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Abstract. We describe a modification of Schmidt's b-boundary for a space-
time, using a projective limit construction. The resulting boundary provides
endpoints for all incomplete inextensible curves that are not totally or partially
trapped, and every boundary point is an endpoint of such a curve. Boundary
points are always Hausdorff separated from interior points, and the con-
struction gives separate past and future singularities in the fe=+l, Λ = 0,
Friedmann cosmology.

1. