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Translation Invariance and Instability of Phase Coexistence
In the Two Dimensional Ising System
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Department of Physics, Princeton University, Princeton, NJ 08544, USA

Abstract. It is shown that any Gibbs state of the two dimensional fer-
romagnetic Ising system is of the form λμ++(l — λ)μ_, with some λe[0,1].
This excludes the possibility of a locally stable phase coexistence and of
translation symmetry breaking, which are known to occur in higher dimen-
sions. Use is made in the proof of the stochastic aspects of the geometry of the
interface lines.

1. Introduction

The collective phenomena exhibited by systems of locally interacting spins on
infinite lattices are of considerable interest for diverse subjects, including statistical
mechanics, field theory and solid state physics. Of special interest is the behavior
at phase transitions, the simplest of which correspond to situations in which the
system may be at a thermodynamic equilibrium in more than one state.

When there is no unique equilibrium state one may frequently identify a
number of pure phases, which are states with certain homogeneity. The following
discussion bears on the possibility of a locally-stable coexistence of distinct phases.
This would be described by a state in which, while thermodynamic equilibrium is
maintained, in different regions the typical configurations show behavior charac-
teristic of different pure phases. In some cases, as the one discussed below, the
coexistence may be described by the presence of a sharply defined interface. If both
the interactions and the pure phases are translation invariant, the phase coexis-
tence relates to the possibility of the breaking of translation symmetry.

It has been generally expected that for systems with short range interactions
the possibility of such a phase coexistence depends on the dimension of the lattice.
For the dimension three and more Dobrushin proved in 1972 [1] that coexistence
is possible in the Ising system at low temperatures. The coexistence was induced
there by mixed boundary conditions on a sequence of increasing cubes, — on the
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upper halves and + on the lower halves of the surfaces. The proof that for these
states translation symmetry in the vertical direction is broken was much simplified
by vanBeijern [5]. The construction was recently extended to the Widom-
Rowlinson lattice model [6].

For the analogous boundary conditions in two dimensions, Gallavotti proved
that at low temperatures the limiting state is a convex combination (ensemble
average) of the pure phases [8]. Subsequently, this result was extended to all the
temperatures and a collection of other boundary conditions [9,10,11], indicating
that these may be the only Gibbs states of the two dimensional system. The best
evidence in this direction has been a recent proof, by Russo [13], of such an
assertion for all the Gibbs states which have one of the main symmetries of the
lattice.

The main result described here finally settles the question for the two
dimensional Ising system. In this note we provide details of the proof, which was
announced in [14], that at any temperature below Tc the only Gibbs states of the
system are convex combinations of the pure phases μ+ and μ_. In particular, this
excludes the possibility of the translation-symmetry breaking.

In the analysis, which can generally be described as stochastic-geometrical, we
first identify an interface which is associated with phase coexistence. This provides
a characterization of any given spin configuration as a patchwork of several pure-
phase components, enabling us to reduce the study of equilibrium states of the
system of spins to that of a system of lines. We then prove that there is no Gibbs
state which corresponds to a stable coexistence of two phases with a single
interface which is in some sense "flat". This part of the proof depends essentially on
the availability of contour arguments and the FKG inequality. The same method
may be used to show that there is no Gibbs state with any finite number of
interfaces, winding finitely around the origin. Finally, it is shown that in any Gibbs
state there can be no more than one interface and that it has the properties which
were assumed in the previous step.

Since the submittal and circulation of the announcement [14] partial results in
this direction were also given in [15] and the main result was given another proof
by Higuchi [16]. In our method, however, the reference to inequalities other than
FKG occurs only in the last step, which for low temperatures may be proven by a
Peierls argument combined with the stronger version of the second step described
above. Thus the following proof may be extended to show the instability of phase
coexistence in some other two-phase systems, like the Widom-Rowlinson lattice
model, at low temperatures.

2. Preliminaries

The two dimensional ferromagnetic Ising system (f.I.s) is described by the "spin"
variables {σ.}ί6Z2 which take the values ± 1 with equal, and independent, a-priori
probabilities. Spin configurations are identified with points in the set
Ω={-1, + 1}22.

