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Abstract. An existence theorem is proved for a probability measure on
continuous paths in space, proposed by Edwards as a stochastic model for the
geometric properties of long polymer chains.

1. Introduction

The problem of setting up and analysing a probabilistic model for long polymer
chains which takes into account the so-called “excluded volume” effect is an old
one, being described already in Kac’s classic survey of probabilistic methods in
physics [1]. A simple discrete model is obtained by considering the “self-avoiding”
random walks on a lattice, so that the problem is to determine the asymptotic
behaviour of very long walks of this kind. Since the self-avoiding random walk is
not a Markov process, progress has been slow indeed. Thus the survey article of
Domb [2] (1969) lists no further rigorous results beyond those established by
Hammersley and Kesten (by 1964)!. The problem has been studied by computer
with results described in detail in the cited article of Domb. We do not wish to
review these results here but only to call attention to Domb’s conclusion that it is
possible to distinguish between long and short range properties of the polymer
chain, the long range properties being sensibly independent of the detail of the
interaction between the links of the chain. Thus just as the asymptotics of random
walks (under rather general conditions on the distribution of the individual steps)
is substantially equivalent to the study of Brownian motion (the Wiener process),
the long range properties of polymer chains should be studied in an appropriate
continuum model.

Such a model has been proposed by Edwards [3]. In this model the chains are
represented by continuous paths x(¢), 0 <¢ < 1, in IR?, with x(0) = 0, the probability
measure v on the space of paths being given in terms of Wiener measure u by

dv 4
d—u‘—ff exp[—gJ], (1)

1 See also [2a] for a more recent review
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with
Z = [exp[—gJ]du. ®)
Here J is a functional on the space of Wiener paths which (roughly speaking)

measures the time which the Brownian motion spends at its double points

J= [ [d(x(0)—x(1))dodr, A3)

Oty
O ey =

and g is a positive constant. J is intended to represent the excluded volume effect —
that is the repulsive self-interaction of the polymer chain at points where it crosses
itself.

In [3] Edwards simplifies the analysis of his model by introducing an
uncontrolled approximation (“mean field” approximation), and on this basis
obtains for the distribution of some of the physically interesting quantities results
apparently in good agreement with the numerical experiments.

In [4] Abram and Edwards consider the Feynmann integral representation of
the quantum mechanical motion of a non-relativistic particle moving in a random
array of scattering centers, and show formally that in the limit in which the density
of scattering centers — oo, and the interaction strength —0 (analog of the Grad
limit in gas kinetics), the transition probabilities of the particle are given by a
“measure” on path space which stands in the same relation to the polymer
measure as the Feynmann “measure” does to Wiener measure. The problem of
scattering in a random medium in the above limit is discussed also by Kac [5].

The continuum model appeared independently in the programm of Symanzik
for the study of the ¢35 boson field theory [6]. The connection with field theory
appears again in the work of de Gennes [ 7], and des Cloizeaux [8], who base their
analysis on the heuristic ideas of Wilson ; [9] contains a discussion of the excluded
volume problem within the framework of Wilson’s renormalisation group.

Equations (1)~3) are not to be taken literally. (3) is naturally construed to
mean

J=limJ,, )
with

J=| | 0.(x(0)—x(1))dodr, (5

O sy =
O s

and §, a suitable regularisation of the J-function in IR?; but the limit (4) does not
exist.

In considering the status of (1)—(3), it is instructive to consider also the status of
the corresponding equation for dimension d=1,2,4; the results closely parallel
those for the ¢ boson field theory in a finite volume. For d=1 (1)~(3) may be
taken literally ; the limit (4) exists in I}, and in fact J may be expressed in terms of
Levy’s local times (cf. Example 2, § 3.1). For d =2 Varadhan showed in an appendix
to [6] that

J=lim (J,~ E[J,) ©)



Long Polymer Chains 133

exists in I?, and that, for g>0, exp[ —gJ]eL!; the proof is patterned after the
proof given by Nelson for the corresponding result for the ¢35 boson field theory,
which may be found in Simon’s lectures [10]. Thus for d =2 it suffices to replace J
by J in (1), (2), to obtain an acceptable definition of v formally equivalent to the
original. For d =3 the limit (6) does not exist, and Symanzik suggested that (1)~(3)
be construed to mean

V= weakolim V., (7
with

D _ gt expl g1, )

du

%, =E[exp(—gJ,)]. 9)

In this paper we show that the limit (7) exists for sufficiently small g. The proof is
patterned after the proof given by Glimm and Jaffe [11], and Feldman [12], for
the corresponding result for the ¢3 boson field theory. The constructed measure
v(g) is, for g >0, not Gaussian. This may be proved by showing that the moments
of v(g) are differentiable in g as g—0+, and that their derivatives are given by the
renormalized perturbation series. We have not set out this proof in detail, but it
will be clear to the reader familiar with the work on the ¢% model (the current
status of this model may be obtained from [13], and references contained therein);
to obtain differentiability to a given order k, it is necessary only to choose the
constant L which appears in the definition of the inductive expansion (2.7.3) to be
> k. For d=4 the polymer model is, like ¢, in the sense of the classification based
on the analysis of formal perturbation theory, renormalisable but not super-
normalisable. This analysis suggests that for d=4 the problem be formulated as
follows: For ¢>0 consider the transformation

X(0)=cx(0) (10)

(the analog of a field strength renormalisation in boson field theory). If x(.) is the
stochastic process defined by the probability measure v(e,g) on the space of
continuous paths, X(.) will be a stochastic process whose defining probability
measure we denote by ¥, g, c). For #>0 define

S(n)=weak closure {v(e,g,c};e<n,c¢>0,9=0}

S= ) S@).
n>0
Determine whether or not the set S contains any non-Gaussian measures. (For
d=5 it is to be expected that S contains only Gaussian measures.)

Symanzik’s proposal to link the construction of the ¢% boson field theory to
the polymer problem is now only of historical interest. Nevertheless the polymer
problem is of some methodological interest for field theory, since the role of the
transformation properties of the interaction under change of scale appears much
more clearly here than in ¢%; in this sense our work is in the same spirit as that of
Gallavotti et al. [14] on the hierachical field model.
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We have separated the proof into two parts; an abstract limit theorem for
certain arrays of random variables (Sect.2) and the specific calculations for the
intended application (Sect. 3). The reader will probably wish to read first 3.2 in
order to be convinced that the rather elaborate situation postulated in the abstract
theorem does arise quite naturally. In its essentials the proof follows the standard
pattern for the existence of a Gibbs measure in the thermodynamic limit. By means
of Ciesielski’s representation of Brownian motion, the Wiener measure u is
identified with a product measure on a space RR® (3.2.5). The problem of
constructing the polymer measure can then be viewed as the problem of
constructing the Gibbs measure for a continuous spin system in which the sites are
indexed by the positive integers, and the variables {y(v), n(v)=n} specify the state
of the spin at side n. Since 1-dimensional systems do not admit phase transitions
unless the forces are of long range, this suggests that the limitation to small values
of g is simply a limitation of the method of proof. This may well be the case but the
argument is not decisive because the spin system under consideration is not one to
which the standard theorems apply.

2. A Limit Theorem
2.1. Statement of the Theorem

We suppose given a probability measure space (2, M, i) together with

(a) a random variable X,
(b) a g-algebra GC M,
(c) a decomposition of (2, M, u) as a product

(Q, M, p)=(2¢, M, o) x (24, My, 1),

together with isomorphisms j,, j; of (24, M, o), (2, M, u,) onto (2, M, p).
We will impose a number of conditions on the above data. The formulation of
these conditions demands the introduction of further notation.

Let T= | T(n), with T(0)={0}, and, for n>0,
nz0
Tn)={n,i)=n,i,,...,i,), with i,...,i, =0 or 1}.
If ve T(n), we say v has level n. For ve T, define a map (v) of T'into T if v=0, 1(0)
is the identity map; if v=(n,i) with n>0,
y()(0)=v
wO)Y,j, . o) =00, L0000, m>0.

Write T(v)=1(v) (7).

Denote by p,, p, the projections of 2 onto £, €, given by the product
decomposition, and by {,,{; the maps j,°p,, j°p;. For veT define maps
{(v):Q—-Q; if v=0, {(0) is the identity map; if v=(n,i,...,i,), with n>0,

C(U)=Cin°C,-n_1°-~-°C,~1 .



Long Polymer Chains 135

We denote by {(v)* the map induced by {(v) on the algebra of random variables on
(Q, M, p), and define, for ve T, random variables

X)=2""2{*X),
n being the level of v, and g-algebras

G(v)={)(G).

If S is any subset of T, we write

GS)= GW);

veS

we write also G(n)=G(T(n)), for n=0.
We can now state our first conditions:
C1. G(0)CG(1).
C2. There exists a g-algebra F independent of G(= G(0)) such that

G(1)=GVF.
Note that C{ implies G(n)C G(n+ 1) for all n=0. Write
G(0)= \>/0 G(n).

Define also g-algebras F(v), ve T,

F)={@)(F),
and write F(S)=\/ F(v), for SCT,
veS

F(n)=F(T(n),
F-(m= \/ F(m),

0sm<n

F*(m="\/ F(m),

mzn

and note that the o-algebras {G; F(v), ve T} are independent and generate G(o0),
and that, for n=0,

Gn)=GV F~(n),
G(c0)=GV F*(0).
We can now state our remaining conditions:
C3. X=0.
C4. For some constants C, >0, f, >0, and all p21,
IX1l,<C,p. (1)
C5. For some constants C, >0, f,>0, 7,<1, and all
p=1, n=0,
IX —E[X1G(m)]|,= C,p"7 2)
[so that, in particular, X e G(c0)].
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C6. For some constants C;>0, f;>0, 1;<1, and all

pz1, n20,
I1X (n)— ELX ()| F*(0)]]| , < C5p™ 5. A3)
Here X(n)= ). X(v).
veT(n)

For any n=0 set

S(n)= i,X"")’

and note S(n)=0, so that, for any g =0,
exp[—gS(m]e L,

and we may define a probability measure v,(g) absolutely continuous with respect
to u by

dv 1
L= exp[ —gS(n)], 4
i~ 7 pL—9S(n)] 4)
with Z,(g)=E[exp(—¢gS(n))] the appropriate normalisation constant. Write f,
d
:E[ Vn G(m)|, for n,m=0.
du

Our main result is:

Theorem 1. With the above notations and hypotheses, there exists a constant §>0
(dependent on the constants in C4, C5, C6) such that for all m=0, and g<g

lim f,. =/, )

exists in L'. {f,,m=0} is a martingale relative to the increasing sequence of o-
algebras G(m), and f, =0, E[f,1=1 for all m=0.

