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Abstract. We discuss various methods for investigating the existence and
uniqueness of generalized spin structures. We show that on a four dimensional
manifold whole families may be constructed using any internal symmetry
group of the form G/Z2, where G is a simply connected Lie group.

1. Introduction

Much of the current work in quantum gravity is concerned with the construction
of classical and quantized fields propagating on a fixed background space-time
M. This subject is of interest in its own right and also occurs in the evaluation of the
one loop contribution to a functional integral approach to quantum gravity
proper. An especially intriguing aspect is the role played by the global topology
of the space-time.

In the present paper we will concentrate on aspects of space-time topology
that are reflected in spinor field theory. There will in general be a number of
inequivalent spinor structures [13] and these are classified by elements of the
cohomology group H1 (M ;Z2). We have previously discussed a number of features
of this phenomenon relevant to quantum field theory [12], [2]. However the very
existence of spinors is determined by global topological properties of M specifi-
cally a necessary and sufficient condition is the vanishing of the second Stiefel
Whitney class of the tangent bundle [13]. The problem of handling spacetimes
which do not satisfy this restriction has been approached in various ways. We wish
to focus on the ideas of Whiston [18], Hawking et al. [8], Back et al. [4], and
Forger et al. [7], and discuss and extend their techniques. Hawking and Pope
sought to replace the Spin (4) group covering SO (4) with Spinc(4) =
Spin(4) x Zz U(l) whilst Back et al. employed Spin (4) x ZlG where G was basically
SU(2). The Spinc(4) method is limited to a special class of space-times whereas the
construction of Back et al, although free of this defect, represents only one of a
large class of Spin (4) x ZiG covering techniques. We will develop some of these in
Sec. 4 and to motivate and clarify the method employed we will first discuss the
existing work in Sect. 2 and 3 using the appropriate mathematical language.
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These new structures exist on any four dimensional manifold and can employ
any internal gauge group of the form G/Z2 where G is simply connected. We will
show that inequivalent generalized spin structures of this type are related to the
groups H\M π 3 (G)) and H\M Z2). We have concentrated on SO(4) rather than
SO| (3,1) (i.e., we have in mind the riemannian instanton contributions to a func-
tional integral) because the problem is more severe here. However we will add
paranthetical remarks on the SOt(3,1) case in appropriate places. Our main
interest is correspondingly when M is a compact oriented manifold.

2. Spin Structures

2.1. We will start by reviewing the standard material on the existence and unique-
ness of spin structures [13]. The Lie group SO (ή) (n ̂  3) possesses a simply connec-
ted double covering group Spin(n) with a group homomorphism A: Spin(rc) >

SO(n). Let ξ be a principal SO(n) bundle over a manifold M. Then a Spin(rc)
structure consists of a pair (η,f) where η is a principal Spin(n) bundle over M and/
is a bundle map from the bundle space E(η) onto E(ξ) [11]

E(ξ) ^ (2.1)

The group actions on the two spaces are required to be compatible:

[] fo), V^eSpin(n) (2.2)

where [/I] = Λ 04)
An equivalent formulation is the following. The double coverings (i.e. principal

Z2-bundles) over a topological space X are classified by the elements of the
cohomology group Hί(X;Z2) = Homίπ^I), Z2) [16]. The Z 2 coverings of a Lie
group are themselves Lie groups and in particular, since Hί(SO(n);Z2) = Z 2 ,
there are just two double coverings of SO(rc); the trivial one, SO(n) x Z 2 , and the
non trivial Spin(n) covering, represented respectively by the identity element e and
the generator α of if1(SO(n) Z 2) A spin structure over M is equivalent to a double
covering σ of E(ξ) which, when restricted to every SO(n) fibre, reproduces the
non trivial Spin (n) covering of SO (n) because M is path connected it is sufficient to
demand this on only one fibre, it is then automatically true for the others. Since
σ is represented by an element of Hί(E(ξ) Z2), this condition is simply

ΐ » = α (2.3)

where / denotes the injection of the standard SO(n) fibre over the basepoint in M.
The various Z 2 cohomology groups of ξ fit together in the Serre short exact
sequence;

(2.4)

