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Abstract. An existence theorem is proved for a probability measure on
continuous paths in space, proposed by Edwards as a stochastic model for the
geometric properties of long polymer chains.

1. Introduction

The problem of setting up and analysing a probabilistic model for long polymer
chains which takes into account the so-called "excluded volume" effect is an old
one, being described already in Kac's classic survey of probabilistic methods in
physics [1]. A simple discrete model is obtained by considering the "self-avoiding"
random walks on a lattice, so that the problem is to determine the asymptotic
behaviour of very long walks of this kind. Since the self-avoiding random walk is
not a Markov process, progress has been slow indeed. Thus the survey article of
Domb [2] (1969) lists no further rigorous results beyond those established by
Hammersley and Kesten (by 1964) ̂  The problem has been studied by computer
with results described in detail in the cited article of Domb. We do not wish to
review these results here but only to call attention to Domb's conclusion that it is
possible to distinguish between long and short range properties of the polymer
chain, the long range properties being sensibly independent of the detail of the
interaction between the links of the chain. Thus just as the asymptotics of random
walks (under rather general conditions on the distribution of the individual steps)
is substantially equivalent to the study of Brownian motion (the Wiener process),
the long range properties of polymer chains should be studied in an appropriate
continuum model.

Such a model has been proposed by Edwards [3]. In this model the chains are
represented by continuous paths x(σ), 0 ̂  σ rg 1, in R3, with x(o) = 0, the probability
measure v on the space of paths being given in terms of Wiener measure μ by

dv
~=^-1exp[-gJ^, (1)

1 See also [2a] for a more recent review
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with

iF=Jexp[-#J]dμ. (2)

Here J is a functional on the space of Wiener paths which (roughly speaking)
measures the time which the Brownian motion spends at its double points

J=]]δ(x(σ)-x(τ))dσdτ, (3)
o o

and g is a positive constant. J is intended to represent the excluded volume effect -
that is the repulsive self-interaction of the polymer chain at points where it crosses
itself.

In [3] Edwards simplifies the analysis of his model by introducing an
uncontrolled approximation ("mean field" approximation), and on this basis
obtains for the distribution of some of the physically interesting quantities results
apparently in good agreement with the numerical experiments.

In [4] Abram and Edwards consider the Feynmann integral representation of
the quantum mechanical motion of a non-relativistic particle moving in a random
array of scattering centers, and show formally that in the limit in which the density
of scattering centers ->oo, and the interaction strength -»0 (analog of the Grad
limit in gas kinetics), the transition probabilities of the particle are given by a
"measure" on path space which stands in the same relation to the polymer
measure as the Feynmann "measure" does to Wiener measure. The problem of
scattering in a random medium in the above limit is discussed also by Kac [5].

The continuum model appeared independently in the programm of Symanzik
for the study of the φ\ boson field theory [6]. The connection with field theory
appears again in the work of de Gennes [7], and des Cloizeaux [8], who base their
analysis on the heuristic ideas of Wilson [9] contains a discussion of the excluded
volume problem within the framework of Wilson's renormalisation group.

Equations (l)-(3) are not to be taken literally. (3) is naturally construed to
mean

with

J=\\δε(x(σ)-x(τ))dσdτ, (5)
o o

and δε a suitable regularisation of the ^-function in IR3 but the limit (4) does not
exist.

In considering the status of (l)-(3), it is instructive to consider also the status of
the corresponding equation for dimension d —1,2,4; the results closely parallel
those for the φ\ boson field theory in a finite volume. For d=l (l)-(3) may be
taken literally the limit (4) exists in L1, and in fact J may be expressed in terms of
Levy's local times (cf. Example 2, § 3.1). For d = 2 Varadhan showed in an appendix
to [6] that

J = l i m ( J c - E [ J J ) (6)
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exists in L2, and that, for g^O, exp[ — gj~\el}\ the proof is patterned after the
proof given by Nelson for the corresponding result for the φ\ boson field theory,
which may be found in Simon's lectures [10]. Thus for d = 2it suffices to replace J
by J in (1), (2), to obtain an acceptable definition of v formally equivalent to the
original. For d — 3 the limit (6) does not exist, and Symanzik suggested that (l)-(3)
be construed to mean

v = weak lim v,., (7)

with

^ ^ J J , (8)

e ) ] . (9)

In this paper we show that the limit (7) exists for sufficiently small g. The proof is
patterned after the proof given by Glimm and Jaffe [11], and Feldman [12], for
the corresponding result for the φ\ boson field theory. The constructed measure
v(g) is, for g > 0, not Gaussian. This may be proved by showing that the moments
of v(g) are differentiable in g as #—>0 + , and that their derivatives are given by the
renormalized perturbation series. We have not set out this proof in detail, but it
will be clear to the reader familiar with the work on the φ\ model (the current
status of this model may be obtained from [13], and references contained therein)
to obtain differentiability to a given order k, it is necessary only to choose the
constant L which appears in the definition of the inductive expansion (2.7.3) to be
>fc. For d = 4 the polymer model is, like φ\, in the sense of the classification based
on the analysis of formal perturbation theory, renormalisable but not super-
normalisable. This analysis suggests that for d = 4 the problem be formulated as
follows: For c > 0 consider the transformation

x(σ) = cx(σ) (10)

(the analog of a field strength renormalisation in boson field theory). If x(.) is the
stochastic process defined by the probability measure v(ε,g) on the space of
continuous paths, x(.) will be a stochastic process whose defining probability
measure we denote by v(ε, g, c). For η > 0 define

S(η) = weak closure {v(ε,g,c} ε^η,c>0,g^0}

S = Π S(η).
η>0

Determine whether or not the set S contains any non-Gaussian measures. (For
d ^ 5 it is to be expected that S contains only Gaussian measures.)

Symanzik's proposal to link the construction of the φ* boson field theory to
the polymer problem is now only of historical interest. Nevertheless the polymer
problem is of some methodological interest for field theory, since the role of the
transformation properties of the interaction under change of scale appears much
more clearly here than in φ\ in this sense our work is in the same spirit as that of
Gallavotti et al. [14] on the hierachical field model.
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We have separated the proof into two parts an abstract limit theorem for
certain arrays of random variables (Sect. 2) and the specific calculations for the
intended application (Sect. 3). The reader will probably wish to read first 3.2 in
order to be convinced that the rather elaborate situation postulated in the abstract
theorem does arise quite naturally. In its essentials the proof follows the standard
pattern for the existence of a Gibbs measure in the thermodynamic limit. By means
of Ciesielski's representation of Brownian motion, the Wiener measure μ is
identified with a product measure on a space IR00 (3.2.5). The problem of
constructing the polymer measure can then be viewed as the problem of
constructing the Gibbs measure for a continuous spin system in which the sites are
indexed by the positive integers, and the variables {y(v)9 n(v) = n} specify the state
of the spin at side n. Since 1-dimensional systems do not admit phase transitions
unless the forces are of long range, this suggests that the limitation to small values
of g is simply a limitation of the method of proof. This may well be the case but the
argument is not decisive because the spin system under consideration is not one to
which the standard theorems apply.

2. A Limit Theorem

2.1. Statement of the Theorem

We suppose given a probability measure space (Ω, M, μ) together with

(a) a random variable X,
(b) a σ-algebra GcM,
(c) a decomposition of (Ω, M, μ) as a product

together with isomorphisms j 0 , j ι of (Ωo, M o , μ0), (Ω 1,M 1, μx) onto (Ω,M,μ).
We will impose a number of conditions on the above data. The formulation of

these conditions demands the introduction of further notation.

Let T= [j T(n), with T(0) = {0}, and, for

T{n) = {{nJ) = {nJv...Jn), with i l J . . . , i I I = 0 or 1}.

lϊve T(n\ we say v has level n. For ve T, define a map ψ(v) of Γinto T:iϊυ = 0, ψ(0)
is the identity map if v = (n, i) with n > 0,

ψ{v)(0) = v

Jv...JJv...JJ m>0.

Write T(v) = ψ(v)(T).
Denote by p0, p1 the projections of Ω onto Ωo, Ωx given by the product

decomposition, and by Co>Ci the maps jo°po, j1°Pi- For veT define maps
ζ(υ): Ω -> Ω if υ = 0, ζ(0) is the identity map if v = (n, i 1,..., in), with n > 0,
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We denote by ζ(υ)* the map induced by ζ(v) on the algebra of random variables on
(Ω,M,μ), and define, for υeT, random variables

n being the level of v, and σ-algebras

G(υ) = ζ(v)(G).

If S is any subset of T, we write

veS

we write also G(n) = G(T(n)\ for n ^ 0 .
We can now state our first conditions:
Cί. G(0)CG(l).
C2. There exists a σ-algebra F independent of G( = G(0)) such that

) = G V F .

Note that Cί implies G(n)cG(n+l) for all rc^O. Write

G(c»)= V G(«).

Define also σ-algebras jp(ι;)5 ?;G7^

F(ϋ) = CW(i0,

and write F(S)= V F(t ), for S C 7;
S

F~(n)= V
0^m

F+(«)= V

and note that the σ-algebras {G; F(v\ ve T} are independent and generate G(oo),
and that, for n^O,

) = GVF + (0).

We can now state our remaining conditions:

C3. X^O.

C4. For some constants Cx >0, βx >0, and all p ^ 1,

\\χ\\p^cy\ (i)

C5. For some constants C2 >0, j82 >0, τ 2 < 1, and all

τn

2 (2)

[so that, in particular, XGG(OO)].
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C6. For some constants C 3 >0, β3 >0, τ 3 < 1, and all

^ τ " 3 . (3)

HereZ(n)= £ X(t ).
υeΓ(n)

For any π^O set

S(n)= Σ W ,
m = 0

and note S(w)^0, so that, for any g^O,

and we may define a probability measure vπ(gr) absolutely continuous with respect
to μ by

with «2Γ/I(gf) = £[exp( — gS(ή)J] the appropriate normalisation constant. Write fnm

= E G(m)
dμ

, for n, m ̂  0.

Our main result is:

Theorem 1. With the above notations and hypotheses, there exists a constant g>0
(dependent on the constants in C4, C5, C6) such that for all m^O, and g^g

lTjnm=L (5)
exists in I}. {/m,m^0} is a martingale relative to the increasing sequence of σ-
algebras G(m\ and / m ^ 0 , £ [ / J = 1 for all m^O.