2.2. Motivation of the Proof

We begin with some preliminary reductions. We will actually prove a stronger
statement than (2.1.5). Namely, we will prove that for any p, 1 <p < oo, there exists
a constant g(p) such that for all m=0, and g =g(p)

lim £, =1, (1)

n—oo

exists in I”. Let g be conjugate to p; (1) is equivalent to an estimate

for all Re I4(Q. G(m), ), with K(m, n, k)—0 as n, k— oo for fixed m. The left side of (2)
may be written

|E[R exp(—gS(n))] Z,(9)~" — E[R exp(—gS(k)] Z(9) ™ !|. A3)
If S(n) were a Gaussian random variable, we should have Z,(g)=C,(g), with

C,(9)=exp{—gE[S(m)]+1/2g* Var[S(n)1}. (4)



Long Polymer Chains 137

We will prove that S(n) is approximately Gaussian in the sense that
lim #,(9)C,(g)"" ()
exists, and is non-zero for sufficiently small g. It will then suffice to prove

|E[R exp(—gS(m)]C,(g)~ ' — E[Rexp(—gS(k))] C(g) |
< K(m,nk)|R[,, (6)
in place of (2).
To motivate the proof of Theorem 1 consider the special case in which Xe F
(despite the fact that the conclusion of the theorem in this case is trivial). The

random variables X(v), ve T, are then independent, with X(v) identical in law with

27"2X [for ve T(n)]. If X is not constant both
(it

E[S(n)]= 2n/2(1 ) T)(l _2- 1/2)/— R[]
and
Var[S(n)]=(n+1) Var[X],

are divergent as n— 0o. Thus the existence of the limit (5) requires cancellation,
neither of the factors Z,(g), C,(g) having a non-zero limit as n— co. To show this
cancellation, write, for g =0,

F(g)=E[exp(—gX)].
Then

n

Z(9= T1 [Fg27"*71*".

m=0
For some >0 we may estimate, for g<e¢
logF(g)= —g E[X]+1/2¢* Var[X]+R(g),
with [R|< Cg?. Choose k sufficiently large that g2~ %2 <e. Then

log(Z,(9)C, 1(9))=1og(Z,(9) C; *(9) + % 12’"R(g2"'"’2),

m=k+
and [2"R(g2~™?)| < Cg®27 ™2, so the limit (5) exists.

The proof of (5) in the general case will folow the proof just given for
independent X (v) in that a partial Taylor expansion of Z,(g), C,(g) about g=0 will
be used to show the cancellation leading to the existence of the limit.

Conditions C5, C6 limit the dependence of the X(v) in the general case. For
each n=0 define a sequence of g-algebras {F(n,m), m=0} by

Fin,m)=Gn+mnF (n—m) if m<n

F(n,m)=G(n+m) if m>n,
so that F(n,0) is the trivial o-algebra, and F(n,m)} G(c0) as m— co. Write X(n, m)
=E[X(n)|F(n,m)] — E[X(n)|F(n,m—1)], for m>1. We will write

X(n)=E[X(]+ 3. X(n,m): )

m=1
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estimates for the rate of convergence will be obtained in 2.5. We will refer to the
martingale differences X(n, m) as localised terms. We use (7) to write S(n) as a sum
of localised terms.

A difficulty arises in combining the splitting of S(n) into localised terms with
the Taylor expansion method: the difference X (n, m) need not be bounded below,
so exp{—gX(n,m)} need not be in I for g=0. This difficulty forces us to use the
Taylor expansion method only for truncated random variables. Introduce a
sequence {b,,n=0} =B of positive real numbers, and define

X(v; By)=min{X(v),2""?b,}

for ve T of level n. Quantities constructed from the truncated random variables
X(v; B) will be denoted by the same symbols as the corresponding quantities
constructed from the X(v) with the addition of a further label B — thus S(n; B) etc.
In order to be able to deduce (5), (6) from the corresponding results for the
truncated random variables we will have to chose truncation levels b,— oo as
n— 0. This choice results in a loss of scale invariance ; for we T(v), ve T(n),

(), '[X(w; B)]=2""2X(y(v) 'w; B,), 8)

*

with B, the truncation sequence {b, ,,,, m=0}. However, consideration of the case
in which the random variables X(v), ve T, are assumed independent, with X(v)
identical in law with "X for ve T(n), for some 6 >0, suggests that if the truncation
levels b, do not rise too rapidly this loss of scale invariance will not cause difficulty
—in the special case cited the proof of the existence of the limit (5) given for the case
0=2"12 remains valid provided <2713,

2.3. Counterterms

Write
F(9)=Z,9)C,9)~". (1)

Following the usage of quantum field theory, we will refer to C,(g) in (1), and to
any terms resulting from expansion of C,(g), as counterterms. The purpose of this
section is to introduce some notations which will ensure that when S(n) is split into
a sum of localised terms and an expansion is made of Z,(g) that a parallel expansion
is made of C,(g) ™!, in such a way that the counterterms are properly matched with
the terms they are supposed to cancel.

Denote by I5(2, M, 1) C I2(2, M, 1) the Hilbert space of random variables f on
(2, M, u) with finite variance and zero mean, and by I'(-) the Gaussian process
indexed by I%(Q, M, ). We will regard this process as independent of the random
variables on (€2, M, ). If ACM is a sub og-algebra of M, we write I'(A)=c{I'(f);
feZ(2, A, 1)}. Define a complex valued process y(-) indexed by IZ(Q, M, 1)

w()=f+1 —-1I(f), 2
and note that the map y : f—>y(f) is linear, and that

ELp(f)w(f2)]=0, 3)
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for all /i, [, Ly(Q, M, ). If fe IZ(Q, M, 1) is of the form X(¢), with ¢ some label, we
write

YO=f—E[f];  2()=p(Y(¢).

Note that for any m =8 the sets of random variables

{Z(y(1,0)v; B,)wve T}, {Z(y(1,1)v;B,),ve T}
are independent, each being identical in faw with

{2712Z(v;B,,. ),veT}. 4)

Since E[exp([/jf(f))] =exp{—1/2Var[f]}, for fe I2(Q, M, ), we have the
basic identity of this section

F(g)=Elexp{—gW(n)}], 4
with W(n)=1p(S(n)— E[S(n)]).

2.4. Taylor Expansions

For any integer N = 1, we define a random variable ¢, with 0<t, <1, by specifying
the probability density of ¢y as

py)=N(1~u "1, (1)

0sugl.

If f(x)is a C* function of the real variable x, and X a random variable, we then
have, for any N 21, the Taylor expansion formula
n—1 Xj ) XN ]
ELS=E| Y S SO0+ s x)l, 2

j=0J: N! |

with ty independent of X (the existence of the expectations being assumed).

This notation, apparently the result of pursuing the probabilitists’ abhorrence
of integral signs to the point of mania, will enable us to write compactly the Taylor
expansions of the inductive expansion (2.6).

2.5. Localisation Estimates

In this section B= {b,, n>0} will denote a sequence of truncation levels satisfying
the following condition
B1. For some constants C,, 8, >0, with f,>f, (cf. C4), and all n=0,

b, =C, nf. (1)

The estimates obtained will be uniform over the set of sequences satisfying B . The
importance of this uniformity for the proof of Theorem 1 lies in the observation
that if B is a sequence satisfying B 7, then the shifted sequences B, ={b,. 120},
m=0, also satisfy B7, so that the estimates of this section will be uniform over the
set of sequences {B,,, m=0}.
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Lemma 1. For all p=1, and n=0
IX(B)— E[X(B)|G(m)]||,<2C, p*1}. 2)

Proof. The proof of (2) relies on two general remarks. First, if X is a random
variable in I¥, and F a g-algebra then

IX —ELX|F]|,=2inf | X — Y], 3)

the infimum being taken over all F-measurable Yel?. Second, if X and Y are
random variables, and b a real number then

[min(X, b) —min(Y, b)| < |X — Y]. 4)
Thus
[X(B)— E[X(B)|G(n)]||, < 2[min(X, bo) — min(E[X |G(n)], by)[, [by (3)]
=2|X - E[X |G, [by 4)]
<2C,phy (by C5). O

Lemma 2. The limits
lim (E[S(+)]— E[S(1; B)])
lim (Var[S(n)] —Var[S(n; B)])
exist.
Proof. From C4 we obtain a bound on the tail of the distribution of X
PriX2b} < inf b™HX |}
Sexp{~—C;b'}, )
for b=C,. Here Bs=B; "', Cc=C, exp(f;), Cs=p,exp(—1—p5logC,).
Now E[S(n)]—E[S(n; B)]= i E[X(m)—X(m; B)], and

m=0
E[X(m)—X(m; B)] =2""? E[X —min(X,b,)] £2™?|X | ,(Pr{X 2b,})"'*
<2"2|X]|, exp ( - %ibf:),
(for m sufficiently large that b, = Cy)

<2"2|X ||, exp(— C,m"), ©)

with C, = >0, and B,=p,p7'>1, by B1.

CiCs
2

The series whose general term is (6) converges, so the first assertion of the
lemma is established.

n

VarfSmil= 3. Hm),

m=
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with H(m)=E[Y(m)*]+2 Y E[Y(k)Y(m)], so that to establish the second
k=m+1

assertion of the lemma it suffices to bound, uniformly in n, |H(m)— H(m; B)| by the

general term of a convergent series. We will obtain the desired majorant by

estimating
|[ELY (k) Y(m)— Y(k; B)Y(m; B)]|
SIE[Y(k)(Y(m)—Y(m; B)1|+|E[Y(m; B)(Y(k)— Y(k; B))]l, ()

and bounding each term in (7) by a corresponding term of a series summable over
k, m with k=>m.
The second term in (7) is bounded, for k sufficiently large, by

1Y(m; B[, [ Y(k) = Y(k; B)|,
=[Y(0; B, [ Y(0)—Y(0; By,
= X1l IX I, Pr{X zb,})"*

C
< IX1, X exp( ~ ), ®

where we have used scaling and independence at the first step, and (1), (5) at the
last. Note

—C © _
> exp (—7 kﬂ’) = Y (k+1)exp (—C7 k”’) <00.
km:O=msk<ow 2 k=0 2

k—m-l]

To estimate the first term in (7) set s= . If k=m we may bound the

term by (8) as in the estimation of the second term. So we suppose s=0; then the
o-algebras G(m+s)=GV F (m+s) and F*(k—s) are independent. Hence
E[E[Y(k)|F*(k—s)] ELY(m)— Y(m; B)|G(m+s5)]]1=0, and
|ELY(K) (Y(m)—Y(m; B))]|

=|E[{Y(k)— E[Y(K)| F " (k—5)1} {Y(m)— Y(m; B)}]

+E[E[Y(K)|F* (k—3)]{Y(m)— Y(m; B)— E[Y(m)— Y(m; B)|G(m+s)1}]|

S|1Y(k)— ELY(k)|F*(k—s)1], | Y(m)— Y(m; B)|, ©)

+ELY(R)F*(k=9)1ll, I Y(m)— Y(m; B)— E[Y(m)— Y(m; B)|G(m +s5)] ,

[ Yom) = Yo B = X exp( ),

as in the proof of (8), and (again using independence and scaling)
1Y (k)= ELY(K)| F* (k—s)]]l, = 1X(s) — ELX(s)| F " (0)]]] ,
<C,2515, by C6.

These two bounds give a satisfactory majorant for the first term of (9). As for the
second term, its first factor is bounded

IELY(R) F* (k—=s)]ll, = [ Y(R) [, = [ Y(O)I,
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while the second factor can be estimated in either of two ways:
[ Y(m)—Y(m; B)— E[Y(m)— Y(m; B)|G(m+s)]l|,
=X —X(B,)— E[X —X(B,)|G(s)]l,
<X — ELX|G()]l, + IX(B,) — E[X(B,)| G(s)],
<3C,2f275, by C5and Lemma 1,
or
S |X-X(B,)I,

< Xl exp( 5 2m,

as in the proof of (8). By taking the geometric mean of these two bounds as our
bound for the second factor, we obtain a satisfactory majorant for the second term
of (9), and this completes the proof of the second assertion of Lemma 2. [

Lemma 2 has the immediate
Corollary. nano% C,9)C, '(g; B) exists, and is non-zero.