By exactness of (2.4), the condition (2.3) is satisfied if and only if τ(α) = 0. How-
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ever τ(α) is equal to w2(ξ)—the second Stiefel Whitney class of ξ—and hence the
well known necessary and sufficient condition for a Spin(n) structure to exist is

ω2(ξ) = 0 (2.5)

If σ19 σ2eH1(E(ξ);Z2) both represent spin structures then /*(σ1 — σ 2) = 0
and so, by the exactness of (2.4), σ1 — σ2 = π*(β) for some β in HX(M Z 2 ) . Thus
the different possible spin structures are labelled (after choosing some fixed σχ) by
the elements of Hί(M Z 2 ). A priori, these inequivalent structures could appear as
either inequivalent bundles η or maps/in (2.1). These two features are reflected in
different ways when the spinor fields, defined as cross sections of associated vector
bundles, are quantized. The modes of the Dirac equation depend on the choice of
bundle as do the corresponding Green's functions which appear in a perturbative
approach to the quantum field theory. At a rigorous level the test functions
employed to smear the operator fields must be cross sections of the dual vector
bundle. On the other hand the various choices of bundle maps/ in (2.1) lead to
different spin connections (which affects the Dirac equation again) since these are
defined in E(η) as the pull back of the fixed connection in E(ξ).

2.2. Some insight into the classification of different spin bundles can be obtained
by studying the fibration

Z 2 —^-> Spin(n)

A

SO(n) (2.6)

which, since Z 2 is an invariant subgroup of Spin(n), leads to the derived
fibration [5]

BΛ

BSO(n) (2.7)

where BG denotes the base space of a universal G bundle [16]. Now BZ2 is an
Eilenberg Maclane space [15] K(Z2,1) with the characteristic property

2 l ) ) = 0 ί^2 (2.8)

Furthermore if π is any abelian group

[M, K(π9 n)] = Hn(M π) (2.9)

and [M, BG] = @G{M) (2.10)

where [M, X] denotes the homotopy classes of (pointed) maps from M into X
and $G(M) is the set of isomorphism classes of principal G bundles over M.
The fibration in (2.7) may be obtained as the pull back of a certain universal bundle
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over K(Z2, 2) leading to the diagram

. x BJ

BΛ

2) (2.11)

which as explained in [3,14], gives rise to the exact sequence of pointed sets

> [M, Spin(n)] -±+ [M, SO(«)] — H\M;Έ2) - ^ % i n ( B ) ( M )

— ^so(B)(M) - ^ H2(M;Z2) (2.12)

An SO(n) bundle ξ may be covered by a Spin(n) bundle if and only if it lies in the
image of BA^ or equivalently (by exactness) if θ^(ξ) = 0. Thus the cohomology
element θ (ξ) measures the obstruction to constructing a Spin(rc) structure. Since
θ^(ζ) = w

2 ( ^ ) w e r e c o v e r t n e condition (2.5). Note that (2.12) also provides informa-
tion on the homotopy classes of SO(n) gauge functions with the equivalence
relation

Ω1 = Ω2 iff Ωβ-1 can be lifted to Spin(n)

These may be classified by

Tξ = [M, S O ( n ) ] M , = [M, SO(n)]/kerΩ(^

«mΩθa k = kerJB/ (2.13)

If we focus on the tangent bundle the analogue in a lorentzian space-time of
Spin(4) is SL(2, C). However ^ S L ( 2 , C ) (M) = H\M Z) [3] which vanishes if M is
noncompact and hence in this situation all SL(2, C) bundles are necessarily trivial
and ImBj^ = 0 in (2.12). Thus all the topological information concerning in-
equivalent spinor structures is carried by the bundle maps / and hence by
the different spin connections.

On a compact manifold we can employ the Serre cohomology sequence of
(2.11) to show that

BΛ* : H\B SO(n) U) • H\B Spin(n);U) (2.14)

is an isomorphism. However on a four manifold [3]

' 4 ( M ; Z ) 0 H 4 ( M ; Z ) n = 4 (2.15)

and so in fact a Spin(rc) bundle η is uniquely determined by its real second Chern
class (there are two of them if n = 4) which according to (2.14) is itself uniquely
determined by the Pontryagin class (plus the Euler class if n = 4) of the SO(n)
bundle which it covers. In particular η is uniquely determined by ξ and once again
Bj. = 0 in (2.12).

