one obtains NQ =NQ(Z+). The requirement that the contributions in (9)
relevant to the positive roots of the order unequal to two with respect to h are
absence, leads to the system of equations, which connects [due to (7)] the first
derivatives of the parameters of NQ(Z+). Thus the realization of these conditions in
(9) does not depend on the form of MQ, which can be equal to unity, so we have

(^o + ) "Xz + = Σ φ+«(z+)x:, (10)
αeΛ(+

2)

whereXα

+ are the elements of g corresponding to the roots oceR^2) and φ+(χ(z+) are
the arbitrary functions. The solution of this system can be presented as T-ordered

exponent with the Lagrangian L(z+)= £ φ+a(z+)X^

(11)

which is expressed (see, e.g. [9]) in a closed form via repeated integrals of retarded
commutators (right-running formula). In this tha final series contains finite number
of terms because the group G is finite dimensional. In accordance with (72) the
group parameters of the elements MQ, NQ, and g^(g^)~ι c a n ^ e expressed
through the parameters of NQ, MQ defined by formulae (11).

In this the expression (3') for the topological charge density written via the
operators Wz± [entering (8)] reduces after simple algebraic transformations to the
form

q=-ll/2d2/dz+dz_(z+-z_)2-l]d2/dz+dz_
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The parameters τα of the Cartan element exp£/zατα of the Gaussian decom-
α

position of g^(go)'1 are expressed through the highest vectors ξ{ lol) of the
fundamental representation of G with weight

0 , . . . , 0 , 1 , 0 , . . . . O l ,
^T J

By virtue of this we come to the following final formula for the topological charge
density

Here ία are the coefficients in the expansion of the Cartan element h over the
generators of I), k is the Cartan matrix of g and va are the elements of the diagonal
matrix V, Vk = kτV.

Note that analogously with the special case of minimal embedding

Go = ]^[®(7(1) [3] our present construction of general solutions to self-dual
\
equations in RA for an arbitrary embedding of SU(2) in G solves also the problem
of describing the spherically symmetric monopoles and dyons in R3>1 (with Higgs
scalar field in adjoint representation) in B.P.S. limit [10]. Namely, the images
W = A, Wo= ±sh&4 0 and φ= ±chθA0 of static sourceless self-dual fields (A0,A)
in R^ are dyon (monopole when θ = 0) solutions in JR3 v Thus to construct the
nonsingular monopole (dyon) solutions it is needed to take the static limit in (9),
(II) 2 and to provide the finiteness of the energy of the monopole system by the
links between the parameters mα and ca in a complete analogy with those of [3].

4.

The construction given in above section solves completely the problem of
integration of the spherically symmetric self-dual equations in R4 (as well as the
equations for the monopole systems in R3 1 with Higgs field in adjoint repre-
sentation in B.P.S. limit) for an arbitrary embedding of SU(2) in gauge group G. In
this two-dimensional version of generalized (finite, nonperiodic) Toda Lattice
described by the system [3] 3

Σ KβXβ> l ^ O ί ^ Π , X α Ξ X α ( z + , Z _ ) , (12)

2 In this the solutions are characterized by the arbitrary parameters mα, ca but not by the arbitrary
functions φ±(X{z±)
3 The Lagrangian appropriate to system (12) is given by the expression
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arises as a remarkable special case of our general system (5). The solution of (12)
for the case when k is the Cartan matrix of simple Lie algebra g can be written in
accordance with the general construction in Sect. 3 in a form

Γ1Mo), (13)

which have been previously obtained in [5] in the framework of minimal
embedding.

Note that all aforementioned reasonings remain unchanged even in the case of
noncompact Lie groups with only exception that one does not succeed in
obtaining the solutions of the corresponding system in the notions of the finite
dimensional representations4. So one has to realize the successive commutation
procedure without using the simplifications caused by the existance of the highest
vectors. Obviously the presence of this possibility essentially extends the class of
the complete integrable equations of the considered type.