For any /lc^2, we denote by σΛ the restriction of a configuration σeΩ to Λ.
%$Λ is the σ-algebra, of subsets of Ω, which is generated by such a restriction.
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33 ̂ ΞΞ P) 93^, is the σ-algebra of events "measurable at infinity", with P(TL2)
ΛeP(Z 2)

being the collection of finite subsets of TL2 and ΛC = Έ2\Λ.

States of the system are probability measures, μ, on Ω for rather on 23

= U ^Λ} ^e denote tne^r restrictions to A by μΛ( ), the conditional

expectations by μ( |σ^)Ξμ( |93Λ)(σ), or μ( |/1) for ^4eS, and integrals by μ(/).
The spins interact ferromagnetically, with the Hamiltonian

Σ σtσj C2-1)
i,jeΛ ieΛ,jeΛc

\i-j\ = ί | i - j |=l '

For an inverse-temperature /? the thermodynamic equilibrium of a state μ is
characterized by the Dobrushin-Lanford-Ruelle (DLR) condition [2] :

) \ΊΛ<) = exp[ - jβH^ I ι/Λc)]/Norm.(^c) (2.2)

which is the defining property of Gibbs states.
The study of the thermodynamic equilibrium is thus reduced to that of the

collection of the system's Gibbs states, which we denote by A(β\ with A = \J A(β).
β^o

It is well known that for β>βc the (translation invariant) limits, μ+ β, μ_ β e A ( β ) ,
of finite volume Gibbs ensembles with + 1, correspondingly — 1, boundary
conditions are distinct.

While on general grounds Δ(β) is closed under convex combination, we shall
prove as our main result :

Theorem 1. For the ίwo dimensional ferromagnetic Ising system at any j8e[0, oo):

/ ?,μ_ 5 /J. (2.3)

A very useful tool for our analysis is provided by the following general
property of Gibbs states [2] :

Proposition 1. Let ExtA(β) be the set of extremal elements of A (with respect to
the convex combinations). Then VμezJ(β):

(1) (Decomposition to extremal elements)

M )=
αe/

for some measure μ on an index space I and some v : /— >Extzl(/?). (In fact, μ-almost
surely μ( |9300)(σ)eExtZl(j8) and one may choose I = Ω,μ = μ.)

(2) μeExt J(j8) if and only ifVBεϊB^ :μ(B) is either 0 or 1.
(3) If Beft^ and μ(B)*0 then μ( \B)eA(β).

For two measures on Ω (or ΩJ, μ ^ μ means that μ(f) ^ v(/) for any real
FKG

function which is monotone with respect to the following partial order of Ω :

(2.4)
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A more specific property of the Ising ferromagnetic system is that it satisfies the
conditions required for the FKG inequality [3,4]. In particular, we shall use its
following consequence.

Proposition 2[3], Let η, ξeΩΛC. Ifη^ξ, then the Gίbbs states of the f.I.s which are
induced in QΛ with η and ξ as the boundary conditions (for some fixed β) satisfy :

HA,, * μΛ.t (2.5)
FKG

We use (ix, iy), (jxjy) to denote the Cartesian coordinates of general iJεZ2. We
shall also employ the following geometrical terminology and notation :

π+ =

are connected if \ix—jx\ + \iy—jy\ ^ 1. The same points are * connected if
max{\ix—jx\9 \iy—jy\}^l, and / connected if in addition (ix—jx) (iy-jy)^Q.

A cluster (^cluster or /cluster) : a connected (*connected or /connected) subset
ofZ 2 .

An oo + cluster (oo — cluster, etc): a cluster of infinite size on which
σ= +!(-!, etc.).

A contour of σ: a polygon which connects nearest neighboring points of
(Zζ + |) x (Z + f), and which separates two adjacent /clusters of opposite signs. It is
an co contour if its size is infinite. When referring to the number of contours in a
region we shall, of course, count only the complete contours, which have no ends
in the region.

The reason for our interest in the diverse notions of connectedness is that while
a + cluster is not necessarily surrounded by a — cluster its exterior boundary is
always a — *cluster. Further, the above definition of contours leads to non
crossing lines. The use of /clusters amounts to a procedure of "rounding the
corners" used to separate contours whenever four segments meet at a point.