2.2. Motivation of the Proof

We begin with some preliminary reductions. We will actually prove a stronger
statement than (2.1.5). Namely, we will prove that for any p, 1 <p < oo, there exists
a constant g(p) such that for all m^O, and g^

l i m / π m = / m (1)

exists in Π. Let q be conjugate to p; (1) is equivalent to an estimate

\El(fnm-fJ)K]\uK(m,n,k)\\R\\q (2)

for all ReB{Ω. G(m), μ), with K(m, n, k)-*0 as n, fc-> oo for fixed m. The left side of (2)
may be written

\E[_R exp(- gS(n))] Sn{g)~' - EIR exp( -gS(k))] &k(gΓ'|. (3)

If S(n) were a Gaussian random variable, we should have 3fn(g) = Cn(g), with

]} . (4)
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We will prove that S(n) is approximately Gaussian in the sense that

?)- 1 (5)
n~* oo

exists, and is non-zero for sufficiently small g. It will then suffice to prove

q (6)

in place of (2).
To motivate the proof of Theorem 1 consider the special case in which XeF

(despite the fact that the conclusion of the theorem in this case is trivial). The
random variables X{v\ veT, are then independent, withX(V) identical in law with
2~nl2X [for υeT{n)]. lϊX is not constant both

)

and

Var[S(n)]=(n+l)Var[X],

are divergent as n->oo. Thus the existence of the limit (5) requires cancellation,
neither of the factors 2£n(g\ Cn(g) having a non-zero limit as n ->oo. To show this
cancellation, write, for g^O,

Then

&n(0)= Π
m = 0

For some ε > 0 we may estimate, for g ^ ε

\ogF(g)= -gE[_χ-] + l/2g2 Var[X]+Kfe),

with | J R | ^ Q 3 . Choose k sufficiently large that g2~kl2^&. Then

and \2mR(g2-m/2)\^Cg32-ml2, so the limit (5) exists.
The proof of (5) in the general case will folow the proof just given for

independent X(v) in that a partial Taylor expansion of &n{g\ Cn(g) about g = Q will
be used to show the cancellation leading to the existence of the limit.

Conditions C5, C6 limit the dependence of the X(v) in the general case. For
each n ̂  0 define a sequence of σ-algebras {F(n, m), m ̂  0} by

F(n,m) = G(n + rn)nF+(n — ni) if m^n

F(n, m) = G(n + m) if m > n,

so that F(rc,0) is the trivial σ-algebra, and F(n,m)f G(oo) as m->oo. Write X(n,m)
= £[X r(n)|F(n9m)]-E[X'(w)|F(n9m-l)]9 for m ^ l . We will write

00

• Σ X(n,m); (7)
m= 1
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estimates for the rate of convergence will be obtained in 2.5. We will refer to the
martingale differences X(n, m) as localised terms. We use (7) to write S(n) as a sum
of localised terms.

A difficulty arises in combining the splitting of S(ή) into localised terms with
the Taylor expansion method: the difference X(n, m) need not be bounded below,
so exp{ — gX(n,m)} need not be in L1 for g^O. This difficulty forces us to use the
Taylor expansion method only for truncated random variables. Introduce a
sequence {bn,n^0}=B of positive real numbers, and define

X(υ; B) = min{X(v),2-n/2bn}

for veT of level n. Quantities constructed from the truncated random variables
X(v B) will be denoted by the same symbols as the corresponding quantities
constructed from the X(v) with the addition of a further label B - thus S(n B) etc.
In order to be able to deduce (5), (6) from the corresponding results for the
truncated random variables we will have to chose truncation levels bn-+oo as
ft—•oo. This choice results in a loss of scale invariance; for weT(v), veT(ή),

Civ^lXiw B)-] = l-^XiψivΓ1 w £„), (8)

with Bn the truncation sequence {bn+m,m^0}. However, consideration of the case
in which the random variables X(v\ veT, are assumed independent, with X(v)
identical in law with θnX for υe T(ή), for some θ >0, suggests that if the truncation
levels bn do not rise too rapidly this loss of scale invariance will not cause difficulty
- in the special case cited the proof of the existence of the limit (5) given for the case
θ = 2~1/2 remains valid provided θ<2~1/3.

2.3. Counter terms

Write

Fn(g) = ̂ ni0)Cn(g)-1. (1)

Following the usage of quantum field theory, we will refer to Cn(g) in (1), and to
any terms resulting from expansion of Cn(g), as counterterms. The purpose of this
section is to introduce some notations which will ensure that when S(n) is split into
a sum of localised terms and an expansion is made oϊ££n(g) that a parallel expansion
is made of Cn(g)~ \ in such a way that the counterterms are properly matched with
the terms they are supposed to cancel.

Denote by I?0(Ω, M, μ) C Z?(Ώ, M, μ) the Hubert space of random variables / on
((2, M, μ) with finite variance and zero mean, and by Γ( ) the Gaussian process
indexed by Z?0(Ω,M,μ). We will regard this process as independent of the random
variables on (Ω,M,μ). If A CM is a sub σ-algebra of M, we write Γ(A) = σ{Γ(f);
fel30(Ω,A,μ)}. Define a complex valued process ψ( ) indexed by Z?0(Ω,M,μ)

l (2)
and note that the map ψ: ϊ->ψ(f) is linear, and that

(3)
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for all fvf2e L2

0(Ω, M, μ). life L2(Ω, M, μ) is of the form X(ξ), with ξ some label, we
write

Y(ξ)=f-Elf]; Z(ξ) = Ψ(Y(ξ)).

Note that for any m^O the sets of random variables

{Z(φ(l,O)υ;BJ,υeT}, {Z(ψ(l,l)v;BJ,υeT}

are independent, each being identical in law with

{2-^2Z(v,Bm+1lveT}. (4)

Since £[exp(l/-lΓ(/))]=exp{-l/2Var[/]}, for fe£0(Ω,M,μ), we have the
basic identity of this section

}l, (5)

with »F(n)==φ(S(n)-£[S(n)]).

2.4. Taylor Expansions

For any integer N ̂  1, we define a random variable tN, with Og ί N g 1, by specifying
the probability density of tN as

N (1)

lϊf(x) is a C00 function of the real variable x, a n d Z a random variable, we then
have, for any N^ 1, the Taylor expansion formula

Σ ^βψ) + ~βNV)l (2)
j=o ]• ^V! J

with tN independent of X (the existence of the expectations being assumed).
This notation, apparently the result of pursuing thQ probabilitists' abhorrence

of integral signs to the point of mania, will enable us to write compactly the Taylor
expansions of the inductive expansion (2.6).

2.5. Localisation Estimates

In this section B = {bn, n^>0} will denote a sequence of truncation levels satisfying
the following condition

Bi. For some constants C4, βA>0, with βA>β1 (cf. C4\ and all n^O,

The estimates obtained will be uniform over the sot of sequences satisfying Bl. The
importance of this uniformity for the proof of Theorem 1 lies in the observation
that if B is a sequence satisfying Bl, then the shifted sequences Bnι = {bn+m, n^O},
m^O, also satisfy Bί, so that the estimates of this section will be uniform over the
set of sequences {βm, m^O}.
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Lemma 1. For all p^l, and n^.0

\\X(B)-ElX(B)\G(n)-]\\pύ2C2p^τn

2. (2)

Proof. The proof of (2) relies on two general remarks. First, if X is a random
variable in IF, and F a σ-algebra then

\\X-E[X\Fl\\pS2mϊ\\X-Y\\p, (3)

the infimum being taken over all F-measurable Ye IF. Second, if X and Y are
random variables, and b a real number then

\mm(X,b)-min{Y,b)\^\X-Y\. (4)

Thus

\\X(B)-ElX(B)\G(nmpS2\\mm(X,b0)-min(E[X\G(n)lb0)\\p [by (3)]

^2\\X-ElX\G(nm\P [by (4)]

£2.C2p>*τ"2 (by C5). •

Lemma 2. The limits

Una (£[S(n)]-£[S(n;B)])
n~* oo

lim (Var[S(n)] - Var[S(n; B)])
«—>• oo

Proof. From C4 we obtain a bound on the tail of the distribution of X

C5^}, (5)

for b^C6. Here βs = β~\ C ^ Q e x p ^ J , C 5 =/? 1 exp(- l-^ 5 logC 1 ) .

Now £[S(n)] - £[S(n B)] = Σ ^ [ ^ M ~ ^ ( ^ B)\ and
m=0

-X(/n B)] = 2m/2 £[X - min(X, b J ] ^ 2m'2 ||X|| 2 (Pr{X ^ fo

(for m sufficiently large that bm ̂  C6)

C7m^), (6)

with C7 = ̂ ^ >05 and βΊ = βj~1 > 1, by B1.

The series whose general term is (6) converges, so the first assertion of the
lemma is established.

Var[S(n)]= £ ff(m),
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n

with #(m) = £[Y(m)2] + 2 £ E\Y{k)Y(m)\ so that to establish the second
k = m+ 1

assertion of the lemma it suffices to bound, uniformly in n, \H(m) — H(m; B)\ by the
general term of a convergent series. We will obtain the desired majorant by
estimating

\ElY(k)Y(m)-Y(k;B)Y(m;B)-]\

(7)

and bounding each term in (7) by a corresponding term of a series summable over
k, m with fc^m.

The second term in (7) is bounded, for k sufficiently large, by

!| Y(m B)\\ 2 \\ Y(k)-Y(k;B)|| 2

= \\Y(0;BJ\\2\\Y(0)-Y(0;Bk)\\2

(8)

where we have used scaling and independence at the first step, and (1), (5) at the
last. Note

Σ exp ί^L A = 5 (k +1) exp ( ^ k>λ < oo.

[ k — m—11
. If k = m we may bound the

term by (8) as in the estimation of the second term. So we suppose s ^ 0 then the
σ-algebras G(m-i-s) = G VF~(m + s) and F + (k — s) are independent. Hence

\ElY(k)(Y(m)-Y(m;Bm\

= \E[{Y(k)-ElY(k)\F+(k-s)-]}{Y(m)-Y(m;Bm

Λ-ElElY(k)\F+(k-s^{Y(m)-Y(m;B)-ElY(m)-Y(m;B)\G(m + s)m\

^\\Y(k)-ElY(k)\F+(k-s)-]\\2\\Y(m)-Y(m;B)\\2 (9)

as in the proof of (8), and (again using independence and scaling)

β*τs

3i by C6.