Thus on four dimensional manifolds the spin bundles are all isomorphic and
different spin structures are obtained by running through the classes of inequivalent
covering maps,/ These correspond to choosing inequivalent spinor connections
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and hence Dirac Lagrangians: the quantum field theory implications of having
inequivalent spin structures are discussed in reference [2].

3. Spinc Structures

3.1. If w2(ξ) Φ 0 then one might attempt to cover ξ with a bundle whose structure
group was not Spin(τz) but which was related to it in some useful and interesting
way. It has been proposed in [18] and [8] to employ the group Spinc(4) in the
particular case that ξ is the tangent bundle. The group Spinc(4) is defined as [1]

Spinc(4) = Spin(4)xZ 2l/(l) (3.1)

with the Z 2 equivalence relation

(x, u) = (-χ9-u) xeSpin(4), ueU{ί) (3.2)

in which the minus signs may be conveniently interpreted by viewing Spin (4) =
SU(2) x SU(2) as a matrix group and [/(I) as the multiplicative group of unit
modulus complex numbers. U(l) is an invariant, closed, subgroup of Spinc(4):

1/(1) - ^ Spinc(4)

u >[l,w] (3.3)

and Spinc(4)/£/(l) ™ SO (4) with the projection

Spinc(4) > SO (4)

[x,κ]l >[x]=Λ(x) (3.4)

leading to the fibre bundle

U(l) • Spinc(4) > SO (4) (3.5)

Proceeding by analogy with the Spin(4) case one observes that the U(l)
bundles over any manifold X are classified by the elements of the cohomology
group H2(X;Z) [9]. In particular, on recalling that SO (4)« ^ 3 x UP3, we may
readily compute

H2(SO(4);Z) = Z2 = {e,a} (3.6)

and so there are two isomorphism classes of principal U(l) bundles over SO (4)
with the trivial class including SO (4) x (7(1). Now the exact homotopy sequence of
any 17(1) bundle over SO (4)

(7(1) >E >SO(4) (3.7)

shows that π1 (E) = Z or Z 0 Z 2 . However there is a homeomorphism

Z:Spinc(4) • E/(l)/Z2

[ x , u ] | >[u] (3.8)

and a fibration

Spin(4) - ^ Spinc(4) —?U t/(l)/Z2 (3.9)
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with

φ: Spin (4) > Spinc(4)

x I • [x, 1] (3.10)

71-1Since U(l)/Z2 & S1 and since Spin(4) bundles over §* are classified by Π
(Spin(4)) [16] it follows that (3.9) is trivial and hence topologically—but not
as Lie groups—Spin c(4)^ Spin(4) x 1/(1). In particular π1(Spinc(4)) = Z and
so the fibration of (3.5) must correspond to the non trivial generator α of f/2(SO(4)
Z) = Z 2 . (The trivial 17(1) bundle has πx(SO(4) x 17(1)) = Z 0 Z 2 ) .

It is therefore natural to define a Spinc(4) structure on M as a (7(1) bundle
over E(ξ) which, when restricted to every SO (4) fibre, reproduces a (7(1) bundle
belonging to the nontrivial class represented by α. (Since (7(1) is in the centre of
Spinc(4) every such bundle can be given a unique Spinc(4) group structure).
The relevant short exact sequence is (noting H1(SO(4) Z) = {0});

0 > H2(M Z) -X> H2(E(ξ) Z) - ^ H2(SO(4) Z) —'-> H3(M Z)

(3.11)

Clearly σeH2(E(ξ) Z) represents a Spinc(4) structure if and only if i*(σ) = α
or equivalently τ(α) = 0. However τ(α) = W3 (ξ)—the third integral Stiefel Whitney
class of ξ—and hence one obtains the standard [9] and [10] necessary and suffi-
cient condition for the existence of a Spin0 (4) structure

W3(ξ) = 0 (3.12)

This shows that it is not always possible to employ the Sρinc(4) group. Of course
if M is simply connected and compact then H3{M; Z) = H^M Z) = {0} and
(3.12) is automatically satisfied.