To proceed further we will need the following Lemma on attraction to the
Gaussian Law.

Lemma 3. (a) Let X be a random variable with E[X =0, N a positive integer, and
X5, X, independent random variables having the same distribution as X, with
normalised sum Sy=N"12[X  +...+Xy]. Suppose that for some C>0, >0, and
allpz1, |X|,= CpP. Then there exists a constant o.>0 such that, for any choice of
A>0, we have, for some K=K(C, f3, A),

ISy, =Kp'’?

for all N=1, p< AN™

(b) Let {X(N), N=1} be a sequence of random variables with zero mean. Let
X (N),....,X y(N) be independent random variables having the same distribution as
X(N). Suppose that for some C>0, >0 and all N>1, p=1

IX(V)II,=Cp?,
and that for some D>0, 6>0 and all N>1,
IX(N), <DN°.

Then there exists a constant o=0o(C, D, , ) >0, such that, for any choice of A>0,
we have, for some K=K(C,D, f,0, A),

ISyl,<KN™*
for all N>1, p< AN*

Proof. We will prove (a), (b) at the same time, suppressing the dependence of X on
N in (b) in the notation. If Z is any random variable, and Z°=Z2,-Z, (Z,, Z,
independent, and identical in law with Z) its symmetrisation, we have

IZl,=1Z0,=21Zll,.
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for any p=1 such that Ze ¥, and, for any N>1,
[SMZ) =5y§Z").
It will therefore suffice to prove the lemma for symmetric X.
2 .
Choose a>0 with a <(1+4p)~ ! in (a), and « <min {?5, [4+4B] 1} in (b). For

any M >0 denote by XM =min{|X|, M} sgn(X) the truncation of X to the range
[— M, M], and note that X™ also is symmetric. As in the proof of Lemma 2, the
bound on || X, p=1, implies, for some E=E(C, f§),

Pr{|X|zM} <exp{—EM'"},
for M= Cexp(B). Take M = C exp(f) N?*#. Then

ISyX =X, SN2 X ~X™|,

<N'2|X],, {PrX|Z M1}

Il

EMY*

SNY2C(2p)f -

<vceppep|- 2

SN2 C(2A4) exp{ — FN*},
for p< AN* [with F=E(2A4) ! (Cexp(B))*/*]. We may bound this by K, p*/? in (a),
or K;,N™* in (b), for some K, since, for any exponent u, N*exp{—FN*} is
bounded in N. Now

ISNGOI, = ISy =XM1, + ISy ™),

so it remains to estimate [|Sy(X™)] .
It suffices to obtain for |1SN(XM)||p a bound of the stated form in case p is an
even integer. In that case we have for any u>0, since X™ is symmetric,

IS5 =E[{Sy(X™)}7]
<ol B4

=u"’p!E[ i {SN%}mum},

m=0

SO

[SyXM)||, Su™ ! p(E[exp{uSy(X™)}]"»
=u"'p(E[exp{uN~2XM} )N, (10)
We will choose u=p'/? in (a), u=N>*in (b), so that u " 'p=p!/? in (a), and u~!p

< AN~ *for p< AN in (b), and then verify that, for this choice of u, and p < AN?,
the remaining factor in (10) is bounded in N

E[exp{uN =12 XM}]=1+3E[u> N~ '(XM)?exp{t,uN~*2XM}],
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by Taylor expansion (2.4.2), and symmetry of X™. The argument of the exponential
is bounded by GN?, with G a constant, and y=2uaf+%—%in (a), y =2af+2x— 3 in
(b). Our choice of « ensures y <0, so

Elexp{uN~12XM]<1+u?(2N)™ *exp(G)E[(X™)?]

N 2

u’p~'=11in(a),and in (b) u*p~* || X% is bounded by HN*, with H a constant, and
e¢=30—20 <0, by choice of «. Finally we note that for any B>0 the functionf(x)
=(1+Bx~')* is bounded on (0, c0); this completes the proof that the remaining
factor in (10) is bounded in N, and so of the lemma. []

<1+2 {“2” ~ exp(G) nxué}.

We use Lemma 3(b) to transfer (2.1.3) to the array of truncated random
variables.

Lemma 4. For some constants Cg>0, f3>0, 14<1, and all p=1, n20,
IX(n; B)—E[X(n; B)|F*(0)]]| , < Cgp™*1}. (11)
Proof.
|X(n; B)—E[X(n; B)|F*(0)]],
<X (n)— E[X(m)|F " (0)][|,, + | Y(n)— Y(n; B)|| , + | ELY(n)— Y(n; B)|F*(0)]],,
SCyp" 75 +2||Y(n)— Y(n; B, (12)

Set N=2" X\ =Y(0)—Y(0; B,), so that, with Sy(-) as in Lemma 3, Y(n)— Y(n; B)
=SyXy). We have

IXyl, = IX1,=C, p,
and
X nl, = 1X(B)I,
<|IX|l, (Pr{xXzb,}"*

c
§l|X1|4eXp(— —zlﬂ”’)

<DN~’,

for any choice of 6 >0, and some D = D(J) (recall ,>1). For N not a power of 2 set
X y=0; the sequence {X,, N =1} then satisfies the conditions of Lemma 3(b), and,
taking 4=1 in that Lemma, we conclude

[ Y(n)—Y(n; B)| ,<K27™, (13)
for some K>0, >0 and all n=0, p<2"™. For p=2" we estimate
[ Y(n)—Y(n; B)| , =2 |X],
<C,ph27m, (14)

with Bo=pB,+1+(20)"". (12)(14) combine to give the bound (11), with
Bg =max(f,, fy) and 1y =max(t5,27%). [
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Remark. Inspection of the proofs of Lemma 3(b), 4 shows that if t;>272 we
could have insisted on g =1, in (11).

The proof of our main localisation estimate (Lemma 6 below) relies on
Lemma 3(a), together with the following complement to Lemma 3(a).

Lemma 5. Let X be a random variable satisfying the conditions of Lemma 3(a).
Then for some K >0, and all N>1, p=1,

1Sy

Proof. As in the proof of Lemma 3 we may suppose X symmetric, and p even. Then

l SKpﬂ-}— 1/2
p= .

IS5 = ELSy(X)] =N~ 2(p, .".py) ELX}".. X1,
the sum being taken over N-tuples (py, ..., py) of even integers with sum N,
SNTPR2CrpPr3(p, Y py)
SNTPRCPPPPE(py...py) ELYP ... YEN],
with Y},..., Y, independent Gaussian random variables of mean 0, variance 1
=CPpP?|Sy(Y)IIE,
with Y Gaussian of mean 0, variance 1. But Sy(Y)~Y in law, so
IS\NIE=1Y|E<p”?,
and the stated bound on [|Sy(X)||, follows. [J

Lemma 6. There are constants t,,, t,, <1, such that for any choice of C,,>0, there

exists a constant C,, such that for all n20, m=0, and p<C,,t, "™

|X(n; B)—E[X(n; B)|[F(n,m)]||,<C,,p"/?<7;. (15)
Proof. Note that for all n=0, m=0

X(n; B)— E[X(n; B)|G(n+m)]~Sy{X(B,) — E[X(B,)|G(m)]} . (16)

Here N=2", S\(-)is as in Lemma 3, and ~ denotes identity in law. Similarly, for
0m<n,

X(n; B)—E[X(n; B)|F* (n—m)]~Sy{X(m; B,)— E[X(m; B))| F*(0)]}, (17)
with k=n—m, N=2%

Lemma 1 shows that 7, "{X(B,)— E[X(B,)|G(m)]} satisfies the hypotheses of
Lemma 3(a) (with C=2C,, f=p, independent of m,n), and we conclude that for

any A>0, and some o, >0, K, =K,(4)>0, we have for all n=0, m=0 and
péAznal

|1X(n; B)— E[X(n; B)|G(n+m)]| , <K, p*/*75. (18)
Furthermore Lemma 5 gives the alternative bound

|1X(n; B)— E[X(n; B)|Gn+m)]| ,< K, p"" 217, (19)
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for some K, >0, valid without restriction on p. Choose a,>0 sufficiently small
that ,,=2"f27, <1, and for p< A2™ obtain from (19)

IX(n; B)—E[X(n; B)|G(n+m)]|| ,<K5p**77,, (20)
with K; =K, A". Now set K,=max(K,K,), t,;=2"1/2minL2) 1 and note
p< At {""" implies p< A2™ or p< A2™=2, so (18), (20) combine to give

IX(n; B)—E[X(n; B)|G(n+m)]||, <K, p"?1},, (21)
for all n,m=0, p< At ™+,

Lemma 4 shows that ty"{X(m; B,)—E[X(m; B,)|F*(0)]} satisfies the hy-

pothesis of Lemma 3(a) (with C=C,, f=f§ independent of m, n), and we conclude

that for any 4>0, and some o3 >0, K5 =K(A4)>0, we have forall n=m>=0and p
< AQnmmas

|IX(n; B)— E[X(n; B)|F " (n—m)]| , < Ksp'/?5. (22)
Lemma 5 gives also the alternative bound
|1X(n; B)—E[X(n; B)|F " (n—m)]|,< Kep"* ™12 1y, (23)

for some K¢ >0, valid without restriction on p. Choose a,>0 sufficiently small
that t,,=2%F47, <1, and for p<A42™2 obtain from (23)

X (n; B)—E[X(n; B)|F*(n—m)]| ,<K,p'?17,, (24)

with K,=K 4. Now set Kg=max(K,K,), 1,5=2"13m">»2) <1 and note
p< At "™ implies p< A207™% or p< A2™, 50 (22), (24) combine to give, for all
nzm=0,and p< At ",

|1X(n; B)—E[X(n; B)|F " (n—m)]| ,<K¢p'?17,. (25)

Suppose Xel? is a random variable, and F,, F, oc-algebras such that
F,=(F,nF,)V F,, with F, independent of F,. Then

E[E[X|F,]|F,1=E[E[X|F,]JI(F,nF,)V F,]
=E[E[X|F,]|F,nF,]
=E[X|F,nF,],
and hence
X — ELX|F, I, < X = ELX| F, 1], + | ELX| F,1— E[X |F, A F, ],
=|X —E[X|F ]|, + | E[IX - E[X|F,]IF,],
S |X —ELX|F Il + X —E[X|F,1l,,
since E[ -|F,] is a contractionon I?. This remark is applicable to X =X(n; B), F,
=G(n+m), F,=F"(n—m) for 0Sm=n [take F;=G(n—m)], and allows us to

combine (21), (25) in the form (15) [with C,,=4, 7,,=max(t 3, T4s)
Ci1=K,+Kg, 1, =max(ty,,7,)]. O

Lemma 6 yields immediately the following estimate for the martingale differ-
ences X(n,m; B)

”X(n’m;B)Hpécupl/zfrfp (26)
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with C,,=C, 77, (26) is valid for n=20, m=1, p<C, ot " ™.
Since I'(X(n,m; B)) is Gaussian with variance |X(n,m; B)|3,

ITX(n,m; B)|,<p*?|X(n,m; B)|,
<p'?C,,2'"%77,. 27

(26), (27) give
“Z(n’m;B)||p§C13p1/ZTT19 (28)

with C,3=C,,(1+2"?), under the same conditions on n, m, p as in (26).