These two bounds give a satisfactory majorant for the first term of (9). As for the
second term, its first factor is bounded
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while the second factor can be estimated in either of two ways:

\\Y(m)-Y(m;B)-ElY(m)-Y(m;B)\G(m + s)-]\\2

= \\X -X(Bm) -E\X -X(BJ I G(s)] || 2

S \\X - E[X I G(s)] || 2 + \\X(Bm) - E[X{B

<, 3 C 2 2
/*2τs

2, by C5 and Lemma 1,

or

S\\X~X(Bm)\\2

as in the proof of (8). By taking the geometric mean of these two bounds as our
bound for the second factor, we obtain a satisfactory majorant for the second term
of (9), and this completes the proof of the second assertion of Lemma 2. •

Lemma 2 has the immediate

Corollary, lim Cn(g)C~ι(g\ B) exists, and is non-zero.

To proceed further we will need the following Lemma on attraction to the
Gaussian Law.

Lemma 3. (a) Let X be a random variable with E\X~\ = 0, N a positive integer, and
Xv...,Xn independent random variables having the same distribution as X, with
normalised sum SN = N~1/2[_X1 + ... +X N ] . Suppose that for some C>0, β>0, and
all p ^ 1, \\X\\p^Cpβ. Then there exists a constant α>0 such that, for any choice of
Λ>0, we have, for some K = K(C,β, A),

for all N^l,pS
(b) Let {X(N), N^l} be a sequence of random variables with zero mean. Let

X^N), ...,XN(N) be independent random variables having the same distribution as
X(N). Suppose that for some C>0, β>0 and all JV^l, p ^ l

and that for some D>0, δ>0 and all N^.1,

\\X(N)\\2^DN'δ.

Then there exists a constant oc = ot(C,D,β,δ)>0, such that, for any choice of Λ>0,
we have, for some K = K(C,D,β,δ,A),

for a

Proof We will prove (a), (b) at the same time, suppressing the dependence of X on
N in (b) in the notation. If Z is any random variable, and Zs = Zί—Z2 (Zv Z2

independent, and identical in law with Z) its symmetrisation, we have

p = i
<2||Z|L,
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for any p ^ 1 such that ZeE, and, for any N^.1,

tsN(z)γ=sN(zs).

It will therefore suffice to prove the lemma for symmetric X.

[4 + 4/?]~11 in (b). For{
any M > 0 denote by X M = min{|X|,M} sgn(X) the truncation ofX to the range
[ — M,M\ and note that XM also is symmetric. As in the proof of Lemma 2, the
bound on \\X\\p, p ^ l , implies, for some E = E(C,β),

for M^Cexp(β). Take M = Cexp(β)N2aβ. Then

2p •

l
2 P J

SNll2+aβC(2A)βQxp{-FNa},

for p ̂ /liVα [with F = E(2Λ)~λ (C exp(β))1/βl We may bound this by Kγ p1/2 in (a),
or K1N~a in (b), for some Kv since, for any exponent μ, JVμexp{ — FNa} is
bounded in JV. Now

so it remains to estimate H ^ X ^ I ^ .
It suffices to obtain for \\SN(XM)\\p a bound of the stated form in case p is an

even integer. In that case we have for any u > 0, since XM is symmetric,

oo re (γM\\2k
sN(xMy

= u~pp\E

so

Σk

]) J V / p . (10)

We will choose u=p1/2 in (a), u = N2a in (b), so that u~1p=p1/2 in (a), and M" 1 /?
^y4iV-α for p^ΛNa in (b), and then verify that, for this choice of u, and p^
the remaining factor in (10) is bounded in N

\XM)2 Qxp{t2uN~ 1 / 2 X M } ] ,
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by Taylor expansion (2.4.2), and symmetry oϊXM. The argument of the exponential
is bounded by GNy, with G a constant, and y = 2aβ + f — \ in (a), y — 2αβ + 2α — ̂  in
(b). Our choice of α ensures y^O, so

£[exp{wΛΓ 1/2XM}] ̂  1 + u\2N)-1 exp(G)£[(XM)2]

u2p ~* = 1 in (a), and in (b) u2p~1 \\X \\ 2 is bounded by fflVε, with H a constant, and
ε = 3α — 25 ̂  0, by choice of α. Finally we note that for any B > 0 the function/(x)
= (l + Bx~1)x is bounded on (0, oo); this completes the proof that the remaining
factor in (10) is bounded in N9 and so of the lemma. Π

We use Lemma 3(b) to transfer (2.1.3) to the array of truncated random
variables.

Lemma4. For some constants C8>0, β8 >0, τ 8 < 1, and all p^. 1, n^O,

| |X(n;B)-£[Z(n;B)|F + ( 0 ) ] | | ^ C 8 / H " 8 . (11)

Proof.

^ \\X(n)-ElX(n)\F+(0)-]\\p+ \\Y{n)- Y(n;B)\\p+ \\E[Y{n)- Y(n; p

^ Y(n-B)\\p. (12)

Set N = 2", XN = 7(0) - 7(0 Bn), so that, with SN{ ) as in Lemma 3, 7(n) - 7(n B)
= SN(XN). We have

and

\\XN\\2S\\X(Bn)\\2

for any choice of δ > 0, and some D = D(δ) (recall βΊ > 1). For N not a power of 2 set
XN = 0; the sequence {XN,N^1} then satisfies the conditions of Lemma 3(b), and,
taking A = 1 in that Lemma, we conclude

\\Y(n)-Y(n;B)\\p^K2-"\ (13)

for some K > 0 , α > 0 and all n^>0, p^2M α . For p ^ 2 n α we estimate

9 2- w α , (14)

with ^ 9 = ^ 1 + l + ( 2 α ) " 1 . (12)-(14) combine to give the bound (11), with
β8=max(β3,β9) and τ 8=max(τ 3,2~α). Π
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Remark. Inspection of the proofs of Lemma 3(b), 4 shows that if τ 3 > 2 ~ 1 / 2 we
could have insisted on τ8 =τ3 in (11).

The proof of our main localisation estimate (Lemma 6 below) relies on
Lemma 3(a), together with the following complement to Lemma 3(a).

Lemma 5. Let X be a random variable satisfying the conditions of Lemma 3(a).
Then for some K>09 and all N^l, p^l,

Proof As in the proof of Lemma 3 we may suppose X symmetric, and p even. Then

the sum being taken over ΛΓ-tuples (pl9..., pN) of even integers with sum N,

with Yl5 ..., YN independent Gaussian random variables of mean 0, variance 1

= CVPUS*(Y)||£,

with Y Gaussian of mean 0, variance 1. But SN(Y)~ Yin law, so

and the stated bound on ||5N(X)||p follows. •

Lemma 6. There are constants τ 1 0 , τ x l < 1, such that for any choice of C 1 0 >0, there
exists a constant C 1 X such that for all rcΞgO, m^O, and p^Cloτ^n+m)

\\X(n;B)-E[_X(n;B)\F(n,m)']\\PύC11p
ί/2τ™1. (15)

Proof Note that for all rc^O, m^O

X(n B) - E\X(n B) | G(n + m)] - SN{X(Bn) - E\X{Bn) \ G{m)]}. (16)

Here N = 2Π, SN( ) is as in Lemma 3, and ^ denotes identity in law. Similarly, for

(17)

with k = n — m, N = 2fc.
Lemma 1 shows that τ^ m{X(5n)-£[X(BJ|G(m)]} satisfies the hypotheses of

Lemma 3(a) (with C = 2C2, ^ = /̂ 2 independent of m,n), and we conclude that for
any Λ>0, and some α x > 0 , K1=K1(A)>0, we have for all rc^O, m^O and

^ ^ . (18)

Furthermore Lemma 5 gives the alternative bound

\\X(n;B)-E[_X(n;B)\G{n + m)]\\ < X 2 ^ 2 + 1 / 2 τ ^ , (19)
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for some K2>0, valid without restriction on p. Choose α 2 > 0 sufficiently small
that τί2 = 2a2β2τ2<l, and for p^A2ma2 obtain from (19)

ll2τ™2, (20)

with K3=K2A
β2. Now set K4r = m^x(KvK3X τ 1 3 = 2~ 1 / 2 m i n ( α i ' α 2 ) <l, and note

p^Λτ^m + n) implies p^A2naί or p^A2ma2, so (18), (20) combine to give

\\X(n;B)-ElX(n;B)\G(n + mmp^K^pll2τ^ (21)

for all rc,m^0, p^Aτ^m+n\
Lemma 4 shows that τ~m{X(m; Bk)-E[X(m; Bk)\F+(0)~]} satisfies the hy-

pothesis of Lemma 3(a) (with C = CS, β = βs independent of m, n\ and we conclude
that for any A>0, and some α 3 > 0 , K5=K5(A)>0, we have for all n^m^i
< ^

\\X(n;B)-E[_X(n;B)\F+(n-rn)-]\\p^K5p
1i2τ™. (22)

Lemma 5 gives also the alternative bound

+ 1'2τ%, (23)

for some K6>0, valid without restriction on p. Choose α 4 > 0 sufficiently small
that τ 1 4 = 2 α 4 / * 4 τ 8 <l, and for p^A2mΰC2 obtain from (23)

p T ™ 4 , (24)

with KΊ = K6A
βs. Now set K8 = max(K5,KΊ\ T l 5 = 2 - 1 / 3 m i n ( a 3 ' a 4 ) < l , and note

p^Aτ^m + n) implies p^A2in~m)a3 ovp^A2ma\ so (22), (24) combine to give, for all
n^rn^O, and p^Aτ^m + n\

τ^. (25)

Suppose XeB is a random variable, and Fv F2 σ-algebras such that
F1=(F1nF2)VF3, with F3 independent of F2. Then

ElE[X\F2]\F1]=ElE[_X\F2]\(F1nF2)WF3]

= EίE[X\F2]\F1nF2]

= E[X\F1nF2]9

and hence

^\\X-E[X\F1]\\p+\\X-E[_X\F2]\\p9

since £ [ I F J is a contraction on IF. This remark is applicable toX=X(n; B\ Fλ

= G(n + m\ F2 = F+(n-m) for O^m^rc [take F3 = G(n-m)], and allows us to
combine (21), (25) in the form (15) [with C10 = A, τ l o = max(τ 1 3,τ 1 5),
C 1 ] L = K 4 + K8, τ 1 1 = m a x ( τ 1 2 , τ 1 4 ) ] . Q

Lemma 6 yields immediately the following estimate for the martingale differ-
ences X(n, m B)

\\X(n,m;B)\\ <C12p
1/2τ^19 (26)
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with C 1 2 = C 1 1 τ " 1

1 ; (26) is valid for w^O, m ^ l , pύCloτ^n+m\
Since Γ(X(n,rn; B)) is Gaussian with variance \\X(n,m; B)\\\,

(27)

(26), (27) give

with C 1 3 = C 1 2 (1+2 1 / 2 ) , under the same conditions on n, m, p as in (26).