3.2. It is clear from (3.11) that the difference between two Spinc(4) structures can
be represented by an element of H2(M Z) and, as in the Spin(n) case, it is instructive
to enquire when different Spinc(4) structures are associated with different bundles.
The fibre bundle (3.5) leads to the fibration (cf. (2.7))

B17(1) — B Spinc(4) — B SO(4) (3.13)

which, since BU(1) = K(Z, 2) gives the Puppe sequence (cf. 2.12)

> [M, Spinc(4)] ^ ^ [M, SO(4)] ^ ^ H\M Z) - ^ ^ S p i r Λ 4 ) ( M )

^ ^ H 3 ( M z ) (3 1 4 )

where as might be anticipated θ^(ξ) = W3(ξ\ thus recovering (3.12).
The Postnikov factorization method used in [3] may be easily applied (see

Sect. 4 for a short discussion) to show that

M;Z) (3.15)
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where one uses

π1(jBSpinc(4)) = 0

π2(B Spinc(4)) = π ^ S p i n ^ ) ) = Z

πA{B Spinc(4)) = π 3 (4)) = Z © Z (3.16)

The characteristic element in # 2 ( M Z) is the first Chern class of the (7(1) bundle

associated with the Spinc(4) bundle via the homomorphism (cf.3.8)

/:Spin c(4) > U(ί)

[x, u\ > u2 (3.17)

(of course 17(1)/Z2 is isomorphic to 1/(1) via the map M • u2). Now the sub-
group embedding k in (3.3) associates a Spinc(4) bundle with any given (7(1)
bundle and the composite of fe with / is

Ί'k:U{ϊ) >l/(l)

ul >u2 (3.18)

Consequently the map Bk* in (3.14) is simply

H2(M;Z) > H2(M ;Z)@H4{M ;Z)®H4(M Z)

c > (2c, 0, 0) (3.19)

Since (3.14) is only exact in the sense of pointed sets, the strict result of (3.14)
and (3.19) is that the inequivalent Spinc(4) bundles covering the trivial SO (4)
bundle ξτ are labelled by

Dξτ = kerBp. = imBk. = 2H\M Z) = H2(M;Z)/β(H1(M Z 2 )) (3.20)

where β is the Bockstein map

H2(M Z 2 ) — H 3 (M Z) (3.21)

In particular if H2(M Z) has no two-torsion then

Dξ = H2{M;Z) (3.22)

In general one can show that the characteristic H4(M Z) φ # 4 ( M Z) elements for
any bundle η covering an arbitrary ξ are uniquely fixed by ξ and hence the arbi-
trariness in the choice of η is determined by the characteristic class C in the H2(M';Z)
part of J* S p i n C ( 4 ) (M). This may be chosen freely subject only to the condition

= ω 2 (£) (3.23)

Thus the classes C 1 , C2 for two different bundles must obey (Cί — C 2 )mod 2 = 0
or (by 3.21)) Cγ = C2 + 2C for some C in H\M Z). This essentially reproduces
the classification in (3.20) for any SO (4) bundle ξ. Note that by the exactness of
(3.21) the existence of C satisfying (3.23) is equivalent to β(w2(ξ)) = 0 which is just
(3.12) again since W3(ξ) = β(w2(ξ)).
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In summary all of the topological information concerning inequivalent Spinc(4)
structures (apart from 2-torsion) is coded in the different bundles: contrary to the
situation pertaining in the Spin (4) case. Any bundle in Dξ is classified by the first
Chern class which, using real coefficients, may be represented by the curvature two
form of any connection in the corresponding (7(1) bundle. In a quantum field
theory context these different bundles will be manifested as different '(1/(1) instan-
ton' sectors and the two forms will for example appear in the right hand side of the
axial current anomaly. This has been explicitly shown in [8] for M — CP2
although, since H2(CP2;Z) = Z, the Spin0(4) structure in [8] represents only
one of a countable family of possible ones.

The 2-torsion contribution is related to SO (4) gauge functions that are not
liftable to Spinc(4). The classes of these are defined (cf. (2.13))

Tξ = [M, SO(4)]/mΛ> = [M, SO(4)]/kerΩP^3

4. Generalized Spin Structures

4.1. In order to avoid the topological restriction W3(ξ) = 0 it is natural to con-
template using a group of the form SpinG(4) = Spin(4) x ZiG where G is any Lie
group with a Z 2 = {e, a] in its centre. The Z 2 equivalence relation on Spin (4) x G is

{x,g) = {-x9ag) (4.1)

with the projection (cf. 3.4)

p:SpinG(4) > SO(4)

[x,flf]| >Λ(x) (4.2)

A SpinG(4) structure may be defined as a SpinG(4) bundle η plus a bundle map
f:E(η) • E(ξ) such that

fipA) = f(p)p{A) VpeEfa), V Ae SpinG(4) (4.3)

Two such structures (ηj) and {η'J') are defined to be equivalent if there exists a
SpinG(4) bundle map g'.η^η' making the diagram

E(η) S-* E{η')

"\J"
E(ξ)

commute. (A similar equivalence relation is to be understood in the Spin (n) and
Spinc(n) cases).

Back et al. [4] found an example by choosing G = SU(2) and considering the
projection v of Spin (4) = SU(2) x SU(2) onto G viewed as one of the two SU(2)
factors. This leads to a homomorphism

μ:SO(4) > SpinG(4)

Λ(x)\ >[x,v{x)] (4.4)
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and enables a SpinG(4) bundle η to be constructed which is associated with ξ.
Since p is a left inverse of μ this does indeed define a SpinG(4) structure for an
arbitrary four-manifold and the method has recently been extended [7] to en-
compass groups other than SU(2).

However, this technique only produces a small sample of the set of SpinG(4)
structures. The construction also differs in one significant respect from that of a
Spinc(4) structure. Because of (4.4) the SO (4) bundle ξ is actually a sub-bundle of η
which is not the generic situation in the Spinc(4) case. In fact the G fibres are fixed
rigidly to the SO (4) fibres and the anticipated arbitrariness in the choice of a
G-bundle is missing.

4.2. In general one might attempt to relate a SpinG(4) structure to a principal
G-bundle over E(ξ) whose restriction to each SO (4) fibre reproduced the fibering
associated with (4.2) (cf. 3.5)

G — SpinG(4) -^-> SO(4), k(g) = [1, g\ (4.5)

When G is Z 2 or U(l) this is feasible since Z 2 and C/(l) bundles over any manifold
X are simply classified by, respectively, H (X Z 2 ) and H2(X Z). However, for
general G the classification problem is very complicated except when X is four-
dimensional or less [3,19] (which SO (4) and E{ξ) are not) or for very special choices
(such as X = βn).

We can, however, develop the Puppe sequence methods in [3] to give some
information on the different SpinG(4) bundles that can cover ξ. In order to clarify
the exposition we will present it in a sequence of steps.

1) The fibration in (4.5) leads to the derived fibration of universal classifying
spaces [5] :

Bk Bp

BG — + B SpinG (4) • B SO (4) (4.6)

An SO (4) bundle ξ9 defined by a map α from M into BSO(4), can be covered by a
SpinG (4) bundle if and only if α lifts to B SpinG(4). In this case a SpinG(4) structure
is obtained with the bundle map/(cf. 2.1) being obtained from the universal one
associated with Bp [3].
The first four homotopy groups of BG are

πί(BG) = 0

= π1(G)=:πί

π2(G) = 0

π3(G)=:π3 (4.7)

and these are sufficient to construct a Postnikov factorization [14, 15, 17] of (4.6)
appropriate to a four-manifold M. This consists of a series of approximations to
(4.6) using Eilenberg Maclane spaces to approximate BG. Only two levels are
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required and the construction is summarised in the diagram

inG(4))4

P2

K(π192) — (£SpinG(4))2 — K(π3,5)

3) (4.8)

where the notation is as follows: (X)n is a space that is (n + 1) equivalent with X
i.e. there is a function H\X^> (X)n which maps the first n homotopy groups iso-
morphically and the (n + l)th group epimorphically. The maps pί and p2 are
the projections in the fibrations

K(πx, 2) - U (B SpinG(4))2 K(π3, 4) — (5 SpinG(4))4

Pl P2

BSO(4) (BSpinG(4))2 (4.9)

which are induced by the maps Θ1 and θ2 respectively. In this context the spaces
K(πί, 3) and K(π3,5) are the base spaces of 'universal' fibrations with fibres
homotopic to K(π1, 2) and K(π3, 4) respectively.