2.6. Inductive Expansion

Write G=F(—1), so that G(oo)= \/ F(n), the g-algebras F(n), n= —1, being

nz—1
independent. For f a random variable measurable with respect to the g-algebra
G(0) V I'(G(00)) we define the location of f, loc(f), a subset of the integers n= — 1,
as the smallest subset S for which fe G(S) V I'(G(S)). If loc(f) is finite, f may be said
to be localised. Note that if f, h have disjoint locations, then f, h are independent.
The martingale differences X(n, m), Z(n, m) are localised, with

loc(X (n,m))=loc(Z(n,m)) CI(n,m)=[max(n—m, —1),n+m—1].
The inductive expansion will be defined by a choice of a set J={j(n,m);

n=0,m=1} of positive integers. We will eventually make a specific choice of J,
but for the moment the choice of J will be left open subject only to the condition

J1. jn,m)=3 forall nz0,m=1.

For each (n,m) denote by #(n,m) a random variable identical in law with ¢, , (cf.
2.4); the random variables #(n, m) are to be independent of each other, and of all the
random variables considered hitherto. If D is a subset of (n,m):n=0, m=1,
s:D—-Z* will be called J-admissible if s(n, m) <j(n, m) for all (n,m)e D. For such a
map s, we define D, ={(n,m): s(n,m)<j(n,m)}, D,={(n,m): s(n,m)=j(n,m)}, and
the random variable P(s,g; B)

[—gZ(n,m; B)]*™™
s(n, m)!

(n,m)eDy
[—gZ(n,m; B
(n,m)eD2 Jj(n,m)!

For k=0 write g, =¢2~*2. The inductive expansion is an expansion procedure
defined on expressions of the form

E[R exp{—gk > Z(n,m; Bk)H, 2

(n,m)eD

exp{—gt(n,m)Z(n,m; B)} . (1)

with R a localised random variable, and DCZ* x Z* such that

max{n:(n,meD} <. A3)
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We will use the letter J also to denote the expansion operation itself; thus J{...}
indicates that the expression within parentheses is to be expanded according to the
rules we state below (so the operation J does not change the value of an
expression, but only the form in which it is expressed).

The definition of the inductive expansion is by induction on

d=2max{n: (n,m)e D} —min{max(n—m, — 1) :(n,m)e D} .
By (3) d is initially finite. Given an expression of the form (2) write
D, ={(n,m)e D : I(n,m)n(loc(R)u{—1,0})+0},
D, ={(n,m)e D :I(n,m)n(loc(R)u{—1,0})=0}.
If both D,, D, =0, so D=, the expansion terminates
J{E[R]}=E[R]. 4)

If D, =0 the next expansion step is a factorisation

J{E [R exp{—gk Y Z(n,m; Bk)H}

(n,m)eD

=E[R] [J{E[exp{—gkﬂ Z Z(n,m: By, 1)}

(n,m)eD’

I
with D'={(n,m):(n+ 1,m)e D}.
If D, +0 the next expansion step is a Taylor expansion

J{E[Rexp{—gk > Z(n,m;Bk)H}

(n,m)eD

= ZJ{E[RP(S, gis By exp{—gk Y. Zn,m; Bk)}]}, (6)
s (n,m)eD’
with D'=D,. The sum in (6) is over all J-admissible maps s defined on D,.
Note that in both (5), (6), d(D')=d(D)—1, so that the expansion process
terminates in a finite number of steps.
In 2.7 we obtain a majorant for the series given by the inductive expansion ; the
interchange of the integration operation E with )’ in the Taylor expansion step

will then be seen to be justified by dominated convergence.
We define the weight of term P(s, g ; B) appearing in the inductive expansion by

W= s(n,m).
n,m
Condition J 1, and the construction of the random variables Z(n, m; B), ensure that
E[P]=0if w=1 or 2; terms in the expansion having E[ P] as a factor therefore
cancel. This cancellation is the raison d’étre of the expansion.

2.7. Majorisation

In the majorisation argument of this section we are concerned with sums ) a, of
terms which are not known at the outset to converge. If ) a,, Y b, are two such
sums, we write ) a,C) b, if each term of the sum on the left appears precisely once
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among the terms in the sum on the right. If > a, is a sum, and Ce[0, + 0] a
positive extended real number, we write » a,<C if Y |a,|<C. Note that if
Ya,cyb, and Y b<C then Y a,<C. If A", n=1, is a sequence of sums with
A"C A" for all n, we write A= lim A" for the sum whose set of terms is the union

of the sets of terms of the A"; the notation is justified by the observation that if
A= lim A", and A< C with C < + o0, then the series A", n=1, A are all absolutely

n— o0

convergent and the limit can be construed as a numerical rather than a formal
limit.

As in the outline of 2.2 we choose arbitrarily a Holder index p, 1 <p < oo, and
denote by ¢ the conjugate index. R will denote a localised random variable, with
Rel?; r=max{n:neloc(R)u{0}}. We write, for n=0,

E[Rexp(—gS(n; B))]C,(g; B)
=E[Rexp(—gW(n; B))]

=E[Rexp(—g i 020: Z(k,m;B))

k=0m=1

: (1)

The right side of (1) is in the domain of the inductive expansion; denote it by
F.(g9,R; B). In this section, B, the truncation sequence, is fixed: b,=C,(n+ 1)+,
with C,, f, as in B1. Note that for any 6> 1 we then have, for all n=0, k=0,

by 0 F S K(n+ 174, @)

Ba
with K=K(0)= sup <1+—~k—) 0 k<.

kz0,n20 n+1
We fix also the termination sequence J for the inductive expansion
jn,m)=Lg"*™. 3)

Here L>0 may be chosen arbitrarily, and ¢ > 1 will be specified later.
The main result of this section is

Lemma 7. There exists a constant g >0, and positive functions &(g), ¥(g) defined on
[0, g), with &(g)—1 as g—0, such that

J{F,(9,R; B)}<|R]| ,P(9) ¥(9),
for 0=g<g, and all n=0.
Proof of Lemma 7. Define the connected sum

Co(g,R; B)= Y E[RP(s,g; B)]; )
the sum in (4) is osn J-admissible maps s such that the set

loc(R)U{— 1,0}u< U I(n, m))

(n,m):s(n,m)*0
is connected (i.c. is a set of consecutive integers). If R=1 we write simply Co(g; B);

Colg; B)=1+ Y E[P(s,g; B)].
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The sum over s being over maps of weight w=3, satisfying the connectedness
condition.

The following relations are immediate from the definition of the inductive
expansion :

For any nz0, J{F(g,R;B)}CJ{F,.(9,R;B)}, so lim J{F,(g,R;B)}

=J{F(g,R; B)} (by definition) exists as a formal sum. If R=1 we write
J{F(g; B)}=J{F(g,1; B)}.

J{F(g,R; B)}CCol(g,R; B)(J{F(g,; B)})?, (6)

and so by iteration
J{F(g,R; B)} CCo(g, R; B) [] [Colg,; BYI*"; (7)
k=1

in (7) the infinite product of the right is to be understood as the formal sum of
products of finite total weight formed by multiplying the indicated factors.

We will use Holder’s inequality to estimate the terms in Co(g,R; B). Let
P(s,g; B) be a term of weight w. We factor

P(s,g;B)= ] (PoPy) [T Pr, ®8)
mz1 nz0
with
; [—gZ(n,m; B)]>™™
i 9
P ) I s(n,m)! ’ ©)
n: [m] =i(mod2)
Pi= I1 exp{—gt(n,m)Z(n,m; B)}, (10)
m: s(n,m)= j(n,m)
and set p(n)=6(n+1)% so 3 Y p(n)~* <1. Holder’s inequality then gives
n=0
[RP|, =R, P,
IRl TT (P pom I Pl ppiy) Ho IPZI i - (11)
mz1 nz

We tackle first the final product in (11), and show that, for any ¢>0, and all
g =1, there exists a constant A= A(e) such that

[T 1P = A1 +2)". (12)
n=z0

Write M(n)={m :s(n,m)=j(n,m)}, c(n)=number of elements in M(n), w(n)
=Y s(n,m). Note that w= Y w(n), and w(n)=j(n, c(n)).

”Pr%“pp(n)é l—[ “exp{_gt(na m)Z(nama B)}”pp(n)c(n)' (13)

meM(n)

Now if Z is a bounded random variable with E[Z]=0, h(u)=E[exp(uZ)] is

. Z Z
increasing for u=0; h'(u)=E[Z(exp(uZ)—1)]=E[Zsinh (u 5) exp (— %—)} >0.
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Hence

llexp{ —gt(n,m) Z(n,m; B)}|5700c0)
= E[exp{—gpp(n)c(n)t(n,m)X(n,m; B)}]
= E[E[exp{—gpp(n)c(n)tn,m)X(n,m; B)}|tn,m)]]
< E[exp{—gpp(n)c(m)X(n,m; B)}] (14)

[recall 0<t(n,m)<1]. Replacing X(n,m; B) by its expression as a martingale
(2.2.7), and using successively the Cauchy-Schwarz and Jensen inequalities, we
bound (14) by

(E[exp{—2gpp(n)c(n) E[Y(n; B)| F(n,m)]})'"?
-(E[exp{2gpp(n)c(n) ELY(n; B)|F(n,m—1)]}])"/?
<(E[exp{—2gppn)c(n)Y(n; B)}])"/*
-(E[exp{2gpp(n)c(n) Y(n; B)}])"/>. (15)
(13)~(15) combine to give
P2 oy < (ELexp{ —2g pp(n)c(n) Y (n; B)}])rre) ™"

“(E[exp{2gpp(n)c(n) Y(n; B)}])*7 " (16)
We focus on the estimation of the second factor in (16), since it is here that the
introduction of the truncation proves to be essential.

Elexp{2gpp(n)c(n)Y(n; B)}]
=(E[exp{2gpp(n)c(n)2~"*Y(0; B,)}1)*"
=(1+2¢?p?p(n)*c(n)*2""E[Y(0; B,)* exp{2gpp(n)c(n)2~ "1, Y(0; B,)}1)*"

<exp{29°p®p(n)* c(n)? E[X *J exp[2g pp(n)c(n)2™"?b,]} . 17
If p(n)c(n)b,<2"?, (17) is bounded, for g<1, by
exp{A, p(n)*c(n)’}, (18)

for some constant 4. If p(n)c(n)b,=2"2, we have, for g<1, the bound

E[exp{2gpp(n)c(n) Y(n; B)}1<exp{2pp(n)c(n)2"*b,}

<exp{4,p(n)*c(n)*by;}, (19)
for some constant A4,, so that in any case, for some 4,
E[exp{2gpp(n)c(n) Y(n; B)}] < exp{A;p(n)*c(n)’by}. (20)
For all but a finite number of pairs (n,c)
A;p(n)* b <(log(1 +¢))Lo"*. (21)

Denote by N, the number of exceptional pairs, and by 4, the maximum of the left

side of (21) taken over the exceptional pairs. Then we have, with 4, =exp{N,4,},
[1 Elexp{2gpp(n)c(n) Y(n; B)}1< A5(1+e)" (22)
n=0

recall w= Yo and win) 2 )= Lo" )
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A similar estimation of the first factor in (16) gives
[ Elexp{—2gpp(n)c(n) Y(n; B)Y]1= A1 +¢)”, (23)
n=z0
the constant A, unlike A, being independent of the choice of truncation se-
quence B.
(16), (22), (23) combine to give (12).