2.6. Inductive Expansion

Write G = F(-1) , so that G(oo)= V F(n\ the σ-algebras ¥{n\ n ^ - 1 , being

independent. For / a random variable measurable with respect to the σ-algebra
G(oo) V Γ(G(oo)) we define the location of/ loc(/), a subset of the integers n^. — 1,
as the smallest subset S for which / e G(S) V Γ(G(S)). If loc(/) is finite, / may be said
to be localised. Note that if/ h have disjoint locations, then / h are independent.
The martingale differences X(n, m), Z(n, m) are localised, with

loc(X(rc, m)) = loc(Z(rc, m)) C I(n, m) = [max(π — m, — 1), n + m— 1].

The inductive expansion will be defined by a choice of a set J = {j(π, m)
rc^0,m^l} of positive integers. We will eventually make a specific choice of J,
but for the moment the choice of J will be left open subject only to the condition

Jί. j(n,m)^3 for all n ^ 0 , m ^ l .

For each (n, m) denote by t(n,m) a random variable identical in law with tj(n m) (cf.
2.4) the random variables t(n, m) are to be independent of each other, and of all the
random variables considered hitherto. If D is a subset of (π,m): n^.0, m ^ l ,
s: D^>Z+ will be called J-admissible if s(n, m)^j{n, m) for all (n,m)eD. For such a
map s, we define D x = {(w,m): s(π,m)<j(n,m)}, D 2 = {(π,m): s(π,m)=j(n,m)}, and
the random variable P(s, gf 5)

ί u . ; « - π t ^ f
(n.mjeD! s(n,m)!

Γ — sZίn m * R)Ί^"'m)

' Π , γ l m u exp{- f lft(n>Bl)Z(n>m;B)}. (1)
(n,m)eD2 AH> m) !

For k^O write gk = g2~k/2. The inductive expansion is an expansion procedure
defined on expressions of the form

Rexp\-gk £ Z(n,m;Bk)
(n,m)eD

(2)

with K a localised random variable, and DcZ+ x Έ+ such that

max{n : (n, m)e D} < oo . (3)
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We will use the letter J also to denote the expansion operation itself; thus «/{...}
indicates that the expression within parentheses is to be expanded according to the
rules we state below (so the operation J does not change the value of an
expression, but only the form in which it is expressed).

The definition of the inductive expansion is by induction on

{n\ (n,m)eD} — min{max(n — m, — 1) :(n,m)eD}.

By (3) d is initially finite. Given an expression of the form (2) write

D2 = {(n,m)eD :I(n,m)n(loc(R)v{-l9O}) = 0}.

If both D l J D2 = 0, so D = 0, the expansion terminates

J{EIK]}=EIK]. (4)

If D 1 = 0 the next expansion step is a factorisation

JίE Rexpί-gk £ Z(n,m;Bk)
(n,m)eD

Γ ί£[expί-# f c + 1 Σ Z(n9m:Bk+ί)
I L I (n,m)eD'

with D' = {(n, m): (n + 1 , m)eD}.
If D x Φ0 the next expansion step is a Taylor expansion

~9k Σ Z{n9m,Bkj
(n,m)eD

(n,m)eD'

(5)

(6)

with D' = D2. The sum in (6) is over all J-admissible maps s defined on D1.
Note that in both (5), (6), d(D')^d(D)—i, so that the expansion process

terminates in a finite number of steps.
In 2.7 we obtain a majorant for the series given by the inductive expansion the

interchange of the integration operation E with £ in the Taylor expansion step
s

will then be seen to be justified by dominated convergence.
We define the weight of term P(s, g B) appearing in the inductive expansion by

W= Σφ,m).
n,m

Condition J1, and the construction of the random variables Z(n, m B), ensure that
E[P] = 0 if w= 1 or 2; terms in the expansion having E[P] as a factor therefore
cancel. This cancellation is the raison d'etre of the expansion.

2.7. Majorisation

In the majorisation argument of this section we are concerned with sums ^ α r of
terms which are not known at the outset to converge. If ]£ar, £frs are two such
sums, we write YuarcYbs if each term of the sum on the left appears precisely once
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among the terms in the sum on the right. If Yjar is a sum, and Ce[0, + oo] a
positive extended real number, we write Σar<C if ^ |α r | ; gC. Note that if
ΣarcΣbs, and Ybs<C then J^a^C. If An, rc^l, is a sequence of sums with
AncΛn+1 for all n, we write A = lim An for the sum whose set of terms is the union

n—> oo

of the sets of terms of the An; the notation is justified by the observation that if
A = lim An, and A^C with C< + oo, then the series An, n^ 1, A are all absolutely

M-> 00

convergent and the limit can be construed as a numerical rather than a formal
limit.

As in the outline of 2.2 we choose arbitrarily a Holder index p, 1 < p < oo, and
denote by q the conjugate index. R will denote a localised random variable, with
ReB; r = max{n:ne\oc(R)u{0}}. We write, for n^O,

(1)= E •Rexp|-<7 Σ Σ Z(k,m;B)
fc=O m = 1

The right side of (1) is in the domain of the inductive expansion; denote it by
Fn(g,R; B). In this section, B, the truncation sequence, is fixed: bn = C4(n+l)β4,
with C4, j84 as in Bl. Note that for any θ> 1 we then have, for all rcg O, fc^O,

Γ, (2)
/ £ \J?4

withK = K(β) = sup 1 + θ" f c <oo.

We fix also the termination sequence J for the inductive expansion

j(n,m) = Lρn+m. (3)

Here L > 0 may be chosen arbitrarily, and ρ > 1 will be specified later.
The main result of this section is

Lemma 7. There exists a constant g>0, and positive functions Φ(g\ Ψ(g) defined on
[0,^), with Φ(g)->ί as #—>•(), such that

J{Fn(g,R;B)}<\\R\\qΦ(gYΨ(g),

for 0^g<g, and all n^O.

Proof of Lemma 7. Define the connected sum

s

the sum in (4) is on J-admissible maps s such that the set

is connected (i.e. is a set of consecutive integers). If R = 1 we write simply Co(g B)
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The sum over s being over maps of weight wΞ^3, satisfying the connectedness
condition.

The following relations are immediate from the definition of the inductive
expansion:

For any π^O, J{Fn(g9R;B)}CJ{Fn+1(g,R;B)}, so Urn J{Fn(g,R; B)}

= J{F(g,R; B)} (by definition) exists as a formal sum. If R=l we write
J{F(g;B)}=J{F(g,ί;B)}.

J{F(g,R;B)}cCo(g,R;B)(J{F(gi B,)})2, (6)

and so by iteration

J{F(g,R;B)}cCo(g,R;B) f[ [Cofe; Bk)T (7)
fe=l

in (7) the infinite product of the right is to be understood as the formal sum of
products of finite total weight formed by multiplying the indicated factors.

We will use Holder's inequality to estimate the terms in Co{g, R B). Let
P(s, g B) be a term of weight w. We factor

P(s,g;B)=U(P°mP1JΐlPl (8)

with

P2

n= Π exp{-gt(n,m)Z(n,m;B)}, (10)
m:s(«,m) = </(«,m)

oo

and set p(ri) = 6(n +1) 2 , so 3 ^ p(w)^ 1<l. Holder's inequality then gives
« = o

IPII,

Π (ll^llpp,m,ll^llpp(m,) Π II^2IU> (ii)
m ^ 1 n^O

We tackle first the final product in (11), and show that, for any ε>0, and all
grgl, there exists a constant A = A(ή such that

I\\\PXP^A{l+εY. (12)

Write M(π) = {m :s(n,m)=j(n,m)}, c{n) = number of elements in M(ή), w(ή)
= ^ s(n, m). Note that w = ^ w(n), and w(n) ̂ j(n, c(n)\

\\Pl\\vm^ Π \\cxp{-gt(n,m)Z(n,m;B)}\\pp(n)φ). (13)
meM(n)

Now if Z is a bounded random variable with £ [ Z ] = 0 , /z(w) = £[exp(aZ)] is

increasing for ι/Ξ>0; AXw) = E[Z(exp(MZ)-l)] = E[ZsinftίM—jexpί -
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Hence

= £[exp{ -gpp(n)c{n)t(n9 m)X(n9m;

- gpp(n)c(n)t(n, m)X(n, m;B)}\ t(n, m)]]

p(n)c(n)X(n,m; B)U (14)

[recall 0 ^ ί ( n , m ) ^ l ] . Replacing X(n,m;B) by its expression as a martingale
(2.2.7), and using successively the Cauchy-Schwarz and Jensen inequalities, we
bound (14) by

{E\βxp{-2gpp{n)c{n)EίY{n;B)\F{n,m)\ψ2

S(E\_Qxp{-2gpp{n)c{n)Y{n;B)}ψ2

•(E[_exp{2gpp(n)c(n)Y(n;B)n)112. (15)

(13)—(15) combine to give

||P2

n \\pm g(£[exp{ - 2gpp(n)c(n) Y(n B)}^2"^"'

•(E[exp{2gpp(n)c(n)Y(n; β)}])*2"^"""'. (16)

We focus on the estimation of the second factor in (16), since it is here that the

introduction of the truncation proves to be essential.

E\txp{2gpp(n)c{n)Y{n;B)}-]

= (E[exV{2gpp(n)c(n)2-"12 7(0; Bn)}])2"

= (l + 2g2p2p(n)2c(n)22-"ElY(0; Bf exv{2gpp(n)c(n)2-"l2t2Y(0; Bnmfn

:g exp{2g Vp(n) 2 c(n) 2 £[X 2 ] txpl2gpp(n)c(n)2-"/2bn]}. (17)

If p(n)c(n)bn^2nl2, (17) is bounded, for g^ί, by

expM l P (n) 2 c(n) 2 } ; (18)

for some constant Av If p{n)c{ή)bn^.2nt2, we have, for grgl, the bound

^exp{A2p(n)2c(n)2b2

n}, (19)

for some constant A2, so that in any case, for some A3,

Elexp{2gpp(n)c(n)Y(n;BmSeMA3p(n)2c(n)2b2

n}. (20)

For all but a finite number of pairs (n, c)

A3p(n)2 b2 ^(log(l + ε))Lρn + ε. (21)

Denote by Λ ô the number of exceptional pairs, and by AA the maximum of the left
side of (21) taken over the exceptional pairs. Then we have, with A5 =εxp{N0A4},

Y[ E\βx^{2gpp{ή)c{ή)Y{n\ B)}~\ ^A5{\ + ε)w (22)

[recall w = ^ w(n), and w(ή) ^j(n9 c(n)) = Lρn + c(n)^
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A similar estimation of the first factor in (16) gives

Π £[exp{-2^p(n)c(n)y(n;B)}]^X 6 ( l+fir , (23)

the constant A6, unlike A5, being independent of the choice of truncation se-
quence B.