2) Mapping M into the fibrations in (4.8) leads to the interlocking exact
sequences

... > [M,K(π3,4)] - ^ [M,(BSpinG(4))4] ^

[M, (B SpinG(4))2] ^ ^ [M, K(π3, 5)] (4.10)

... > [M,K( W l ,2)] ^ ^ [M,(BSpinG(4))2] - ί ^

[M, B SO(4)] ^ ^ [M, K(n,, 3)] (4.11)

However i) [M, K(π, n)] = H"(M; π)

ii) H5(M π 3) = 0 if M is four dimensional

iii) [M,(X)J = [M,X] " " " " " [6]

and (4.10) and (4.11) become

>H\M;π,) ^@SpinaW(M) ^ X [M,(BSpinG(4))2] - ^ U θ (4.12)

> H2(M;πι) ^ X [M,(B SpinG(4))2] - ^ > ^ S O ( 4 ) ( M ) - ^ H^M π,)

(4.13)

3) The exactness of (4.12) shows that p2 is a surjection from ^ S p i n

onto [M,(BSpinG(4))2]. Thus a necessary and sufficient condition for an SO (4)
bundle to be covered by a SpinG(4) bundle is that ξ belong to the image of p u
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(and then pίj[p2(rj)) = ξ) which is true if and only if ξ is in the kernel of θ1 :

θu(ξ) = 0 (4.14)

We see that θu(ξ) measures the obstruction to the existence of SpinG(4) structures.
This is evidently a generalization of the Spinc(4) case in Sect. 2 in which θu{ξ) =
W3{ξ) and it is clear that for an arbitrary group G and an arbitrary manifold M,
condition (4.14) may not be satisfied. On reflection the obvious solution is to
choose G such that πx(G) = 0. The Postnikov factorization (4.8) collapses to

i φ 3 , 4 ) — ( B S p i n G ( 4 ) ) 4 (4.15)

K(π 3,5)

leading to the single, extended, Puppe sequence (cf. 3.14)

... > [M, SpinG(4)] ^ ^ [M, SO(4)] - ^ H\M;π3) - ^ ^ S p i n c ( 4 )

(4.16)

By exactness p* is surjective and hence SpinG(4) structures always exist. From
this point of view the original choice G = £/(l), with πχ(G) Φ 0, is evidently not
the most appropriate.

4) The similarity between (2.12), (3.14), and (4.16) makes it tempting to con-
jecture that inequivalent SpinG(4) structures are classified by the elements of
H\M ;π3). However (4.16) can only immediately be employed to yield information
on the number of SpinG(4) bundles covering ξτ—the trivial bundle. This is (cf.
(3.20))

Dξ = ker p, = im U (4.17)

whereas the set of equivalence classes of SO (4) gauge functions that cannot be
lifted to SpinG(4) is (cf. (2.13)), (3.24)).

Tξ = [M, SO(4)]/im Ωp^ = [M, SO(4)]/ker Ωθ^ = im Ωθ^ (4.18)

= k e r i*

Note that for any compact simple non abelian Lie group π3(G) = Z and that on a
compact oriented four manifold # 4 ( M ; Z ) = Z whereas H4(M;Z)= {0} if M is
noncompact [6]. Note also that if π1 (G) = 0 then (BG)4 = K(π3,4) and hence

@G(M) = H4(M;π3) (4.19)

and i^ in (4.16) is essentially Bk^ (cf. (4.6)). This straightforward classification
of principal bundle of simply connected groups is one of the major simplifying
topological properties resulting from the dimensionality of spacetime being
only four.

5) There is a natural map χ (cf. 3.8)

χ:SpinG(4) >G/Z2

[x,g]\ >[g] (4.20)
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where [g] is the image of g under the canonical map λ of G onto G/Z2, and the
composite of k with χ is simply λ:

G — S p i n G ( 4 ) - ^ G / Z 2

fill >[l,0]ι >[£] (4.21)

This is associated with the fibrations

and

G/Z2 B{G/Z2) — + K(Z2,2) (4.22)

which induces the exact sequence (using (4.19))

... > H\M;Z2) — ^ H\M;π3) — ^ G / Z z (M) - X H2(M;Z2) (4.23)

Now Bj^ is derived from a map from K(Z 2,1) -> K(π3,4) = (BG)4 whose homotopy
classes are classified by elements of H\K(Z2,1);Z) = Z 2 [14] when G is simple
(the extension to semi-simple G is obvious). The nontrivial element in Z 2 corres-
ponds to the map