Finally, a statement is true μ-almost surely, or for μ-a.e.σ. ("μ almost every σ"),
if the subset of Ω on which it is false has zero μ-measure.

3. Identification of the Interface

Our first step in the analysis of phase coexistence is to identify a simple feature,
with the aid of which we shall separate in general configurations regions of distinct
phases. While its choice is somewhat arbitrary (since even in the pure phases
locally no spin configuration is excluded) such an interface should satisfy the
following three conditions.

(i) For a given configuration of the interface lines, the state in each of the
regions which they separate should resemble a pure phase.

(ii) No interface line should be found in configurations which are typical for
pure phases.

(iii) The absence of interface lines in configurations which are typical for some
Gibbs state should imply that the state is a convex combination of the pure phases.

Of main interest for us is, of course, property (iii), which will provide a sufficient
condition. However this condition would have been useless had (ii) been invalid.
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Natural candidates for interface lines are the infinite contours. Since they
partition the space to regions with boundary spins of definite signs, (i) is clearly
satisfied. For temperatures in the two phase region, the second condition is also
met, as a consequence of the following result of L. Russo :

Propositions (Proposition 1 of [13]). For the two dimensional f.I.s and β>βc, in
μ+ 0-a.e.σ and μ_ ^-a.e.σ there are no oo* clusters of the opposite signs.

We shall adopt the above choice since it satisfies also condition (iii), as stated
in the following proposition.

Proposition 4. Let μeA(β). If μ-a.e.σ has no oo contour then μespan{μ+ β, μ_ β}.

Before proving Proposition 4 let us remark that Proposition 3 was proven by
showing that, in d = 2, the infinite + cluster of μ+ forms a mesh which completely
surrounds any region, preventing the existence of infinite — *clusters (and thus of
infinite contours).

To prove Proposition 4 we recall from [13] :

Lemma 1. Let μeA(β). If μ-almost surely there is no ao + duster then μ = μ_.

For the sake of completeness let us remark that Lemma 1 is a quick
consequence, due to the Markov property and the FKG inequality, of the fact that
the assumption implies that any finite volume is μ-a.s. surrounded by a — cluster.

Proof of Proposition 4. Let / t be the characteristic functions, with values 0 or 1,
defined by the following mutually exclusive and exhausting events :

has no oo — clusters

has an oo — clusters but no oo + clusters

has both an oo — cluster and an 00+ cluster.

If μ satisfies the assumptions in Proposition 1, then 73(σ) = 0, i.e. /x(σ)
+ I2(σ) = l, for μ-a.e.σ, since the presence of two ooclusters of opposite signs
implies the existence of an infinite contour. The function Ik are measurable at

infinity. Therefore, by Proposition 1, whenever μ(/;) Φ 0 then — l— is a Gibbs state.
μ(Ii)

Applying Lemma 1 to these states, we get

μ_( ) , (3.1)

which proves the claim. Π

4. Instability of a Single Interface

Let

Q1 — {σeΏ| in σ there is exactly one oo contour, y(σ), and y(σ) has a
finite but non-empty intersection with each of the lines {/,, = const}.}.

According to our interpretation, Ωx includes the set of configurations with a
single interface which is basically horizontal. Intuitively, that seems to be the
simplest mode of phase coexistence. In this section we shall prove that for d = 2,it
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is unstable at any non-zero temperature, in the sense given by the following
proposition.

Propositions. Let μεA. Then

= 0. (4.1)

In the proof we shall use the "fluctuations at infinity" of the interface line.
These are reflected in the following two lemmas which refer to "duplicate systems".

Lemma 2. Let μeExtA If μ(Ω1) = l then for μxμ-a.e. (σ, σ ')eΩxΩ the two
contours y = y(σ) and yf = y(σf) intersect infinitely often in both π+ and π_.

Proof. Both γ and γ have a finite intersection with the "y-axis", {^ = 0}, and have
unique infinite connected components in π+. Thus y defines a partition of π+ to
two sets whose points may naturally be refered to as lying "above" or "below" γ.