We come now to the estimation of the factors || P. | in (11). Write

pp(m)

PL=T1] P, (i=0,1), (24)

r=0

with Pl the product of those factors in P, for which

i} =2r+i. Note that if n,n/
2m

n

are such that =2, then the localization intervals I(n,m), I(n',m) are

2m
disjoint ; consequently the factors Pi, , of P, are mutually independent, and we
have the factorisation

”P:n”pp(m)= ],_[ ”P;n,r”pp(m) (l=03 1)3 (25)
r=0

(25) 1s an essential improvement over Holder’s inequality. Finally we use Holder’s
inequality once again to give

gs(n,m)
|Z(n,m; B)| 57y (26)

2mpp(m)s(n,m) *

“P:n,erp(m)é H

n .
n: [m =2r+i

Fix the choice of ¢ in (3) so 1 <g<71,, with 7,, the constant appearing in Lemma
2.5.6.

s(n, m)!

Then
2mpp(m)s(n, m) < 2mp p(m)j(n, m)
<2mpp(m)Lo""™
<Drt"™™, (27)

for some constant D. We choose C,,=D in Lemma 6 so that the Holder indices
which appear in (26) lie in the domain of validity of 2.5.28.
Write [= Y ms(n,m), Wim)= Y s(n,m), C,,=C,;(1+¢)(2p)"/>. Then the bound

m n

given by (11), (12), (25), (26), 2.5.28 is

(n m)] 1/2s(n,m)
bl

IRPIL S AIR %, [ gl 25 [ (€ g bl (28)

Choose #>0so 1,,=(1+n)t,; <1. For m=m(#)
1/21log(mp(m))<mlog(l+7n).

Write C, 5=[m,p(m,)]*'?, C,c=C,,Cys, so that
[TImpm)]* 2™ < CY5(1+1),
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and we obtain the final form of our bound for the individual terms of the
connected sum

)S(n’m) [s(n, m)] 1(2s(n,m)

s(n,m)! 29

IRP||, = AlR[, 76 [](C

We will show that, for sufficiently small g, the sum over s of the right side of
(29) is finite. We will make no further use of the condition that s be J-admissible,
and, regarding the remaining condition on the maps s in (4) (the connectedness
condition), we will use only the fact that it implies

s(n,m)=0 for n>r+2l. (30)
Write 7,, =112 <1. We will first fix / and estimate

o Lm0
6

ms(n,m)
S(l’l, m)' T17 4 (31)

K=} [l

the sum being taken over all maps s:[0,r+2[] x Z* —-Z", and then show
Y AR, T, K <o, (32)
4

for sufficiently small g.

Let Y(n), n=0, be independent Gaussian random variables of mean 0, variance
1. For some ¢>0, and all p=1,

1Y) ,Zcp"?, (33)

SO
K(l)é Z 1—[ (CIGQC— l)s(n,m) E[(

[ [C16gc 1|Y(n)|717]s(n m)}
s(n,m)!

[Y(n) 77, ™]
s(n,m)!

H/\

E [exp {r;n Ciegc™ Y(n)|f'1"7H

¥+ 21
=E exp{ Z Ci9c” 717(1_117)—1[}’(”)'”

n=0

=[H(Cy,9)) """, (34)

with H(x)= E[exp{x|Y[}], Y Gaussian O, 1, C,,=C,cc¢” '1,,(1—1,,)" ' Since
H(x)—1as x—0,1,,[H(C,,9)]*<1 for g in some interval [0,7),0<g =<1, and for g
in this interval

Co(g, R; B)<|R|,[H(C,,9)) "' A(1 =7, ,[H(C,9)]}) . (35)
For R=1, (29) gives
Colg; B)<1+A(g), (36)
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with A(g)= Y. A, g" a power series with positive coefficients, convergent for g <

w23
[by (35), with R=1]. We claim that we can arrange to have
Colgy; B)<1+A(gy), (37

for any k=0. Indeed the estimates used to derive (36) were uniform in B over the
set B,, k=0, as remarked in 2.5, with the sole exception being the estimation of the
second factor in (16). At that point in the argument we have now to replace b,g by
b, 19, =b,.:27"%)g; here (2), with =22, gives the necessary bound uniform in
k, and (37) follows.

At this point we must interpolate the simple

Lemma 8. If f(z)= Z f,z" is a power series with coefficients f,20, f,=1,

f1=1,=0, convergent for |z <R, then the series

se)= [ ez an

also converges for |z]<R.

The proof of Lemma 7 is completed by combining (7), (35), (37) and
Lemma 8. []

Proof of Lemma 8. For some r, 0 <r =R, log[ f(z)] is holomorphic in |z| <7, and in
that circle satisfies, for some C >0, the bound

llog[f(2)]1 = Clz°.

The series Y. 2*log[ f(z27%?)] is therefore for |z| <r majorised by
k=0

Y C27MzP <0,

k=0
and it follows that J(z) is holomorphic in |z]<r. In this circle J(z) satisfies the
functional equation

J@)=f(2) [J(z27 )] (38)

But the right side of (38) is holomorphic in |z| <min{R, 227}, so (38) can be used
to extend J holomorphically to this possibly larger circle. For sufficiently large N,
R=min{R,2"'?r}, so by iteration of the extension argument we conclude J is
holomorphic in |z|<R. []

2.8. Existence of the Limit

In this section B and J are fixed asin 2.7; p is a fixed Holder index, 1 <p < oo, with
conjugate index ¢, and Re I4Q, G(m), u) as in 2.2. We are to prove 2.2.5, 2.2.6. In
view of the corollary to Lemma 2, it suffices to prove the statements 2.2.5, 2.2.6'
obtained by replacing C,(g) by C,(g; B) in 2.2.5, 2.2.6.
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Let ¢, be an independent random variable with uniform distribution on [0, 1],
as in 2.4, and define for k=0, s>m

L= z [XG)—X(: BI] +,[X(K)—X(k; B)], (1
H,(k)=exp{—gL(k)}, )
H,(0=X()—X(k: B). )

HK) = H, () H,(K), @

H(k,m) = ELH(R) GO, )

(k)= ELH()| G(s)] ~ ELH(0] Gls — 1)]. ©
Note that L(k)=0, so H,(k)<1, and that

H(k)= S;m H(k,s). (7)

We have the identity

E[Rexp{—gS(n)}]1C,g;B)""
=E[Rexp{—gS(n); B)}]C,(g9;B)"!

~g 3. ETRH(9exp{~g5(n: BIIIC ;B

—F,¢.R:B)—g 3 F,(g, RH(K); B)

k=0

=F(9,.R;B)—g Y, ) F,9,RH(k,s); B)
k=0 s=m

_J{F(0.R:B)}—g 3 S J{F,(g.RH(ks): B)}. ®)

k=0 s=m
We choose [, 1<l<gq, and define r by [T =g ' +r ! s0
IRH(k,s)[l,= | R, | H(k,s)||, ©)

We may then use Lemma 7, with the index g of the statement of that lemma
replaced by [, to obtain, for sufficiently small g, the following majorant for (8)

PQIRI {06y +g 3, T 0067 H( L, . (10)
We will prove that (10) is finite, for sufficiently small g , and this establishes 2.2.6’
[with K(m,n,k) the sum of the appropriate subset of terms of the majorant]. If
R =1 we may write the majorant in the form 1+ gA(g), with A(g) bounded as g—0,
and hence obtain 2.2.5".

By applying Lemma 3(b) as in the derivation of 2.5.13, but taking this time not
A=1 but A=2r, we obtain

IY(k)—Y(k; B)ll,, <K, ", (11)
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for some constants K, g, ¢ <1. 2.5.6 gives, for some K,,
E[X(k)—X(k; BJ<K, 0", (12)
SO
I1X(k)—X(k; B)ll ,, <K;0", (13)
with K; =K, +K,. Lemma 6, with C,,=2r, gives, for s>k

1X (k) — ELX (k)| G(s — D]l o, S Ky 7%, (14)
IX(k; B)— E[X(k; B)|G(s — )], <K, 77" (15)

for some K, and t<1 [since G(s—1)D F(k,s—k—1)].

For s<max(k, m) we estimate
1H(k,)ll, = | H k), < [ H (k)] < K 50", (16)
For s>max(k,m)

[H(k,s)|l, = [[H(k)— ELH(k)| G(s — 1)]],
S2|H,(k)H (k) — E[H (k)| G(s — 1)] E[H ,(k)| G(s — D)]||,
(cf. the first remark in the proof of Lemma 1)
=2|H (k) [H (k) — E[H (k)| G(s — D11,
+2[/(H (k)= E[H (k)| G(s — 1)]) ELH ,(k)| G(s — 1)]],
<2|H, (k)% |H (k) — ELH (k)| G(s — D]II"
+2[H (k)= E[H (k)| G(s — D)1l , [ H ()], - (17)
Now
I1H (k) — E[H (k)| G(s — 1)l 5,
= 2|exp{—gL(k)} —exp{ —g E[L(k)| G(s — )T},
S 2g|| L(k)— E[L(K)| G(s = 1)]]| 5,
(since e —e Y| Z|x—yl, for x,y=0)
<4gK, (k+ 1)k, (18)

by (1), (14), (15).
(13)(15), (17), (18) give the following bound for the sum in (10)

> {@(gr e+ 1)K 0t
k=0

+P(g)T4K; 2 K2 0" + 89 K3 K (k+1)0*1 ). (2 d(g)° ™"}

s>k

which is finite, provided g is sufficiently small that &(g)<min(g~ /2,7~ 1/).

The proof of Theorem 1 is complete.
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3. Construction of the Measure for the Polymer Problem
33.1. Mixtures of Tied-Down Gaussian Processes

Let (X, X) be a measure space, C: X xX—IR a measurable covariance on X, X,
={¢:C(& &) =0}. Denote by $ the reproducing kernel Hilbert space defined by C;
$ is the Hausdorff completion of the pre-Hilbert space whose elements are
functions on X of the form

N

f)= Z ¢, C(¢&, 0),

i=1
with c,eRR, £,eX, 1<i< N, and whose inner product is the polarisation of
N
L= Z Cicjc(éis ‘fj)
ij=1

[15]. For £eX, denote by e(£)e $ the vector corresponding to the element C(¢, -)
of the pre Hilbert space. The map

e:{—e(l)

of (X, X) into (9, B) is measurable; here B is the Borel o-algebra of the weak
topology of . The map

iif=Le) )
is an injection of § into the vector space of measurable functions on X, zero on X .
We will suppose $ separable. Let {e,,n =1} be an orthonormal basis for &, and

{y,, n=1} independent Gaussian random variables of mean 0, variance 1, realised
on a probability measure space (2, M, u). For ec $ define

ple)=3<e,e) ),
[convergence in I*(2, M, 11)]; then
@ 9> M, p)

is measurable [relative to the Borel g-algebras of the weak topologies of 9,
I#(Q, M, p)]. Hence also the composed map x=q@oe

x:X—-I2(Q,M, )

is measurable.
Now let A be a positive o-finite measure on (X, X). If ge IZ(X x Q, A x u), we may
choose a measurable function g(¢, w) representing g such that

g:é—-g( )
is a measurable map of X into I*(Q, M, u), and

lgl3=J 19O dAE).
Then

Lig)= | {x(2),9(&) c(&)dA&) (1)
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defines a continuous linear functional L( -) on I*(X x Q, 4 x p), for any measurable
function ¢( -) such that

JCE &€ diE) <.