(16), (22), (23) combine to give (12).
We come now to the estimation of the factors | |PJJ p p ( m ) in (11). Write

K=ϊlK,,r (' = 0,1), (24)

with Pι

mr the product of those factors in P^ for which — = 2r + ί. Note that if n, ή

are such that n

ϊm
n

2m
^ 2 , then the localization intervals /(w,m)5 I(n\m) are

disjoint consequently the factors P^ r of Pl

m are mutually independent, and we
have the factorisation

llή,IUm)= Π 111,!!,*.,) 0"=o.i); (25)

(25) is an essential improvement over Holder's inequality. Finally we use Holder's
inequality once again to give

i | ^ I I Z ( n , m ; £ ) | | t α n ) s ( n , m > (26)
\^ =2r + i
I 2m

Fix the choice of Q in (3) so 1 < Q < τ^Q1, with τ 1 0 the constant appearing in Lemma
2.5.6.

Then

2mpp(m)s(n, m) ̂  2mpp(m)j(n, m)

S2mpp(m)Lρn+m

^Dτ^n+m\ (27)

for some constant D. We choose Cί0 = D in Lemma 6 so that the Holder indices
which appear in (26) lie in the domain of validity of 2.5.28.

Write /= £ ms{n,m), w{m)= Σs{n9m), C 1 4 = C 1 3(1 + ε)(2p)1/2. Then the bound
n,m n

given by (11), (12), (25), (26), 2.5.28 is

<i J ( 2 8 )
Choose η>0 so τ 1 6 = ( l + ^ ) τ 1 1 < 1. For m^mo(η

1/2 log(mp(m)) ̂  m log(l + /?).

Write C 1 5 = [m o p(m o ) ] 1 ^ C 1 6 = C 1 4 C 1 5 , so that
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and we obtain the final form of our bound for the individual terms of the
connected sum

Γvίrη mγ\l/2s(n,m)
ί Π ( L l ' ^ ( 2 9 )1 6 i i v 1 6 W / s(n,mV.

We will show that, for sufficiently small g, the sum over s of the right side of
(29) is finite. We will make no further use of the condition that s be J-admissible,
and, regarding the remaining condition on the maps s in (4) (the connectedness
condition), we will use only the fact that it implies

s(n,m) = 0 for n>r + 2l. (30)

Write τ 1 7 = τj /

6

2 <l. We will first fix / and estimate

the sum being taken over all maps s:[0,r + 2 / ] x Z + -+Έ+, and then show

ΣA\\R\\qτ
ι

1ΊK(l)<<x>, (32)
I

for sufficiently small g.
Let 7(n), π^O, be independent Gaussian random variables of mean 0, variance

1. For some c>0, and all p ^ l ,

ιιnn)iip^cp i / 2, (33)

so

π
oVn,m)!

11 Y(n)\ τ

= t exp

1Ί

(34)

with H(x) = E[exp{x|7|}], 7 Gaussian 0, 1, C 1 7 = C 1 6 c ~ 1 τ 1 7 ( l - τ 1 7 ) " 1 . Since
H(x)^>l asx->0, τ 1 7 [ H ( C 1 7 ^ ) ] 2 < l for g in some interval [0,^), 0<g^l, and for g
in this interval

! ? ) ] 2 ) - 1 . (35)

For R = l, (29) gives

(36)
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with A(g) = Σ Awg
w a power series with positive coefficients, convergent for g < g

[by (35), with R = 1]. We claim that we can arrange to have

, (37)

for any /c^O. Indeed the estimates used to derive (36) were uniform in B over the
set Bk, fc^O, as remarked in 2.5, with the sole exception being the estimation of the
second factor in (16). At that point in the argument we have now to replace bng by
bn+kgk = (bn+k2~k/2)g here (2), with β = 2 1 / 2, gives the necessary bound uniform in
k, and (37) follows.

At this point we must interpolate the simple

00

Lemma 8. If f(z)= £ fnz
n is a power series with coefficients / n ^ 0 , / 0 = l,

ιi = O

fx =f2 = 0, convergent for \z\<R, then the series

JW= Π U(z2-k/2)-]2k

k = 0

also converges for \z\<R.
The proof of Lemma 7 is completed by combining (7), (35), (37) and

Lemma 8. •

Proof of Lemma 8. For some r, 0 < r ^ R, log[/(z)] is holomorphic in \z\ < r, and in
that circle satisfies, for some C > 0, the bound

The series ^ 2 fclog[/(z2~k/2)] is therefore for \z\<r majorised by

Σ C2-"/2|z|3<oo,
fc=0

and it follows that J(z) is holomorphic in \z\<r. In this circle J(z) satisfies the
functional equation

J(z)=f(z)U(z2-^2)-]2. (38)

But the right side of (38) is holomorphic in \z\ <min{R, 2 1 / 2r}, so (38) can be used
to extend J holomorphically to this possibly larger circle. For sufficiently large JV,
i^ = min{i^,2iV/2r}, so by iteration of the extension argument we conclude J is
holomorphic in \z\<R. •

2.8. Existence of the Limit

In this section B and J are fixed as in 2.7 p is a fixed Holder index, 1 < p < oo, with
conjugate index q, and ReE(Ω, G(m), μ) as in 2.2. We are to prove 2.2.5, 2.2.6. In
view of the corollary to Lemma 2, it suffices to prove the statements 2.2.5', 2.2.6'
obtained by replacing Cn(g) by Cn(g; B) in 2.2.5, 2.2.6.
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Let ίj be an independent random variable with uniform distribution on [0,1],
as in 2.4, and define for fc^O, s>m

L(k) = *Σ [*(/) -X(J 5 B)] + ί j [*(*) -X{k 5 ) ] , (1)
j"=o

(2)

H2(k)=X(k)-X(k;B), (3)

= Hι(k)H2(k), (4)

(5)

7/(fc, s) = E[_H(k) I G(s)] - £[fl(fc) I G(s -1)]. (6)

Note that L(fc)^0, so H ^ g l , and that

Σ (7)

We have the identity

ElRexpi-gSinm
= E[R exp{ - ^S(n)

= Fn(g,R;B)-g £ Fn(g,RH(k);B)

= FB(0, R B) - g Σ Σ f „(#>
/c=0 s = m

);B)}. (8)
fc=O s = m

We choose /, 1 <l<q, and define r by l~λ =q~x +r~x so

||J?H(k,s)||Ig||R||β | |H(fc,s)|| r. (9)

We may then use Lemma 7, with the index q of the statement of that lemma
replaced by /, to obtain, for sufficiently small g, the following majorant for (8)

Ψ(g)\\R\\q\φ(gr + g £ £ Φ(g)2\\H(Ks)\\\. (10)
I k=0s^m J

We will prove that (10) is finite, for sufficiently small g , and this establishes 2.2.6'
[with K(m,n,k) the sum of the appropriate subset of terms of the majorant]. If
R = 1WQ may write the majorant in the form 1 + gΛ(g), with Λ(g) bounded as #->0,
and hence obtain 2.2.5'.

By applying Lemma 3(b) as in the derivation of 2.5.13, but taking this time not
A = 1 but A = 2r, we obtain

\\Y(k)-Y(k;B)\\2rSKlQ\ (11)
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for some constants Kv ρ, ρ< 1. 2.5.6 gives, for some K2,

2 (12)

so

\\X(k)-X(k;B)\\2rSK3ρ
k, (13)

with K3 = K1+K2. Lemma 6, with Cί0 = 2r, gives, for s>k

\\X{k)-E\X{k)\G{s-l)-]\\2r^K^-k, (14)

\\X(k;B)-ElX{k-B)\G{s-l)-]\\2r^KAτ
s-k (15)

for some K4, and τ < l [since G{s — ί)jF(k,s — k— 1)].

For s ̂  max(fc, m) we estimate

| | H ( M | | r ^ | | H ( f c ) | | ^ | | H 2 ( f c ) | j ^ K 3 ρ * . (16)

For s > max(fe, m)

\\H{k,s)\\r^\\H{k)-E[_H{k)\G{s-l)-]\\r

(cf. the first remark in the proof of Lemma 1)

. (17)

Now

(since \e~x— e~y\-^\x — y\, for x,y^0)

^-", (18)

by (1), (14), (15).

(13)-(15), (17), (18) give the following bound for the sum in (10)

oo

Σ {Φ(g)mίίMk'm)(k+ί)K3ρ
k

s>k

which is finite, provided g is sufficiently small that Φ(g)<min(ρ~ 1 / 2,τ~ 1 / 2).
The proof of Theorem 1 is complete.
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3. Construction of the Measure for the Polymer Problem

33.1. Mixtures of Tied-Down Gaussian Processes

Let (X,£) be a measure space, C: X xX—»IR a measurable covariance on X, Xo

= {ξ : C(ξ, ξ) = 0}. Denote by § the reproducing kernel Hubert space defined by C
ξ> is the Hausdorff completion of the pre-Hilbert space whose elements are
functions on X of the form

with c eIR, ζteX9 ί^i^N, and whose inner product is the polarisation of

</,/> = Σ wjC&ξj)

[15]. For ξeX, denote by e(ξ)eξ> the vector corresponding to the element C(ξ, )
of the pre Hubert space. The map

of (X,X) into {ξ>,B) is measurable; here B is the Borel σ-algebra of the weak
topology of <r>. The map

is an injection of § into the vector space of measurable functions onX, zero onX0.
We will suppose § separable. Let {en, n ̂  1} be an orthonormal basis for §, and

{yn>
 n = l} independent Gaussian random variables of mean 0, variance 1, realised

on a probability measure space (Ω,M,μ). For eeξ) define

[convergence in I?(Ω, M, μ)] then

φ:§^L2(Ω?M,μ)

is measurable [relative to the Borel σ-algebras of the weak topologies of §,
Z?(Ω,M,μ)]. Hence also the composed map x — φ^e

x:X->L2(Ω,M,μ)

is measurable.
Now let A be a positive <τ-fϊnite measure on (X, 3E). If geG(X xΩ.λx μ\ we may

choose a measurable function g(ξ, ω) representing gf such that

is a measurable map of X into Z?(Ώ, M, μ), and

Then

Ug)=Hχ(O,g(ξ)}c(ξ)dλ(ξ) (l)
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defines a continuous linear functional L( ) on Z?(X xΩ9λx μ), for any measurable
function c( ) such that

Since λ is σ-finite we may choose such a c( ) with c(ξ) φ 0 for all ξ. By the Riesz
representation theorem there exists a measurable function k(ξ, ω) such that

L(g) = j k(ξ, ω)g(ξ, ω)dλ(ξ)dμ(ω). (2)

We may suppose also that

is measurable map of X into I?(Ω, M, μ), and

\\k\\2

2 = \\\k(ξ)\\2

2dλ{ξ).