The claim follows from the fact that the subset of ΩίxΩί on which it is
violated is a disjoint union of two sets of equal μ x μ probabilities, which are
measurable at infinity. The sets are :

A = {(σ,σ')eΩ1 xΩJ/ eventually lies "above" γ in π+}

B = {(σ, σ f ) e Ω 1 x Ω1 \y' eventually lies "below" y in π+} .

The equality of their probabilities is implied by the symmetry (σ, σ')~Hσ', σ) of
μ x μ. Hence μ(A) = μ(B) ^ 1/2. However the extremality of μ implies the triviality
for μ, and thus for μ x μ, of the corresponding σ-algebras of "events measurable at
infinity", by which μ(A) = μ(B) is either 0 or 1. Therefore

μ(A) = μ(B) = Q. D (3.2)

Let T\Ω-*Ω be the shift defined by (Tσ)ί = σi_(0 >1}. For any measure μ we
denote μ( )=Tμ( ) [i.e. μ(/(σ)) = μ(/(7σ))]. The following lemma will be used to
prove the Ώn variance of the Gibbs states supported by Ωv

Lemma 3. Let μeExtA // μ(Ωί) — ί then for μxμ-a.e. (σ,σ)eΩ 1 xΩ 1 the two
contours y = y(σ) and y = y(σ) intersect infinitely often in both π + and π _ .

That, μ x μ-almost surely, the contours y and y come to within distance 1
infinitely often is a consequence of Lemma 2. It might therefore be no surprise that
the remaining gap would also be closed an infinite number of times.

Proof of Lemma 3. Since the above property is measurable at infinity, if it fails then
with μ x μ-probability 1 y and γ intersect at only a finite number of times. This
would imply for

(3.3)

that given any δ > 0 there is some N = N(δ) such that for any n ̂  N

μxμ(Gn)<δ. (3.4)

Let however, in be the earliest point in {ieZ2\ix>n}, in the lexicographic
order, with the property that both y and γ intersect the 10 x 10 square centered at
i and let Bn be the corresponding square. By Lemma 2 in is well defined for
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μx μa.e. (σ,σ). For a fixed n we regard as essential parts of y and y only their
infinite connected components in Z2/Bn. It is easy to see that one may define a
transformation jR which changes the spins of (σ, σ) only in the corresponding set
Bn, yielding configurations for which :

(i) y intersects y in Bn

(ii) y and y have no nonessential components in Z2/Bn.
The second property ensures that for μ x μ-a.e. (σ, σ) :

*)))-in(((7,a))|^2.10 (3.5)

and hence

card.K-1({(σ,σ)})^(2 10)2210 1°Ξ^. (3.6)

The uniform bound (3.5) and the fact that R changes (σ, σ) only in Bn imply (by the
DLR condition) that VAcΩ^x Ωl

μxμ(R-1(A))<ε-1μ(A) (3.7)

with

By (i) the range of R is contained in Gn, thus

μxμ(R-\Gn)) = l (3.8)

and, by (3.7),

μxμ(Gn)>ε. (3.9)

(3.9) contradicts (3.4) and, therefore, proves the claim. Π

Lemma 4. If μe Ext A and μ(Ω1)=l, then μ is invariant under the translation T.

Proof. Let μ satisfy the assumptions and let μ = Tμ. Without the loss of generality
we may assume that the spins immediately below y are μ-almost surely +.

Notice that if for some (σ, σ)eΩ1 xΩ1 there is an infinite cluster on which
σ— — 1 and σ= +1 then, by the uniqueness of the infinite contour in Ω15 this
cluster has to lie "above" γ(σ) and "below" y(σ). This, however, is not possible if
y(σ) and y(σ) intersect infinitely often in both directions.

Lemma 3 implies, therefore, that for μ x μ-a.e. (σ, σ) there is no infinite cluster
on which σ>σ.

Let now A be a finite box. Then, by the above conclusion, μ x μ-almost surely
there exists a ^cluster which completely surrounds A, on which σrgσ. For any
finite A D A let α^ Λ(σ, σ) be the outermost such *cluster in Ά9 if such a set exists, and
^^(σ, σ) = 0 otherwise. We shall also denote by &ΛΛ the complement, in A, of
the region surrounded by oc^ A. The key observation here is that1 VAcA:
Thus

F. (4.7)

1 (4.7) can be viewed as defining a multidimensional generalization to set valued functions of the
notion of nonanticipatory stopping time, which is very useful in the theory of martingales.
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Therefore, the conditional expectations of any measure v on Ω x Ω satisfy :

= Σ Σ v( |(σ,σ)FxF) vvxv({(σ,σ)vxv}). (4.8)
VCΛ (σ,σ)s.t.