Since 4 is g-finite we may choose such a ¢(-) with ¢(£)=+0 for all £. By the Riesz
representation theorem there exists a measurable function k(¢, w) such that

L(g) = | k(& w)g(&, )dA&)du(w) . 2
We may suppose also that

fe:é—g(, )
is measurable map of X into I*(Q2, M, ), and

1kl13 = [ I1k&)IZdA@).

Then (2) can also be written in the form

L(g)= [ <k(&), §(&)ydn), 3)
and comparison of (3) with (1) gives
§ <e(&)x(&)—k(&), 3(&)y dAE) =0, )

for all ge IZ(X x Q, Ax p). If feI*(Q,u) we may consider in (4) g of the form
h(é) f(w), and infer

(AEX(E)—k(&),fy=0ae.(2). 5)

Since § is separable, I2(£, u) is separable. Therefore by letting f in (5) run through
an orthonormal basis for I2(, i), we obtain

X(&)=c(&) k(&) ae.(d). (6)
Define
x(&, w)=c(&) ™ k(& ). (7

Then x(&, -) is a stochastic process realised on (€2, M, u), is measurable in £, and for
E¢N, the null set implicit in (6), x(&, -) is Gaussian with mean zero and covariance
the restriction of C to (X —N)x (X — N).

For v an integer =1, denote by x"(-) the Gaussian process indexed by X with
values in R given by

() =00+ x50 )%, ())

with x(-), 1<j<v, independent copies of x(-), the Gaussian process with
covariance C. Denote by 6" the Dirac distribution on R”, and let A be a positive o-
finite measure on X. The purpose of this section is to show, under suitable
conditions on 4, that the formal expression

J(2)=(2m)""2 [ 6*(x*(£))dA(E) )

has a natural interpretation as a positive random variable.
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Let {0,(x), ¢>0} be an approximation to §*(x) i.e. a set of functions on R” such
that

(1) ¢,(x) is positive, bounded and continuous, for each &> 0,

(ii) |8,(x)dx=1, for each ¢>0
(with dx Lebesgue measure on R),

(iii) lim [ f(x)8,(x)dx=1(0),
for every bounded and continuous function f on IR".

Let x(&, ) be the function given by (7). Then

xv(ga wp ey wv) = (x(éa wl)’ AR x(é; wv)) B

is a realisation on (Q, M, u)* of the restriction of x(-) to X — N, and

J(2)=(2n)"* [ 6 (x(£))dA() ©)

is well-defined (though possibly equal to + co). Suppose now that A satisfies the
condition

dA(E,)dME,) .
y[C(él’él)c(éz’éz)‘“c(fl,62)2]"/2 <0, (10)

so that a fortiori
dM¢&) "

Jece o =
(11) implies J ()e L', so J (1) is almost surely finite. (10) implies that gl—i»%n+ J.(A)
exists in I?;for

E[(J,,(A)—=J,(A)*]

=(2n)" E[{] [3,,(x(£) —d,,(x(£)1dAE)}]
=(2n)" [ dA(E,)dAE,) EL(S,,(x(£,)) = 6,,(x(£)) (6,,(x(£2)) = 6,,,(x(E))]

dA(&,)dM¢,)
= -4 o
.[ [C(éla él)c(éza 62)_ C(él, éz)zjv/z Rvimv (551()61) az(xl)( 51(x2)

—0,,(x,)) exp[ —3Q]dx, dx,
[With Q=0(x,x,;,,&,) a positive quadratic form]—0 as ¢,, ¢,—0+. Thus if
(10) holds we may define J(1)= sLiIgl+ J.(A).
For any {,eX,

G, E)CELE)
O (SN Y

is a measurable covariance on X [if £,€X ,, the definition is to be read as C (€1, &5)

=C(¢,, &,)]. We will refer to the corresponding Gaussian process indexed by X as

the process obtained by tying down at &, the process with covariance C; it may be

realised in terms of the process with covariance C

C(és fo)x(éo)' 12
C(o.&0) (12

Cio(fb 62): C(él, éz)

X(¢; Eo)=x(8)—
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with the second term construed as 0 in case £,eX . If 1 is a probability measure on
(X, X), we construct x(&, w) as above, and define a process x(£; A) on (X x Q, A x u)

C(¢, o) x(Soy @)
C(éoa éo)
(the second term being zero if £,€X ). x( - ; A) can be considered a mixture of the

processes x(-; &y). Similarly we define on (X x 2%, 1 x u*) the vector valued process
x(+3 4)

x(&3 1) (&g, 0)=x(E, ) — (13)

_ C(éa 50) xv(éO) wv) .

X&) (Egy 0")=x(S, @) 14
0 e o) (4
Denote by J the measure on X given by
dA(&)=C(& &)12dNE). (15)
Then for any integer N =1, and bounded function F on R*Y, we have, assuming y)

satisfies (10), for any &,,...,¢yeX
E[F(x*(&,; 2, X*(Ey s M =ELJDF(X*(E)), ... x(ER))] (16)

(by a short calculation). Thus (10) (with A replaced by 1) implies absolute
continuity of the measure ¢(4) induced by x(&; 1) on the space F(M, R”) of function
f:M->R with respect to the measure ¢ induced on F(M,RR") by x(¢);

- d
J(0)= fo).

It is natural to take (17) as the definition of J(1) whenever o(1) < o ; however, we do
not know explicit necessary and sufficient conditions on A for this to be the case.
We give two examples of these general considerations

(17)

Example {. Take X =[0, ), ¥=Borel g-algebra of X, C(o,7)=min(o,1) for
0,7€eX. Then the Gaussian process x(-) with covariance C is the standard
Brownian motion on IR! starting at 0, and x*(-) is the standard Brownian motion
on IR’ starting at 0. Let A(t) for ¢ 20 be given by dA(t)=1, ,dt. Then for v=1 (10)
holds, so T(t)=J(A(t)) is defined; (up to a normalisation factor) T(t) is P. Lévy’s
local time at 0 [16]. For v>1 (10) fails; indeed x”(c)%0a.s. for ¢ in any interval
[e, 0), £>0, so that we will not have o(1) < o for any probability measure A other
than the unit mass at 0.

Example 2. Take X =[0, 00) x [0, c0), X¥=Borel o-algebra of X, C(o,,0,;7,,7,)
=min(o,, 7,)+min(o,,7,). The Gaussian process x( -) with covariance C may be
realised as x(o,0,)=x,(6,)—x,(c,), with x,(-), x,(-) independent standard
Brownian motions as in Exercise 1. For t,,t,=0 define A(t,,t,) by dAi(t,,t,)
=110,1,x10,154L1 dt,. For v=3 (10) holds, so T (t,,t,)=J(Mt},1,)) is defined, and
gives a measure of the time spent at points of intersection {0, 7, : x,(5,)=x,(c,),
o, st,, 0,=t,}. For v>3(10) fails; in fact Brownian motion in R* has no double
points ([17]; note that by writing x(¢)=x,(|a]) (¢ <0), x(¢)=x,(0) (¢ 20), we may
regard the intersection points of x,(-), x,(-) as double points of the Brownian
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motion x(-)). For v=1 the construction of T,(¢,,t,) can be subsumed to that of
Lévy
Ty(ty, t,)=2m) " V2 | T'(t,,x) T2(t,, x)dx, (18)
R

with TY(t,x) (j=1, 2) the local time at x for x()
T(t, x)=2m)"? [ 6 (x(0) — x)do . (19)
0

For v=2 Brownian paths have points of multiplicity m for any integer m=2 [18]
(and indeed of multiplicity m equal to the power of the continuum [19]!), so that
one may expect to be able to define random variables T(¢,,¢,, ...,t,), generalising
the above construction for m=2; this has been done by Wolpert [20], who
discusses also a relation to P(¢), Euclidean field theories [21]. For v=3 Brownian
paths have no points of multiplicity m>2 [22]. (See also [23,24] for further
information on multiple points of Brownian motion, and related questions.)

3.2. Application of the Limit Theorem

In this section we show how the limit theorem of Sect. 2 may be used to construct
the probability measure for the polymer problem.

We indicate elements of IR3, and functions taking their values in IR® by boldface
letters ; thus z=(z,, z,, z3), h(*)=(h,(*), h,(*), h5(+)). Denote by (2, M) the space of
continuous maps o : [0, 1]—IR?, @(0)=0, with the Borel g-algebra of the topology
of uniform convergence, and by x(s)(-), 0=s=1, the evaluation maps X(s)(®)
=o(s). Then there exists a probability measure u on (£, M) such that x(s)(-) is
standard Brownian motion on IR3 starting at 0 [16]. In the notation of 3.1, x(s) is a
realisation of the vector valued Gaussian process defined by the covariance C(s, t)
=min(s,t) on [0,1], and v=3. The corresponding reproducing kernel Hilbert
space $ is given by

$=1{f:f is absolutely continuous, f(0)=0, f'eI?[0,1]}

and | f|lg=|f"l, Denote by ¢ the continuous linear map $H—I*(Q,M;R>)
characterized by @(e(s))=x(s) [with e(s) as in 3.17.

Denote by (2,,M,) [resp. (,,M,)] the space of continuous maps
0:[0,1/2]-R3, @0)=0 (resp. o:[1/2,1]-R>, ®(1/2)=0), with the Borel o-
algebra of the topology of uniform convergence, and define p,:Q—Q, (resp.
py :Q2-9Q,) by po(®)(s)=0(s), s€[0,1/2] (resp. p, (@) (s) = o(s) - o(1/2), se[1/2,1]).
Then (Q, M)=(2,, M) x (£2,,M,), with p,, p, the corresponding projections. Since
Brownian motion has independent increments, the measure induced by u on
Q,x Q, is a product measure p, x pt,. Define also scaling maps j,, j; ; jo : 2,—

. 1
(resp. j,: Q,—Q) is given by jo(m)(s)=21/2m(%) [resp. jl(m)(s)=21/2m<¥) .
Then j,, j, are isomorphisms of (,, M, u,), (2,, M, u,) onto (£, M, u) (scale

x(1/2)—x (1—55—)

covariance of Brownian motion [25]). Define x,(s)=2"/? , X4(s)
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1+s

=212 x(1/2)—x<~2——)J, 0<s=<1; then x,(-), x,(-) are independent standard

Brownian motions in R? starting at 0, and we may construct the random variable
11

X =Ty(1,1)=2n)*? | [ 63(x,(s)—x,(1))dsdt, 1)
00

as in 3.1, Example 2. We define also the g-algebra G=0{x(1)}; this completes the
identification of the data in the statement of the limit theorem.

For se[0,1] denote by s=0-s,s,...s,... the dyadic expansion of s. Define sets
Aw)C[0,1]x[0,1], veT:

4(0)=([0, 1/2] x [1/2,1))u([1/2,11 x [0,1/2]),

and for n>0

Ansiy...i)={(s,t): n=max[m:s,=t,],s;=t;=i,1<j<n}.

By appropriate change of variables in the time integrations we obtain the
identifications

X()=2m"7 | 53(x(s)—x(¢))dsdt, @

A(v)

for ve T, and hence

Sm)=2m*2 | §3(x(s)—x(1))dsdt, (3)
R(n)
with R(n)={(s,t): max[m:s, =t,]<n}. As n—oo, R(n)T[0,1]x[0,1], so that
formally the measures v,(g) defined by 2.1.4 should converge to the polymer
measure with coupling constant 2n3/2g.