Then (2) can also be written in the form

Hg)=Πk(ξ),g{ξ)ydλ(ξ), (3)

and comparison of (3) with (1) gives

$(c(ξ)x(ξ)-k(ξ),g(ξ)ydλ(ξ) = O, (4)

for all gel}{X xΩ, λxμ). If /eZ?(Ω, μ) we may consider in (4) g of the form
h(ξ)f(ω), and infer

(c(ξ)x(ξ)-k(ξ)J>=Oa.Q.(λ). (5)

Since § is separable, Z?(Ώ, μ) is separable. Therefore by letting / in (5) run through
an orthonormal basis for Z?(ί2, μ), we obtain

x(ξ) = c(ξyxk(ξ) a.e.(λ). (6)

Define

xfeωHc^ΓUfeω). (7)

Then x(£, ) is a stochastic process realised on (Ω, M, μ), is measurable in ξ, and for
£^iV, the null set implicit in (6), x(ξ, ) is Gaussian with mean zero and covariance
the restriction of C to (X-N)x (X-N).

For v an integer §: 1, denote by xv( ) the Gaussian process indexed by X with
values in IRV given by

with Xj( ), 1 ̂ j ^ v, independent copies of x( ), the Gaussian process with
covariance C. Denote by (5V the Dirac distribution on IRV, and let λ be a positive σ-
finite measure on X. The purpose of this section is to show, under suitable
conditions on λ, that the formal expression

J(λ)=(2πY>2 $δ\x\ξ))dλ(ξ) (8)

has a natural interpretation as a positive random variable.
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Let {<5ε(x), ε>0} be an approximation to δv(x) i.e. a set of functions on IRV such
that

(i) δε(x) is positive, bounded and continuous, for each ε>0,
(ii) jδε(x)dx = ί, for each ε > 0

(with dx Lebesgue measure on Rv),

(iii) £lim Sf{x)δ8{x)dx=f(0)9

for every bounded and continuous function / on IRΛ
Let x(ξ, ω) be the function given by (7). Then

xv(ξ, ωί9..., ωv) = (x(ξ, ω x),..., x(ξ, ωv)),

is a realisation on (Ω, M, μ)v of the restriction of x( ) to X — JV, and

r 2 $ (9)
is well-defined (though possibly equal to + oo). Suppose now that λ satisfies the
condition

ί

so that a fortiori

lC(ξ,ξ)T

implies Jε\

exists in Z? for

(11) implies Jε(λ)el}, so Jε(λ) is almost surely finite. (10) implies that lim Jε(λ)

JJδ^)K(χ)K(χ)

[With Q = Q(xvx2l ζvζ2)
 a positive quadratic form]->0 as ε1? ε2->0 + . Thus if

(10) holds we may define J(λ)= lim Jε(λ).

For any ξoeX,

Γ
^ξ

is a measurable co variance o n l [if ξoeXo, the definition is to be read as Cξo(ξv ξ2)
= C(ξv ξ2)]. We will refer to the corresponding Gaussian process indexed by X as
the process obtained by tying down at ξ0 the process with co variance C it may be
realised in terms of the process with co variance C

χiξ;ξo) = χ(ξ)-C{ξ'lo)f.o) , (12)
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with the second term construed as 0 in case ξoeXo. If λ is a probability measure on
(X, •£), we construct x(ξ, ω) as above, and define a process x(ξ λ) on (X x Ώ, λ x μ)

(13)

(the second term being zero if ξoeXo). x( λ) can be considered a mixture of the
processes x(- £0). Similarly we define on (X xΩv,λx μv) the vector valued process

\ξ9 λ) (ξ09 ωη =

Denote by 1 the measure on X given by

^2 (15)

Then for any integer N^. 1, and bounded function i7 on IRviV, we have, assuming λ
satisfies (10), for any ξv ...,ξNeX

£[F(x v (^ λ\ ...,xv(c^ A))] = E[J(A)Fv(xv(£i),...,xv(Q)] (16)

(by a short calculation). Thus (10) (with λ replaced by λ) implies absolute
continuity of the measure σ(λ) induced by x(ξ λ) on the space F(M, Rv) of function
/:M—>IRV with respect to the measure σ induced on F(M,IRV) by x(ζ)\

dσ

It is natural to take (17) as the definition of J(λ) whenever σ(λ)<ζ σ however, we do
not know explicit necessary and sufficient conditions on λ for this to be the case.

We give two examples of these general considerations

Example!. Take X = [0, oo), X = Borel σ-algebra of X, C(σ, τ) = min(σ, τ) for
σ, τeX. Then the Gaussian process x( ) with covariance C is the standard
Brownian motion on R 1 starting at 0, and xv( ) is the standard Brownian motion
on IRV starting at 0. Let λ(t) for t^0 be given by dλ(t) = l[Ot]dt. Then for v= 1 (10)
holds, so T(ί) = J{λ(t)) is defined (up to a normalisation factor) T(t) is P. Levy's
local time at 0 [16]. For v > l (10) fails; indeed xv(c)φ0a.s. for c in any interval
[ε, oo), ε>0, so that we will not have σ(λ)<ξσ for any probability measure λ other
than the unit mass at 0.

Example 2. Take X = [0, oo) x [0, oo), X = Borel σ-algebra of X, C(σ1? σ2 τv τ2)
= min(σ1,τ1) + min(σ2,τ2). The Gaussian process x( •) with covariance C may be
realised as x(σί,σ2) = xί(σί) — x2(σ2), with x^ ), x2( ) independent standard
Brownian motions as in Exercise 1. For tvt2^O define λ(tvt2) by dλ(tvt2)
= 1[o,ti]χ[o,t2]dtίdt2. For v ^ 3 (10) holds, so Tv(ί1,ί2) = J(A(ί1,ί2)) is defined, and
gives a measure of the time spent at points of intersection {σvσ2 :x1(σ1) = x2(σ2),
σ1 ^tv σ2^t2}. For v > 3 (10) fails; in fact Brownian motion in R 4 has no double
points ([17] note that by writing x(σ) = x1(|σ|)(σ<0), x(σ) = x2(σ)(σ^0), we may
regard the intersection points of xx( \ x2( ) as double points of the Brownian
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motion x( •)). For v = l the construction of T ^ , ^ ) can be subsumed to that of
Levy

Tx(tl9t2) = (2π)" 1 / 2 J T 1 ^ , x) T2(ί2, x)dx, (18)
R

with TJ"(ί,x) 0'= 1»2) t n e l o c a l t i m e a t x for * / ')

T{t,x) = (2π)ί/2]δ(x(σ)-x)dσ. (19)

For v = 2 Brownian paths have points of multiplicity m for any integer m ^ 2 [18]
(and indeed of multiplicity m equal to the power of the continuum [19]!), so that
one may expect to be able to define random variables T(ί l 5 ί 2 , ...,tm), generalising
the above construction for m — 2\ this has been done by Wolpert [20], who
discusses also a relation to P{φ)2 Euclidean field theories [21]. For v ̂  3 Brownian
paths have no points of multiplicity m>2 [22]. (See also [23,24] for further
information on multiple points of Brownian motion, and related questions.)

3.2. Application of the Limit Theorem

In this section we show how the limit theorem of Sect. 2 may be used to construct
the probability measure for the polymer problem.

We indicate elements of IR3, and functions taking their values in IR3 by boldface
letters; thusz = (z 1 ?z 2 ?z 3), h(-)=(h1(-\ h2(-\ Λ3( )) Denote by (Ω, M) the space of
continuous maps ω : [0,1]->IR3, ω(0) = 0, with the Borel σ-algebra of the topology
of uniform convergence, and by x(s)( ), Orgsrgl, the evaluation maps x(s)(ω)
= ω(s). Then there exists a probability measure μ on (Ώ, M) such that x(s) ( ) is
standard Brownian motion on IR3 starting at 0 [16]. In the notation of 3.1, x(s) is a
realisation of the vector valued Gaussian process defined by the co variance C(s, t)
= min(s5ί) on [0,1], and v = 3. The corresponding reproducing kernel Hubert
space ξ> is given by

§ = {/:/ is absolutely continuous, /(0) = 0, /'eL2[0,1]}

and | | / | | ^ = | | / ' | | 2 Denote by φ the continuous linear map §->Z?(Ώ,M;IR3)
characterized by φ(φ)) = x(s) [with e(s) as in 3.1].

Denote by (Ω0,M0) [resp. (ΩVMJ] the space of continuous maps
ω:[0,l/2]->IR3, ω(0) = 0 (resp. ω : [1/2,1]-+R3, ω(l/2) = 0), with the Borel σ-
algebra of the topology of uniform convergence, and define po:Ω-±Ωo (resp.

Pl lO^Ωi) by po(ω)(s) = ω(s), se[0,1/2] (resp. p1(ω)(s) = ω(s)-ω(l/2), se[l/2,1]).
Then (Ω, M) = (Ωo, M o) x (Ωv Mλ\ with p0, px the corresponding projections. Since
Brownian motion has independent increments, the measure induced by μ on
Ωo x Ω1 is a product measure μ0 x μv Define also scaling maps j 0 , j 1 j 0 : Ω0-^Ω

(resp. 7^: ΩX^Ω) is given by jo(ω)(s) = 2 1 / 2 ω - resp.
\ I L \ /

Then j 0 , j ί are isomorphisms of (Ω0,M0,μ0), (Ωv Mv μx) onto (ί2,M,μ) (scale

covariance of Brownian motion [25]). Define xo(s) = 2 1 / 2 x(l/2) —x

l-s
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= 21/2 x(l/2)-x , O ^ s ^ l ; then xo( )> x i ( ) a r e independent standard

Brownian motions in R 3 starting at 0, and we may construct the random variable

X = T3(l, 1) = (2π)3'2 } } δ3(x0(s) - x^dsdt, (1)
0 0

as in 3.1, Example 2. We define also the σ-algebra G = σ{x(l)} this completes the
identification of the data in the statement of the limit theorem.