A remarkable circumstance is that the system ViZ+z_=Qxpv, ω 2 + z

= (ω + βv)Qxρv, which has been integrated recently in [11], is also con-
tained in the above considered class of equations as a special case when G is
isomorphic to the group of motions SO(3)ΞT3. Representation (6) for this group
leads to the system vtZ+z_=Gxp2v, M>Z+Z_ ==Z(Z+l)wexp2ι;, where I is an angular
momentum value corresponding to the shift operator multiplet in G = SO(3)ΞT3.
The system possesses the following general solution

when I is integer. Here φ+(f+) and f+(z+) are the arbitrary functions. The solu-
tion coincides with those of [11] for 1 = 1 if one puts v = 2v — In 1/2, ω = u
— β(2v — In 1/2+1). Analogical considerations can be carried out also in more
general cases of nonsemisimple groups G. In this the relevant systems will contain
(5) [or, in particular, (12)] as subsystems corresponding to the simple sub-
group of G.

The last remark we would like to make is concerned with the generalization
of system (12) for the case of an arbitrary numeried matrix k. Such a system is
encountered in various branches of theoretical physics and mechanics (field
theory, solid-state and plasma physics, the theory of electrolytes, aerodynamics,
nonlinear optics, cosmological models, etc.). A large number of two-dimensional
mathematical physics problems considered by now (Sine-Gordon, Liouville,
Korteweg-de Vries, etc.) represents particular issues of this system corresponding
to a definite choice of matrix k or its continual generalizations for the case of a
continuous spectrum of α index values. It was shown [5] that even in this case it is

4 One should not mix this conclusion with the statement about the equivalence (in a sense) between
the integration of the system (12), determined by weight structure of the fundamental representations of
the corresponding group, and finite dimensional representation theory of semi-simple Lie groups (see
Kostant's paper [4]). Here we have in mind the technical details of calculations, namely, for the
noncompact groups. There are no expressions for the solutions via highest vectors in a form like (13)
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possible to construct representation of Lax-type in a form

,zJ-=o,

Λ ΣK±ΛΛ±^±)

where In generators {/zα,X 3̂ lfgαrgn} obey the commutation relations

[ft.,^]- = i ^ Λ 1 > Lx:,xj].=δaPha9 LK,hβ-]_=o. (15)

In this if the functions M* = + l/2xα>z±J / / =expl/2(fex)α, then (14) follows from
(15)5, while without those constraints on u*, j ^ representation (14) gives

from which, introducing the functions ρa = \nfa

+f~, one obtains

(16)

The functions ρα are linearly independent for nondegenerate matrices k [in this
xa = (k~1ρ)Λ], while in the opposite case they satisfy the relations (ρ-κι) = 0, where
κ£ are the LHS eigenvectors of matrix k with zero eigenvalues. Thus in the scheme
(14-16) under consideration together with the Cartan matrices of simple Lie
algebras the generalized Cartan matrices of infinite-dimensional contragredient
Lie algebras, whose properties have been described in [12] can also be committed.
In particular, for the generalized Cartan matrices of the 2-nd order in these

/ 2 - 2 \ / 2 - 1 \
algebras, namely, and system (16) automatically reduce to

\ — 2 2/ \ — 4 2/

the equations ρ z + z_ =2expρ — 2exp( — ρ) and ρ z + z_ =2expρ — exp( — 2ρ), re-
spectively6. These equations possess very remarkable symmetric properties [13],
which are characteristic just for infinite-dimensional algebras.

We wish to thank B. A. Arbuzov, O. A. Khrustalev, A. A. Kirilov, Yu. I.
Manin, M. A. Mestvirishvili, S. P. Novikov, and A. B. Shabat for the useful
discussions.

5 The existence of n independent integrals of motions, which are in involution, as it was shown
by Flaschka [4] for An, for system (12) in one-dimensional case is the evident consequence of
(14-15). Really, it is easy to check that in static limit the successive powers of the operator L(r)
=v4z + - A_ _|_ = +__ are the integrals. These eigenvalues are expressed only via parameters mα, 1 r^α^π,
characterizing solution (13) [in this φ+a{z+) = caexpmaz+, φ_α(z__) = cjexp~mαz_]. To calculate
SpZ/(ί) it is quite enough to consider the asymptotic behaviour of the function (13) at r-+co as well as
in calculation of the monopole magnetic mass matrix. Thus the problem is in fact analogous to the
calculation of Casimir operators eigenvalues for the corresponding simple Lie groups

6 The system describing Toda lattice with periodic boundary conditions is also related with these
algebras
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