We begin now the verification of conditions C7-C6. Define intervals
I(v)C[0,1],ve T:1(0)=[0,1], and for n>0, I(n;i,...i,)={s :s;, =1y, ...,5,=1,}, and
unit vectors g(v)eH: g(v) =2"?1,,,. Note that g(0)=e(1), so G=G(0)=o{x(1)}
=a{p(g(0))}, and we find G(v)=c{p(g(v))}, for all ve T. Since g(0)=2"12[¢(1;0)
+g(1,1)], GO)CG(1) (CD).

Define f=2"1%[g(1;0)—g(1;1)], so that {f,g(0)>=0 and span{f,g(0)}
=span{g(1;0), g(1;1)}; this implies G(1)=G(0) V F, with F=c{@(f)} indepen-
dent of G(0) (C2). For veT define f(v)e9:f(0)=f, and for n>0, f(n;i,...i,)
=2""2[g(n+1;i,...i,00—g(n+1;i,...i,1)]. Then {g(0), f(v),ve T} is an orthonor-
mal basis for §, which is mapped onto the Haar basis of I7[0,1] by the
isomorphism f—f" of § onto I?[0,1], and F(v)=0{@(f(v))}, ve T. Write y(v)
=@(f(v)), ve T For 0<s<1 we may expand e(s)e H in the basis {g(0), f(v),ve T}

e(s)=s9(0)+ ZTf ®)(s) f(v), (4)
and apply the map @ to both sides to give
X(s)=sx(1)+ ZTf ©) (9)y(), ©)

(5) is Ciesielski’s representation of Brownian motion [16].
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C3 is evident from the definition of X. The remaining conditions C4-C6 will be
verified in the next section, so Theorem 1 is applicable. It gives for g<g a
martingale f,, relative to the increasing sequence of g-algebras G(m), and hence a
consistent sequence of measures v"(g)

v(9) [B]=E[1g/,] (6)

Be G(m). Since G(m)=a{x(1), y(v), n(v) <m}, Kolmogorov’s extension theorem may
be used to construct a measure v(g) on R®, the product of countably many copies
of R indexed by ({1}uT)x{l,2,3}, so that the coordinate variables may be
written x (1), y(v), ve T, je {1,2,3}. (5) may then be used to transfer this measure to
{Q, M), as in Ciesielski’s construction of Brownian motion, i.e., we will prove that if
x(1), y(v), ve T, are distributed according to v(g) then (5) defines a stochastic process

which may be realised on (€2, M). In 2.8 we proved the existence of lim E, [R]
=EV(9>[R] for Re (£, G(m), 1) ; the proof gave a bound for E, [ R] which may be
written

|E,[RII=C™|R],, ()
for some C>0. For ve T, je{l,2,3}, p=1, take R=|y,(v)|"", m=n(v)+1, in (7) to
give

Iy, <Dp**(n+1)"2, (8)

for some D>0, with |-, the norm on I#(Q, G(m), »(g)). According to Varadhan
[26], an estimate of the form

E[Ix(s) = x(®)F1=M|s—t]* 72, ©)
for some o>0, f>0, implies a.s. Holder continuity of the sample paths of the
process x(-) for any exponent ¢ <min(xf ™!, 1). The functions f(v)(s) in (5) enjoy
the following properties:

supp f(v)=1(v); 0=f () () 27"~ |f(0) (5) = () (D =2"2[s — ¢]. (10)

Using (8), (10) we obtain, by checking Varadhan’s condition, a.s. Hélder continuity
of the sample paths of the process defined by (5) and the measure v(g), for any
exponent ¢ < 1/2, just as in the case of the standard Brownian motion.

3.3. Three Estimates
C4. We will show that the random variable X defined by 3.2.1 satisfies
C,p°*=|X|,=C,p*"? (1)

for pz1, and some constants C,, C,. The upper bound verifies condition C4 of
2.1; the lower bound is of interest because it implies divergence of the Taylor
expansion of E[exp(—gX)] about g=0.

For zeR® write 2> =z} +z5+z3, and denote by dz Lebesgue measure. We may
suppose p an integer. By definition

X= li{)n (271)3/2} iés(xo(s)—xl(t))dsdt, (2
>0+ 00
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SO
IX115=ELX"]
=(p))?[ds,...ds,[dt,...dt, f(s,1) 3)
0ss;=...8s5,=1.0=s1, ... 51,51,
with
fGs, t)—— Y, fils, ) )
p' neSp

(S, denoting the symmetric group on p letters, and

S, t): lim E[ﬁ {2m)32 58(X0(Si)—xi(tn(i)))}
= lim [dg,...d&, dn,...

£—>O

lfl { 2”) 3/2 g "7:(1)) eXp| —

(gi_gi—l)z _ ('li_'li—1)2}
2s;—s;-1) 2t,—t,_y)

-[(si—si_1)<ti—ri_1)]-3/2},
with §,=1,=0, s, =t,=0,

= [dn,...dn
g R T R =
'[(Si_si—1)(ti_ti—1)]_3/2}7 (5)

since Brownian motion has independent increments.
Change integration variables in (3) : (s, t)—(, ), with
u=s5—5_1, Bi=ti—t_,, 1=i=p,

and interchange the (¢, f) and 7 integrations to give

-3
IX15=(p1)?*2m) 2p Y, fdny...dn,g,m)

* neSp

with g, ()= [ do,...do, [ dB,...dp,
0,20, Yo,=1, B;20, ) ;=1

(g “21;7:0—1))2 et 2";31 )’ }(cx B)” 3/2} )

To obtain an upper bound for || X |5 we replace the integration region in (7) by
{(o, f) :;20, B;=0, > (o;+ B;) <2} ; denote by h_(n) the resulting integral, so that

1o

i=1

g.m=h,(m)
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For any >0 we may make the change of integration variables
oy =2w;, Bi=2p, m=2"mn;,

and write {dn,...dn, h,(n) in the alternative form
fdny...dn, H(n),

with

W) =472 [ dot,...dot, dB, ... dB,

a; 20,520, (o) + ) <24

- (n;t(i)—n;z(i— 1))2 (m;—m;_ 1)2
il—-:ll {exp [ 20 26,

(a;ﬁ;>-3/2}. ®)

After the change of variables the primes on the new integration variables may be
dropped. Now let f(4) be some positive function on [0, c0) with | f(1)dA=1. Then
0

we may average over the alternative forms to write our upper bound as

—3rq
IX)2<(ph)*(2n) 2 o ZS fdn,...dn, k. (m), )
with

TfA)
k = | Z==di
A fjwl”/z 20,820, +p) S22

p =1 )2 —m._.)?

11 {exp[—m"‘” 21;"(‘_”) _ 2?3‘_1) }(cx,-ﬁf)_m}. (10)

i=1 i i

Choose f(A)=[I'(1+p/2)] * AP?e~* and interchange the A and (x, ) in-
tegrations in (10). Since

0

e—ld,1=exp{~ 12 Z(oci-f—ﬁi)},
1/2;(«,-%[3,) i

k.(n) then assumes a product form
p
k,m)=[I0+p/2)]" ! H {H(Myiy— M- D H(M;— M, - D} (11)
i=1
with

H(R)= ]?docoz”/zexp[—%(%z +oc)}. (12)
0
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The Cauchy-Schwarz inequality now gives, for each ne S,

-1

[ dn,...dn,k m)< [F(l + g)

» 1/2
: (I dn,.. 'd"p I=—[1 [H(I'ln(i) N - 1)|)]2)

» 1/2
'(f dn,...dn, [ [H(Inrn,«_ll)]z)

_ [r(1+§>}_11@, (13)

with K = [ dn[Hqn|)]* =(2n)* < co.
(9), (13) give the upper bound in (1).
To obtain the lower bound for ||X||? we replace the integration region (7) by

{(oc, p) 0,20, ,=0, Z(ai+ﬁi)§ 1}, and make the same transformations as in the

derivation of the upper bound to give

Z3r g
b>27P2(pl)? 2 — dn,...dn k. (n).
IXI5227 00200 2 5 3 Jdnydngk, ) 14

For each ne S,

[dn,...dn, k)= [r(1 + B)]_l

p

: j n {H(Myy— M- D H(M; =M= 1)} d'h---d'lp;

Ry i=1
with
Ry={n):m|=1,1=5i=p}
p -1
> H”zﬂ K2, (15)

. . _ . . . .
with K, =H(2)2T7Z [since H is a decreasing function of R, and [n;—n;_,|, M,

—MNi- 1| =2 for (n)eR,].

(14), (15) give the lower bound in (1).

In verifying C5, C6 we will make use of a formula which we state in the general
framework of 3.1. With the notations of 3.1, denote by ¢”: H—IXQ", M”, i’ ; R")
the map given by ¢*(e)=(¢(e, ,), ..., p(e,w,)), and, for LCH a closed subspace of
$, define the g-algebra B(&)C M by

B(2)=0{p}e). 1</ <v.ec}.

Denote by P the orthogonal projection of § onto £. Let p=2 be an even integer,
and / a measure on X such that J(1) exists and is in 1. Then [|J(4) — E[J(4)| B(L)]([5

Jdae,).. ~d/1(f,,)< Y. (=D)“[detC(P,4,¢)] "”2), (16)

Ac{l,...,p}
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with |A4| the number of elements in A4, and C(P, 4, £) the v x v matrix given by

LC(P, A4,0)];=Ce&)e(C)y if - i=j or ijeA } (17)
={e(&), Pe(&))y if i+j and i or j¢A|

(16) results from a straightforward calculation of Gaussian integrals. Note that if,
for some index i, and all i % iy, {e(&,), (1—P)e(&;)> =0, the integrand in (16) is zero
at £; analytically this results from

C(P’ Aa f): C(P’Au{lo}a é)

for every A with i,¢A4; probabilistically it is clear since the random variables
{@j(e(& ), 1=j=v}, {@j(e(E), 1<Sj=v, iFi,} are then independent conditionally
on B(Q).

Some linear algebra (Lemma 1 below) gives the inequality

detC(P,A4,&)=2"?detC(&). (18)
Denote by y(¢) the characteristic function of the set
{&: for each index i, 1 i< p, there is an index j=+i, 1<j<p,
such that {e($,),(1—-P)e(¢;)>=+0}, (19)
then from (16) and the following remark we obtain the bound

IJ(A)— ELJ(A)| B}
SRR FANE,). . dME,) (&) [det C(E] 2. (20)

Note that [det C(£)]™"? is the integrand in the integral formula for [ J(2)?
IA)2= [dAE,)...dAE,) [det C(&)] 2. (21)

Lemma 1. Let $ be a real Hilbert space, P : H—$ an orthogonal projection. Let p
=1 be an integer, and e, ..., e,, p vectors in 9. Define, for any AC{1,...,p}, apxp
matrix C(P, A)

[C(P,A));;={e,e;> if i=j or ijeA
=<e,Pe;y if ij and i or j¢A,
write C=C(P,{1,...,p}). Then
detC <211 det C(P, A).

Proof. For any set {v,,...,0,} of vectors of §, we denote by A{v,,...,v,} their
exterior product (in the order indicated by their indices; thus A{v,,v,}=A{v,v,}
=v, Av,), and by G(vy, ...,v)= [ A{v,, ..., v, }|* their Gram determinant.

For any 1,1 <1<k, we have
Gy, .., 0)SG, ..., v) GV 15 - 1)) (%)

(x) is a variant of Hadamard’s inequality.
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We have
detC=||A{uy,...,u,}|?