&Λ,Λ(σ,») = V

Consider now /e33 which is bounded and monotone in the FKG sense. For
the case v^μxμ, the factorization and the Markov property of the DLR
conditions imply for each of the terms in the above sum :

μ x ^ χ Λ ( l(^σVχκ) = ̂ ( kβ. tJxμ^( |σβ^J. (4.9)

Since only terms with

contribute, Proposition 2 (the FKG inequality) implies that for any monotone /

μx/4/(σ)|α^Φ0)^μxμ(/(σ)|α^Φ0). (4.11)

Thus

- jirri2 μ x μ(/(σ) | aΆΛ φ 0) μ x μ({θLλtΛ Φ 0})

= }^2 V x #/(*) I UΛ,Λ Φ 0) V x fr({*A,A Φ 0»

= μxμ(/(σ))Ξμ(/( )) (4.12)

By the generality of/:

£ £ μ, (4.13)
FKG

and by a similar argument

μ ^ μ. (4.14)
FKG

Thus μ = μ, which proves the translation in variance of μ. Π

Proof of Proposition 5. Let μ be an extremal Gibbs state and let us assume that
(4.1) is not satisfied. Since Ω^e^B^, it follows by that

μ(Ωι)=l- (4.15)

In particular, ^0(σ) - the level of the lowest intersection oϊγ(σ) with {iχ = Q}9 is well
defined for μ-a.e.σ and has some probability distribution on 1R, given by μ({σ|/0(σ)
5^y}). This, however, is not possible since by Lemma 3 the above distribution
should be translation invariant.

(4.1) holds therefore for any extremal Gibbs state and, by means of the
decomposition to extremal elements (Proposition 1), for all the Gibbs states. Π

5. Reduction of the General Case

Let

Q2 = {σeΩ\ in σ there is at least one infinite contour} .
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In this section, the general case would be reduced to those studied already in the
two previous sections by proving:

Proposition 6. VμeΏ,

μ(Ω2\Ωί) = 0. (5.1)

While the results obtained so far relied essentially on the FKG inequality, in
addition of course to the basic features of the system which make the notion of
contours so useful, our analysis would now require the following additional
property of the f.I.s.

Proposition 7 ([11]). Let Vns7ίn be a sequence of finite regions "which are symmetric
with respect to the reflection (x,y)±-*(x91 — y). Then the Gibbs states μ* which are
induced in Vn, at some fixed temperature, by the boundary conditions

-1 y^O
-V(x,y)φVn (5.2)

+ 1 y<(j

converge, and

\imμ±=(μ++μ_)/2. (5.3)

We shall now denote Λn = [ — n, n] x [ — n, ri\. A useful corollary of
Propositions 7 and 3 is:

Lemma 5. Let

θm n = {σeΩ\σ has a —cluster which connectsΛn withΛc

m}.

Then Vπ, ε > 0 3m(π, ε) < oo such that

MF ($m J ̂  2 + ε (5-4)

for every symmetric FD Am, with μ^ being defined as in Proposition 7.

Using Proposition 7, L. Russo proved what amounts to:

Lemma 6 ([13] - Lemma 13 combined with Proposition 4). Let
μeExtZl\{μ+ β,μ_ β}β. Then μ-a.e.σ has exactly one cocontour in π_.

Proof of Proposition 6. It clearly suffices to prove (5.1) for μeExtA(β)\{μ+ίβ,μ_j}.
Let μ be such a state. We shall prove (5.1) by showing that

μ(ί22\Ω1)^3/4, (5.5)

which, by Proposition 1, is sufficient since Ω2\Ωίe9ϊao

By Lemma 6, μ-a.e.σ has a unique contour which has an infinite connected
piece in π_. We denote it by δ(σ), and the two regions on its + and — sides by

Claim. The conditional μ-probability of there being another oocontour in D +

conditioned on:

(i) the position of δ(σ)

(ϋ) 33,-,) (5'6)

is, uniformly, ^^.
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Proof of the Claim. WLOG we assume that the spins "below" δ(σ) are + μ-almost
surely.