For se[0,1] denote by s = 0 s1s2...sw... the dyadic expansion of s. Define sets

21(0) = ([0,1/2] x [1/2, l])u([l/2,1] x [0,1/2]),

and for n>0

By appropriate change of variables in the time integrations we obtain the
identifications

X{v) = 2π3/2 J δ3{x(s)-x(t))dsdt, (2)
Δ(υ)

for veT, and hence

% ) = 2π 3 / 2 j δ3(x(s)-x(t))dsdt, (3)
R(n)

with R(ή) = {(s9t):max[m:sm = tm]^n}. As n^oo, R(ή)] [0,1] x [0,1], so that
formally the measures vn(g) defined by 2.1.4 should converge to the polymer
measure with coupling constant 2π3/2g.

We begin now the verification of conditions C1-C6. Define intervals

1 n 1 v n n

unit vectors g(v)eξ>: g{v)'= 2nl2\I{v). Note that g{0) = e{\\ so G = G(0) = σ{x(l)}
= σ{φ(g(0))}, and we find G(v) = σ{φ(g(v))}, for all veT. Since ^(0) = 2- 1 / 2 [^(l 0)
+ g(lΛ)l G(0)cG(l)(Cy).

Define f=2-^2lg(l;0)-g(l;l)l so that </,g(0)>-0 and span{/,^(0)}
= span{gf(l;0), g{ί;ί)}; this implies G(l) = G(0)VF, with F = σ{φ{f)} indepen-
dent of G(0) (C2). For veT define f{v)eξ>:f{0)=f, and for rc>0, /{n ί^.ΛJ
= 2- 1 / 2 [flf(n+l;i 1 . . . i B 0)-^(w+l;/ 1 . . . i Λ l)]. Then { # ) , / ( 4 ^ T } is an orthonor-
mal basis for <r>, which is mapped onto the Haar basis of Z?[0,1] by the
isomorphism /->/' of § onto L 2[0,l], and F{v) = σ{φ(f(υ))}, veT. Write y(ϋ)
= φ(f(v)\ veT. For O ^ s ^ l we may expand e(s)eξ> in the basis {g(0),f(v\veT}

e(s) = sg(0)+ ΣMWfW* (4)
i eΓ

and apply the map φ to both sides to give

/(z;)(s)y(ι;), (5)
veT

(5) is Ciesielski's representation of Brownian motion [16].
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C3 is evident from the definition of X. The remaining conditions C4-C6 will be
verified in the next section, so Theorem 1 is applicable. It gives for g ^ g a
martingale fm relative to the increasing sequence of σ-algebras G{m\ and hence a
consistent sequence of measures vm(g)

vm(gf)[B]=£[l J I/M], (6)

BeG(m). Since G(m) = σ{x(l), γ(v), n(v)^m}, Kolmogorov's extension theorem may
be used to construct a measure v(g) on IR00, the product of countably many copies
of IR indexed by ( { 1 } U Γ ) x {1,2,3}, so that the coordinate variables may be
written x^l), yfp\ ve T, je {1,2,3}. (5) may then be used to transfer this measure to
{Ω, M), as in Ciesielski's construction of Brownian motion, i.e., we will prove that if
x(l), y(v), ve T, are distributed according to v(g) then (5) defines a stochastic process

which may be realised on (Ω, M). In 2.8 we proved the existence of lim E , JR]

= Ev{g)[R~] for ReB(Ω, G(m\ μ) the proof gave a bound for Ev{g)[R~] which may be
written

i g ) q (7)

for some C > 0 . For veTJe {1,2,3}, p ^ l , take R = \y.(v)\mp, m = n(v)+l, in (7) to
give

\\yJίυ)\\'P^Dpll2(n+l)112, (8)

for some D>0, with || ||^ the norm on IF(Ω, G(m), v(g)). According to Varadhan
[26], an estimate of the form

EUx(s)-x(t)\βlSM\s-t\1+«, (9)

for some α>0, β>0, implies a.s. Holder continuity of the sample paths of the
process x( ) for any exponent ρ<min(α^~1,1). The functions f(v)(s) in (5) enjoy
the following properties:

supp/(ι;) = I(v) 0^f(υ)(s)^^ ' 2 - 1 ; \f(v)(s)-f(υ)(ί)| ύ2nl2\s-1\. (10)

Using (8), (10) we obtain, by checking Varadhan's condition, a.s. Holder continuity
of the sample paths of the process defined by (5) and the measure v(#), for any
exponent ρ < 1/2, just as in the case of the standard Brownian motion.

3.3. Three Estimates

C4. We will show that the random variable X defined by 3.2.1 satisfies

^ ^ (1)

for p ^ l , and some constants Cv C2. The upper bound verifies condition C4 of
2.1; the lower bound is of interest because it implies divergence of the Taylor
expansion of £[exp( — gX)~\ about # = 0.
For zeIR3 write Ί? = z\ + z\Jrz\, and denote by άτ Lebesgue measure. We may
suppose p an integer. By definition

X= lim (2π)3/2} }^(xo(s)-Xl(i))i/sdi, (2)
ε-*0 + n n
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SO

= (pl)2Sds1...dspldt1...dtpf(s9t)

with

ί_ y

P ' πeSp

(S denoting the symmetric group on p letters, and

/π(s,ί)= lim E Π{(2π)3/2<5ε(x0(Si)-x,.(ίπ(;)))}

= limιjdξ1...dξpdr\1...dr\p

withξ 0 =η o = 0, so = Co=0,

(2π)-3/2 e x p -

since Brownian motion has independent increments.
Change integration variables in (3) :(s5ί)->(α,j8), with

and interchange the (α, β) and η integrations to give

3p H

P ! πeSp

with gπ(r\) = J dax...dup \dβx.. Jβp

,ό,{exp -
(η, -η, -i)

2α;

\-3/2

(3)

(4)

(5)

(7)

To obtain an upper bound for \\X\\p

p we replace the integration region in (7) by

{(α, β): α ^ 0 , β. ̂ 0 , ^ (α + β.) ̂  2} denote by hπ(r\) the resulting integral, so that
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For any λ > 0 we may make the change of integration variables

and write Jdη1...dηp/zπ(η) in the alternative form

with

Π e χp (8)

After the change of variables the primes on the new integration variables may be
00

dropped. Now let f(λ) be some positive function on [0, oo) with j f(λ)dλ= 1. Then
o

we may average over the alternative forms to write our upper bound as

P πeSp
(9)

with

0

• Π do)

Choose f(λ)=lΓ(ί+p/2)yί λp/2e~\ and interchange the 1 and (aj) in-
tegrations in (10). Since

J e λdλ =
\!2%(aι+βι)

fcπ(η) then assumes a product form

/cπ(η) = [Γ(l + p/2)~]~1 ]̂ [
i = 1

with

(12)
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The Cauchy-Schwarz inequality now gives, for each πeSp9

ί = l

P \ i / 2

/2

with X = fdη|7/|η|)]2 = (2π)2<oo.
(9), (13) give the upper bound in (1).
To obtain the lower bound for ||X||£ we replace the integration region (7) by

J(α5j5) α ^ O , j8 f^0, ^(o^ + Z y ^ l j , and make the same transformations as in the

derivation of the upper bound to give

\\~V \\P ~^> ^ Pi (τ)WCJτr\ 2 . \ I Aχ\ πw u (x\\

P ~ P ! πeSp

 π ( 1 4 )

For each πeSp

• 1 Π
« ! ί = l

with

X?, (15)

4π
with X 1 = i ί ( 2 ) 2 — - [since H is a decreasing function of R, and | ^ — τ|£_ x | , |η π ( i )

( )

(14), (15) give the lower bound in (1).
In verifying C5, C6 we will make use of a formula which we state in the general

framework of 3.1. With the notations of 3.1, denote by φv :ξ>-^L2(Ω\ M\ μv;W)
the map given by φv(e) — (φ(e,ω1\ ...,φ(e,ωv)), and, for £ c § a closed subspace of
§, define the σ-algebra B(Q)cMv by

Denote by P the orthogonal projection of § onto £. Let p ^ 2 be an even integer,
and λ a measure onX such that J(λ) exists and is in Π. Then \\J(λ)-E\_J(λ)\B(ΰ)'\\\p

p

\dλ(ξ,)...dλ{ξp)
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with \A\ the number of elements in A, and C(P,A, ξ) the v x v matrix given by

ΓC(P,A,£)], ϊ =
:<£(6),e(£, )> if- i—j or iJeA ) , N

= (^(Cj), Pe(ξj)} it ίΦj and Ϊ or y ^ J

(16) results from a straightforward calculation of Gaussian integrals. Note that if,
for some index i0 and all i Φ i0, <e(ξf), (1 - P)e(ξio)} = 0, the integrand in (16) is zero
at ξ analytically this results from

for every A with ioφA; probabilistically it is clear since the random variables
{φVj(e(ξio)),l^j^v}, {φv

j(e(ξί)\ l^j^v, iή=ί0} are then independent conditionally
on B(2).

Some linear algebra (Lemma 1 below) gives the inequality

(18)

Denote by χ(ξ) the characteristic function of the set

{ξ: for each index i, l rg i^p, there is an index jΦi, l ^ j ^ p ,

such that < β ( α ( l - P ) < y > + 0} ? (19)

then from (16) and the following remark we obtain the bound

l2- (20)

Note that [detC(£)]~v / 2 is the integrand in the integral formula for \\J{λ)\\p

p

[detC(ξ)]- ϊ / 2 . (21)

Lemma 1. Let § be a real Hilbert space, P : § - > § αw orthogonal projection. Let p
^.I be an integer, and ev ...,ep,p vectors in ξ>. Define, for any Ac{\,...,p), a pxp
matrix C(P,A)

, ^ ) ] v = <eί,βi/> if i=j or iJeA

= (ei,Pejy if iφj and ί or jφA,

write C = C(P,{l,...,p}). Then

/ For any set {vv...,vk} of vectors of §, we denote by A{vί,...,vk} their

exterior product (in the order indicated by their indices thus A{v2, vί}=A{vv υ2}

= v1Av2\ and by G(v1,...,vk)=\\A{vv...,vk}\\2 their G r a m determinant.

For any /, 1 ̂  / ̂  fc, we have

(*) is a variant of Hadamard's inequality.
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We have

detC=\\Λ{uv...,up}\\ 2

Λ{ul,ieA;Pul>ieS;(ί-P)ui,iφS}
ScAc

|2

sCAc

ScAc

(by the Cauchy-Schwarz inequality)

Σ G(uiJeA;PuijES)Ylm-P)uί\\2

ScAc iφS

(by the variant of Hadamard's inequality given above)

[At the last step we use the observation that C(P, A) is the sum of the Gram matrix
of the vectors ι/ , ieA; Put, iφA, and a diagonal matrix whose diagonal entries are
0,ieA, \\(l-P)Ui\\\i$A.-] D

C5. To verify condition C5 of 2.1 it is sufficient to obtain an estimate of the form
2.1.2 for p ^ 2 an even integer, and n^i 1.