Bj^c) = β{c) u β(c) Vc6//1(M;Z2) (4.24)

where β is the Bockstein map (3.21) from H\M;Z2) into H2(M;Z). However
2β = 0 and hence 2Bj^ = 0 which, when M is compact and orientable, implies
Bj^ = 0 since H4(M;Z) = Z has no 2-torsion. Thus in (4.23) ker Bλ^ = 0. Strictly
speaking (as mentioned previously in connection with step 4) this only implies
that Bλ^ is one to one onto the trivial bundle. In general two G bundles represented
by elements pγ and p2 in H\M;Z\ will map onto the same G/Z2 bundle if and
only if they are related by a certain action of H1(M;Z2) on # 4 (M;Z) associated
with the fibration in (4.22). However the argument which leads to (4.24) may be
readily extended and shows that in all cases the map Bλ^ is injective.

Now λ = χ°k and hence Bλ = Bχoβk which implies

Bλ^ =Bχ^oBk^ (4.25)

Thus Bλ^ injective implies that Bk^ is injective in (4.16). Thus

Dξτ = H\M\Z) (4.26)

Tξ = {0} (4.27)

and it seems very likely that (4.26) remains true for all SO (4) bundles.
In summary we see that SpinG(4) structures always exist provided that G is

any simply connected, simple, Lie group and that the different SpinG(4) bundles
which can cover the given SO(4) bundle are labelled by elements oΐH4(M;Z) = Z.
Furthermore as shown by (4.27), SO (4) valued 'gauge' functions may always
be lifted to SρinG(4).
4.3. It may not be transparent from the arguments above how a suitable SpinG(4)
bundle is actually constructed. There is an alternative way of looking at SpinG(4)
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structures which clarifies this point and throws more light on the situation :
1) The projections (4.2) and (4.20) may be combined to give the fibre bundle

Z 2 > SpinG(4) - i - SO(4) x (G/Z2) (4.28)

with p[pc, Q\ = (Λ(x), \_g~\). This suggests that it might be possible to build a SpinG(4)
structure by forming a Z 2 covering over the direct sum of the SO (4) bundle ξ
and some suitably chosen G/Z2 bundle ζ. Two such structures (η, φ) and (ηf. φ')
are defined to be Z 2 equivalent if there exists a SpinG(4) bundle map g :η -> η'
making the diagram

E(η) > E(η')

E(ξφζ)

commute. Now H1(SO(4) x G/Z2 ;Z2) = Z 2 © Z 2 and there are correspondingly
four double coverings of SO (4) x G/Z2 :SO(4) x G/Z2 x Z 2 , Spin (4) x G/Z2,
SO(4)x G, andSpinG(4),

By analogy with the Spin (4) case we must clearly look for a double covering
of E(ξ@ζ) which, when restricted to each SO (4) x G/Z2 fibre, reproduces the
SpinG(4) covering. The relevant Serre cohomology sequence is (cf. 2.4))

0 > H\M;Z2) * H2(E(ξ φζ);Z2) > H2(SO(4) x G/Z2 ;Z2)

- ^ H 2 ( M ; Z 2 ) (4.29)

and we require

τ{ι) = 0 (4.30)

where i is the element in H1(SO(4) x G/Z2;Z2) corresponding to the SpinG(4)
covering.

2) Alternatively (4.28) gives the fibration

1C(Z2,1) >5Sp

\Bp

J3(SO(4) x G/Z2) • K(Z2,2) (4.31)

and the exact sequence

... >Ή\M;Έ2) >* S p t a c ( 4 ) (M) ^ > ^ S O ( 4 ) x G / Z 2 ( M ) — H\M;Z2)

(4.32)

and the condition for a covering is

^ 0 0 (4.33)
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3) The classification of G/Z2 bundles may be probed by the Postnikov factori-
zation

K(π3,4) >(«(G/Z2))4

t

K(Z2,2) >K(π3,5) (4.34)

and associated exact sequence

... >H\M;Z2) >H\M;π3) > @m2{M) — H\M ;Z2) >0

(4.35)

which is simply an extension of (4.23). Evidently tj£) is a characteristic class of
the bundle and indeed, if G = Spin(rc), then t^{ζ) = w2(Q.