Let n, ε>0 and m = m(n,έ). By the uniqueness expressed in Lemma 6, for
μ-a.e. σ there are + clusters in D+(σ)nπ_Vlm and —clusters in D_(σ)nπ_\/lm which
connect δ(σ) with the {ix = 0} line. There is therefore h^m large enough so that
with μ-probability ^(1 — ε) such 4- and —clusters exist in π_r\Λh. Let us denote
the outermost such contours in π^r\Λh by τ+ and τ_, including in τ+ the shortest
piece along δ(σ) which connects it with τ, and let τ be the complement in π_ of the
set enclosed by τ_ τ+ and the {zx = 0} line.

Consider now the μ-probability that in D+ there is a — cluster connecting Λn to
Am, conditioned :

(i) the position of δ(σ)

.
(iϋ) »x&
(iv) the position of τ + . (5.7)

By the FKG inequality and the Markov property, this probability only increases
when the +1 boundary provided by the spins along δ(σ) is replaced by +1
boundary condition along τ _ , which is further withdrawn into D _ (σ), and — 1
along the reflection of τ + u τ _ with respect to the {^=2} une- The above
probability is therefore uniformly smaller than μv(Θn>m); V being the volume
enclosed by τ+ uτ_ and its reflection. [Using the "nonanticipatory" property of Vc

defined, for α ,̂ by (4.7).]
Using Lemma 5, averaging over %5D+\Λs and τ + , and letting ε->0 we conclude

that the probability of there being an oo — cluster in D+ conditioned on (5.6) is at
most \. This proves the claim. Π

A direct consequence is that the μ-probability ofδ(σ) being the only oocontour
of σ is at least \\ — ̂ . However, the number of oo contours is measurable at infinity

D_(σ)

Fig. 1. A reference for the notation used in the proof of Proposition 6
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and thus, by the extremality of μ,

μ({σeΩ\σ has exactly one oocontour}) = 1. (5.8)

Let now ke%. By Lemma 6, μ-a.e.σ has exactly one oocontour in each of the
regions {ίx^2|fc|}, {ix^ — 2|/c|}cZ2. If such σ has only one oocontour then the
above two are parts of it and, in particular, they are connected by a finite contour
piece. This proves that the oocontour's intersection with {ix = k} is both finite and
nonempty. By the countable additivity of μ, for μ-a.e.σ the above is true for any
keZ, which implies (5.1). Π

Placing the three marbles together we have a proof of the main result of this
paper.

Proof of Theorem 1. Let μeA(β). Then, using Propositions 5 and 6:

μ(02)^/z(Ω2\Ω1) + μ(Ω1) = 0. (5.9)

Therefore the criterion provided by Proposition 4 is applicable. It implies:

μespan{μ+ 5 / ?,μ_ s /J. Π (5.10)

6. Remarks on Extensions

1. The instability of phase coexistence may be a generic feature of two dimensional
short range systems. The partial results of Sects. 3 and 4 can be extended to other
two-phase systems for which contour arguments and the FKG inequality are
applicable, e.g. the Widom-Rowlinson lattice model which was studied in [6,7]. In
fact, the method of Sect. 4 yields a stronger result that if, for some μe A, μ-a.e.σ has
a finite number of oocontours and if these may somehow be "labeled at infinity"
(which would be the case if they wind only finite numbers of times around the
origin), then μ is translation invariant. In Sect. 5 additional properties of the f.I.s.
were invoked (Proposition 7). For some models which do not have these proper-
ties, as in the above mentioned case, the instability of phase coexistence may still
be proven for low temperatures using that stronger result in conjunction with
Peierls-type arguments. The latter have the advantage of generalizability, at the
expense of the restriction to low temperatures.
2. It is suspected that the phase coexistence which occurs in three dimensions
destabilizes at some temperature below Tc, dubbed the "roughening temperature".
It would be very interesting to see a further development of the stochastic
geometrical methods which might shed some light on this phenomenon.
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