From 3.2.5, and suppf{v) = I(v) {veT\ we have, for all ίe[0,1]

x(0eσ{x(l),y(0),y(l,ί1)y(2,ί1ί2),...,y(m,ί1ί2...ίm),. .}.

Now G(n) = σ{x(l), y(v), n(v)<n}, so two increments x(ί) —x(s), x(w) — x(u), of
Brownian motion, with s, ue [0,1/2] and ί, we [1/2,1], are independent con-
ditional on G(n) unless s1s2...sn = uίu2...un or ί 1ί 2...£π = w1w2...ww, i.e. unless two
rooks placed on squares (s1s2...sn, t1t2...tn\ (uίu2...un, w1w2...wn) of a NxN
chess board, JV = 2Π, can capture each other.

G(n) = B(2\ with £ = span{0(t;), veT(n)}, anάX = J(λ\ with dλ{s,t)
= 2~1/2lA(0p,t)dsdt, so we may use (20) to estimate \\X-E\_X\G(ri)\\\p. We use the
remark following (20), and refer to the calculation of \\X\\p

p to write the resulting
bound in the form

||Z-£[Z|G(n)]||^2Mp!)2 J dSl...dsp j dtι...dtpΓ{s,t),

(22)
with

f"(s,t)=~ Σ UsM(s,t), (23)
P' πeSp

and χl(s, t) the characteristic function of the set

{(5, t): for each i, 1 gi: ̂ p , there is an index 7 + i, 1SJ<P

such that either [2" " 1 sj = [2n~1 sj] or [2"" x tπ{i)~\ = \_2n"1 ίπ(</)]}.

(Here \_x\ denotes the greatest integer ^x.)
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Proceeding as in the derivation of C4 we write the right side of (22) as

2 5 < " W ( 2 π Γ 3 ^ Σ ίdηi...dηp^(η), (24)
P' πeSp

with

£ ( η ) = ί da^-da, f dβ1...dβpχ"π(a,β)

([ o-^-i)) 2 _ K 7;- l ) 2 1(«^,.)- 3 / 2 l (25)
ί = i I L z α i z P i J J

and χn

π the transform of χ" under the change of variables (s, ί)-*(α, β). Choose g
with 1 <g<4/3, and apply Holder's inequality to give

(26)

with

/ ,(η) =

V

ί = l

jexp " Λ ω - n ^ - ! , ) 2 ''φli-Hi-O2

2α 2β a;iS,.) (27)

Continuing to follow the pattern of the derivation of C4, we extend the

integration region in (27) to Πa,β): α ^ O , β^O, ^ ( α ; + ̂ ; ) g 2 | , and then exploit

the transformation property of the integrand under scale transformations to give

\ Σ
P πeSp

with

(29)
0

Here f(λ) is any probability density on [0, oo), and Jπ(η, λ) is the integral obtained

by changing the integration region in (27) to ί(<x,β): oc^O, β^O, Σ((x<i + βi)

I
£2λ\. We choose /μ)= ί r ί j - - | J p + l j | λί2lq-3'2]pexp{-λ), and apply

Holder's inequality to (29) to give

(say). (30)

Interchange of the λ and (α, β) integrations in the integral representation of Lπ(η)
now gives

2 p

T / \ FT
LJy\)=- Π
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with

K(R) = j daa- ̂  exp [-^ ( ^ + | (3 2)

By the Cauchy-Schwarz inequality

(2\ltq

SdΆl..JΆp(LM1/q£[-] E> (33)

with L= jdx\\_K{\x\\)~]2tq<oo, since g<f.

To estimate \\χn

π\\q> in (28) we rely upon the lemma of the rooks:

Lemma 2. Let p rooks be placed at random on a N x N chessboard (without
restriction as to the number of rooks that may be placed on a single square). Then the
probability that each rook is in a position to capture some other rook is
^6pp2pN~p/2.

Proof. Denote by ω = (ω1,...,ωp) a typical rook configuration, and write
Xj(ω) = ωj for the position of the j t h rook, l rg j^p. The X. are assumed
independent, each being uniformly distributed over the N2 squares of the board.
Denote by R the set of configurations having the property in question. For ωeR
define inductively sets SJ"(ω)c{l,2, ...,p}: S1(ω) = {l}J and for l ^ j ' ^ p - 1

Sj+ 1(ω) = Sj(ω)κj{j+1} if for no keSj(ω) can a rook placed o n l j + 1(ω) capture
a rook on Xk(ω)

= Sj(ω) otherwise.

Write S(ω) = Sp(ω\ and define sets S^ω), S2(ω) C S(ω)c:

S1(ω) = {keS(ω)c: a rook placed onl f c (ω) can capture exactly one of the
rooks with index jeS(ω)},

S2(ω) = {keS(ω)c: a rook placed onl f e (ω) can capture exactly two of the
rooks with index jeS(ω)}.

Note that for keS(ω)c, rook k can capture a rook jeS(ω) with j<k [by the
inductive definition if S(ω)], and can capture at most two rooks jeS(ω) (one by a
move on a horizontal, one by a move on a vertical file) [otherwise we should have
two rooks j v j2eS(ω) which could be captured by k by moves of the same type
(both horizontal or both vertical); but then jvj2 could capture each other, which
contradicts the definition of S(ω)]. Thus S(ω)c = S1(ω)uS2(ω). A rook jeS(ω)
cannot capture another rook eS(ω) so, since ωeR, it must be able to capture a
rook eS(ω)c. Hence | ίS(ω)|^|51(ω)| + 2|ίS2(ω)|.

For a given partition (S,SVS2) of {1,2, ...,p} we estimate

2 i
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(if the set is non-empty, we must have | 5 | ^ | S 1

2 | ]). Thus
|; this implies p = |S'| + |S 1 |

(S,SuS2)

^3p 2pp2pN~p/2. Π

Lemma 2 implies \\χn

n\\q,ύ\βpp2pN-pt2Ylq\ with N = 2n~1. Combining this

bound with (28), (30), (33) we obtain C5 with β2=
1^---, T2 = 2~1/2q' (so e.g.

choosing 4 = 5/4, ;82 = 5.3, τ2 = 2~0Λ).

C6. We show first that C6 may be replaced by a condition which is more easily
verified:

Lemma 3. In Theorem 1 condition C6 may be replaced by the following condition
C6'

C61. For some constants K>0, and τ < l , and all n^O

\\X(n)-E[_X(n)\F+(0)-]\\2^Kτn. (34)

Proof From C4 and Lemma 5, Sect. 2 we have for some Kλ > 0, and all n ̂  0, p ^ 1

(35)

Given n^O write n = nί + n2, with n1 =

F+(O)D \J F+(v),

so that for all p ^ 1

\\X(n)-ElX(n)\F+(0)-]\\Pύ2\\X(n)-ElX(n)

Now

X(n)-E\X(n) V F+('>

- . Note that

V (36)

with Λ^ 1=2n i. (34), (35) imply that the hypotheses of Lemma 3(b), Sect. 2 are
satisfied by the sequence of random variables X(n2) — E[X(n2)\F+(θy] (with N
= N19 C = Kί,β = β1 +1/2, D = K, ^ = log(τ"1)(log2)"1), so we conclude from that
lemma that for some α>0, K2>0, and all p^N°[ (we take A — 1)

[ή)-E\X{ή) V (37)
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Since Nt ^2ll2{n~ι\ (36), (37) give

| |Z(π)-£[XW|F + (0)] | |^2K 2 2- 1 / 2 ^- 1 \ (38)

for p^2 1 / 2 α ( "- 1 } . But for p>2ll2a{n~ι\ (35) gives

\\X(n)-ElX(n)\F+(0)-]\\p^K1p
βί + 1/2^K1p

βί + 3/22-1/2ain-1\ (39)

(38), (39) combine to give C6 (with j ^ ^ + f , T3 = 2~1/2a). Q

To verify condition Ctf' note that F+(0) = £(£), with £ = closed span {f(v)9

veT}, and X(rc) = 2~1/2J(/l), with dλ(s,t) = lA(n)(s9t)dsdt. Here J(n)= (J Λ(v).
veT(n)

Hence, by (16),

\\X(n)-ElX(n)\F+(0)]\\2

= 2" 1 J ds^ ' i f ds2dt2 Σ (-l)M I[detC(P,^,5,ί)]-3 / 2. (40)
Δ{n) Δ{ή) AC {1,2}

Since £ 1 = span{e(l)}, the orthogonal projection P with range 2 is given by

P = l-<e(l), >e(l). (41)

(40) simplifies to

2- 1 j dsίdt1 J ds2Λ2{[detCΓ3/2-[detC(P,{l,2})]-3/2} (42)
A(n) ά(a)

(since \\X(n)-E[X(n)\F+(0)-]\\l=\\X(n)\\2

2-\\E[_X(n)\F+(θn\\22)- For (s,t)eA(Vl)
x zJ(u2) with ux ή=v2, we have

detC^detC(P,{l,2}),

since C, C(P, {1,2}) have the same diagonal elements, and C is diagonal, so that the
integrand in (42) is negative. We may therefore bound (42) by

2- 1 Σ ί ds^t1ds2dt2{ldQtC]-^2--ίdttC(P9{ί92})r312}. (43)
veT(n) A(v)xA(v)

The terms in (43) are all equal. This equality may be displayed explicitly by
making, for each veT(n), the change of variables sf

ί = Nsί — lNsi'], fi = Nti — lNtJ,
with N = 2n. After dropping the primes on the new variables we obtain

1/2 1/2 1/2 1/2

2jdSi \dtί ί ds2 J dt2{d~^-d-^}, (44)
0 0 0 0

with

= | / 1 | | / 2 | - | / 1 n/ 2 | 2 ' 1

In (45) /1 = [ί1,s1], /2 = [t2>
s2] (44) is bounded by the integral obtained by

replacing dN by

| / 1 n / 2 | | / 1 | | / 2 | . (46)
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Choose α with 0 < α < 1/2. Then for some constant B and all x, y with x ^ 3; > 0

1/2

= 21+aB j dt
0

1/2
?1 ί

0

dh

1/2

ί0 ds2

1/2

ί0

(44) is thus bounded by KJV~α, with

1 7 ^ j l a i r l α r l α

Λ 2 l £ l ^ y ί ί l i 2 L < 0 0 , (48)
0 0 0 α

and C<5' is verified.
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