It is easily shown that

^ w2(ξ) + tβ) (4.36)

and so in order to lift ξ © ζ to a SρinG(4) bundle we require

tβ) = ω2(ξ) (4.37)

However (4.35) shows that t^ is surjective and hence (4.37) can always be satisfied.
Note that again this is a special property of 4-manifolds M since H5(M;π3) = 0.

Thus we see that a constructive way of building a SpinG(4) structure is to
choose a G/Z2 bundle whose characteristic H2(M;Z2) class kills the second
Stiefel Whitney class of ξ and then form an appropriate Z 2 covering of the product
bundle. The G/Z2 bundle may be chosen arbitrarily subject only to (4.37). In
particular the i f 4 (M;π 3 ) classifying elements are freely specifiable within the
restrictions imposed on any G/Z2 bundle (for example the first Pontryagin class
p of a SO(n) bundle must satisfy p(ζ)mod 2 = w2(ζ)u w2(Q).

Thus there will be H\M;π3) 'winding numbers' associated with the gauged
G/Z2 group and these can be expected to manifest themselves in the quantum
field theory in the usual instanton like fashion in which a real characteristic class
is represented by a connection in the bundle ζ. This may be combined with a
linear connection on ξ to give a connection on the SO (4) x G/Z2 bundle which
in turn will be lifted up onto the covering SpinG(4) bundle and used in the construc-
tion of covariant derivatives of the generalized spinors.

5. Conclusion

We have analysed the existence and uniqueness of generalized spin structures
using two essentially different techniques. The first of these involved lifting the
structure group directly from SO (4) to SpinG(4) through the projection map p.
The second method formed the Whitney sum ξ © ζ where ζ was a suitable G/Z2

bundle and then attempted to double cover the structure group to SpinG(4).
Associated with these two methods were two different notions of equivalence
of SpinG (4) structures. This difference leads to slight differences in the resulting
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classification schemes. Specifically, given a generalized spin structure of either
sort it determines a structure of the other type, but the correspondence is generally
not bijective. To see this consider the commutative diagram of principal bundle
maps

:E(ηf)

Thus if (η, φ) and (η\ φ') are Z2-equivalent then taking g = id shows that (η,f)
and (η',f) are equivalent. However, if (η9f) and {η',f) are equivalent then g
need not necessarily be the identity. In other words the difference between the
two classification schemes is quantified by those equivalence classes of auto-
morphisms of ξ ΘC which do not lift to η. This is clearly shown in the 1/(1) case
where the first approach gave \H2(M;Z)\ = | im2| |im/?| different structures
whilst the second gave |im2| | iϊ 1(M;Z 2)| structures. These numbers are not
generally the same: they differ by a factor |ker/?|. A similar result presumably
holds for general G. The physical implications of these definitions of equivalence
will be the subject of a future paper.

In both approaches the basic idea is to kill the non vanishing second Stiefel
Whitney class of the tangent bundle with the characteristic H2(M;Z2) class of a
suitably chosen G/Z2 bundle ζ. It would be interesting to take a specific space
such as CP2 and work out some of the G/Z2 instanton solutions which are doubt-
less associated with the construction. Quantum field theoretic quantities such
as the axial current anomaly should be relatable to the characteristic classes of
ξ and ζ. This will present some features that, compared to the usual ^ 4 case,
are rather novel and which arise because of the presence of the H2(M ;Z2) classes.

It should be noted that our schemes will, like the original method of Hawking
and Pope [8], lead to relations between the spin and internal symmetry numbers.
These arise because representations of SpinG(4) are constructed from Spin (4) x G
representations that are trivial on the Z2 subgroup.

The restrictions on G are not without interest. They permit the use of
SU(2n)(n= 1,2, 3...) but not SU(2n + l). Another obvious choice is Spin(rc)
(n ̂  3) with G/Z2 = SO(n). Historically the use of an orthogonal internal symmetry
group is rather unusual. However, the advent of extended supergravity theories
has changed this as they are based predominantly on such groups. Spin(n) based
generalised spin structures could therefore be of considerable use if an attempt
is ever made to construct extended supergravity models on spaces with non
vanishing second Stiefel Whitney class.
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