=[|> /l{ul.,ieA;Pui,ieS;(1—P)ul.,ie;.ES}H2
SCA°
= ( Y. | A{u,i€ A; Pu,ieS; (1 —P)u, i¢S}|l)2

sC A€

<2y G(uy,ie A; PuyieS; (1— P)u,,i¢S)

ScAc
(by the Cauchy-Schwarz inequality)
<2 G(ug,ie A; Pu,ieS)[ ] (1 — P)u,l|?
scAde i¢s
(by the variant of Hadamard’s inequality given above)
=241det C(P, A).

[At the last step we use the observation that C(P, 4) is the sum of the Gram matrix
of the vectors u;, ie A; Pu,, i¢ A, and a diagonal matrix whose diagonal entries are
0,ied, |(1-Pu? i¢gA] O

C5. To verify condition C5 of 2.1 it is sufficient to obtain an estimate of the form
2.1.2 for p=2 an even integer, and n=1.
From 3.2.5, and supp f(v)=1(v) (ve T), we have, for all te[0,1]

x(t)eo{x(1),y(0), y(1,£,)y(2,t,t5), ..., y(m, t t5...1,), ...} .

Now G(n)=0a{x(1), y(v), n(v)<n}, so two increments x(t)—x(s), x(w)—x(u), of
Brownian motion, with s,ue[0,1/2] and t,we[1/2,1], are independent con-
ditional on G(n) unless s;5,...5,=u U,...u, Or t,t,...L, =W, W,...w,, i.c. unless two
rooks placed on squares (s;5,...5,, t;t,...t,), (U u,...u,, w,w,..w,) of a NxN
chess board, N =2", can capture each other.
G(n)=B(L), with & =span{g(v), ve T(n)}, and X =J(4), with dA(s,t)

=27121, (s, t)dsdt, so we may use (20) to estimate [|X — E[X|G(n)]|| ,- We use the
remark following (20), and refer to the calculation of |X|? to write the resulting
bound in the form

Sp
IX—EX|GmIIL<22 (o> [ ds,..ds, | dt,..dt, " (5.1),
Oss1=..sp=1 Osty=..5tp=1
(22)
with
1
frGs, t)=17 Y s 0x(s,0), (23)
* neSp

and y%(s, t) the characteristic function of the set
{(s,t): for each i, 1 <i<p, there is an index j*i, 1<j<p
such that either [2"7's]=[2"""s,] or [2" 't,,1=[2"""t,;1}-

(Here [x] denotes the greatest integer <x.)
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Proceeding as in the derivation of C4 we write the right side of (22) as

25P/2(pv)2(2n)-31’/2p_n;p [ dn,...dn,g;m), (24)
with
g= | doy.de, [ dB..dB,xxxB)
2;20,Yas1 20,28, 51
ﬁ{exp Moy — nm p)? 21/13, ) () 3,2} 25)

and x. the transform of . under the change of variables (s, t)—(x, ). Choose ¢
with 1<g<4/3, and apply Holder’s inequality to give

gr = 170l LY, (26)
with
L= | doy..do, [ dp,..dp,
2i20,Ya; <1 Biz0,Xpi<1
E ( n(i) — n(i— )2 i~ Wi- 2 _
1 {exp 9y, 2:: -1 q(n 2; 1) }(“iﬁi) 3q/2}' 27)
i=1 i i

Continuing to follow the pattern of the derivation of C4, we extend the
integration region in (27) to {(oc, B): 0,20, B, =0, Z(ai+ﬂi)§2}, and then exploit

1
the transformation property of the integrand under scale transformations to give

IX — E[X | G(n)]|2 <2572 (p1)*( 2n)-3”2 ‘ zsu g fdny...dn,h ), (28)
with
h(m)= zf(z)z'\?'f]"[m, A1Mad. (29)

Here f(/) is any probability density on [0, co0), and J (n, 4) is the integral obtained
by changing the integration region in (27) to {(oc, B): 0,20, B;=0, Y (o;+p)

2 -1
§2/1}. We choose f(A)=|T ({a - %}p—kl)} A2la=3121p exp(— 1), and apply
Holder’s inequality to (29) to give

v oo ol ol
- [r ({2 - %}PJF 1)]_1 @w (L )" (say). (30)

Interchange of the 4 and (o, ) integrations in the integral representation of L_(n)
now gives

2P
L= 21’ n {K(hl,,(i) M- 1)|)K(l'li—fl,~_ DY (31)

i=1
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with

K(R)= [ do™ 342 exp
0

—q(R* «
——+ =] 32
2 (a + 2)} (32)
By the Cauchy-Schwarz inequality
2\1/a
Jan,..n, (L0 (2] 3)

with L= {dn[K(n|)]*?< oo, since g <%.

To estimate |/z;l, in (28) we rely upon the lemma of the rooks:

Lemma 2. Let p rooks be placed at random on a N x N chessboard (without
restriction as to the number of rooks that may be placed on a single square). Then the
probability that each rook is in a position to capture some other rook is
S6"p2"N_"/2.

Proof. Denote by w=(w,,...,w,) a typical rook configuration, and write
X (w)=w; for the position of the j™ rook, 1<j<p. The X ; are assumed
independent, each being uniformly distributed over the N2 squares of the board.
Denote by R the set of configurations having the property in question. For weR
define inductively sets S¥(w)C{1,2,...,p}: SY(w)={1}, and for 1 <j<p—1

S7* Hw) = SH(w)u{j+1} if for no ke S(w) can a rook placed on X, (w) capture
a rook on X (w)

=Sw) otherwise.
Write S(w)=SP(w), and define sets S, (w), S,(w)CS(w):

S (w)={ke S(w): a rook placed on X,(w) can capture exactly one of the
rooks with index je S(w)},

S,(w)={ke S(w): a rook placed on X,(w) can capture exactly two of the
rooks with index je S(w)} .

Note that for keS(w), rook k can capture a rook jeS(w) with j<k [by the
inductive definition if S(w)], and can capture at most two rooks je S(w) (one by a
move on a horizontal, one by a move on a vertical file) [otherwise we should have
two rooks j;, j,€S(w) which could be captured by k by moves of the same type
(both horizontal or both vertical); but then j,, j, could capture each other, which
contradicts the definition of S(w)]. Thus S(w)*=S,(w)US,(®). A rook jeS(w)
cannot capture another rook €S(w) so, since we R, it must be able to capture a
rook € S(w)". Hence |S(w)| =[S (w)]+2|S,(w)].
For a given partition (S, S, S,) of {1,2,...,p} we estimate
2p

IS1l 1 p2 \ 152!
PT{COER,Sl(a))=S1,Sz(a))=S2}é(ﬁ) (F)
éZPpZPN_P/Z
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(if the set is non-empty, we must have [S|=Z|S,[+2|S,|; this implies p=|S|+]S,|
+18,1 =218+ 31,1 =2[1S[+2IS,[]1). Thus

Pr{iweR}< ) Pr{weR,S(w)=5,,S,(w)=S,}

(S,51,82)
§3p_2pp2pN—p/2_ |
<[6Pp?? N~PI2]14 with N=2""!. Combining this
. . . 1 4 ,
bound with (28), (30), (33) we obtain C5 with f,= 27y 7,=27127 (s0 eg

choosing g=5/4, §,=5.3, 1,=2"%1).

Lemma 2 implies |yl

C6. We show first that C6 may be replaced by a condition which is more easily
verified :

Lemma 3. In Theorem 1 condition C6 may be replaced by the following condition
Cce'

C6'. For some constants K>0, and t1<1, and all n=0
[X(n)— E[X(n)| F*(0)]]| ,< Kz". (34)

Proof. From C4 and Lemma 5, Sect. 2 we have for some K, >0,and all n=0,p=1

1X () — ELX(m) [ F* (O)], =  Y(n) — ELY(m)| F " (0)]]],

<YM, =K p 72 (33)
Given n=0 write n=n, +n,, with n, = g . Note that

F*0)> \/ F*(),

veT(ny)

so that for all p=>1

IX(n)— E[LX(n)| F*(0)]]| ,=2 ”X(H)—E[X(n) >{ )F+(v)] (36)
Now
X(n)—E[X(n) \/ F*(v)
veT(ny)

—nq

=22 Y ((*[X(ny)— E[X(ny) | F*(0)]]

veT(ny)

~ Sy {X(ny)— E[X(n,)|[F*(0)]},

with N, =2". (34), (35) imply that the hypotheses of Lemma 3(b), Sect.2 are
satisfied by the sequence of random variables X(n,)— E[X(n,)|F*(0)] (with N
=N, C=K,,f=p,+1/2,D=K, §=log(t~!)(log2)™ 1), so we conclude from that
lemma that for some a>0, K, >0, and all p<N% (we take A=1)

“X(n)—E[X(n) \/ Fr)]| =K,Ni* (37)

veT(ny) P
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Since N, 221/2= 1, (36), (37) give

IX(n)~ E[X(n)| F*(0)]]| , = 2K, 27 /2% D), (38)
for p< 2121 But for p>21/2%n=1 (35) gives

IX(n)— ELX(m)[F*(0)]]| , <K, pP* "2 S K pli¥3227 1207 1), (39)

(38), (39) combine to give C6 (with =8, +3, 1,=2"12%.

To verify condition C6' note that F*(0)=B(2), with 2=closed span {f(v),
veT}, and X(n)=2""2J(4), with dA(s,t)=1,,(s, t)dsdr. Here A(n)=veLT)(n)A(v).
Hence, by (16),

IX(n)— ELX(n)| F*(0)]]3

=271 ([ ds,dt, | ds,dt, Y (—1)“[detC(P,4,s,1)] 32 (40)

A(n) A(n) Ac{1,2}

Since £+ =span{e(1)}, the orthogonal projection P with range £ is given by

P=1-{Ce(l), - ye(l). 41)
(40) simplifies to
271 [ dsydt, [ dsydt,{[detC]™*—[detC(P,{1,2})] *?} (42)
A(n) A(n)

(since [ X(n)—E[X(m)|F*(O)]I3 =X ()3 — [ELX(m)|F(0)]]3). For (s,0)e4(v,)
x A(v,) with v, #v,, we have

detC>detC(P, {1,2}),

since C, C(P, {1,2}) have the same diagonal elements, and C is diagonal, so that the
integrand in (42) is negative. We may therefore bound (42) by

270y [ ds,dt,ds,dt,{[detC] ™32 —[detC(P, {1,2})]/?}. 43)
veT(n) 4(v) X A(v)
The terms in (43) are all equal. This equality may be displayed explicitly by
making, for each ve T(n), the change of variables s;=Ns,—[Ns,], t;=Nt,—[Nt,],
with N =2". After dropping the primes on the new variables we obtain

1/2 1/2 1/2 1/2
2 [ dsy | dty | ds, [ de,{d” P —dg??}, (44)
0 0 0 0
with
A= =10 L } )
dN=d+2N_1|I1mlz||I1”12|_N_2|I1'2|12|2 '

In 45) I,=I[t,,s,], I,=[t,,5,] (44) is bounded by the integral obtained by
replacing d, by

dy=d+2N"M L, AL |1, (46)
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Choose o with 0<a<1/2. Then for some constant B and all x, y with x=>y>0
y—3/2_x—3/2§B(x_y)ay—3/2—a. (47)

(44) is thus bounded by KN ™%, with

1/2 1/2 1/2 1/2 I f\I aI aI a
K=2'"*B (j) ds, gdtl g ds, g dtzl—l—dé—l,zlﬁl—zl—<oo, (48)

and C¢’ is verified.
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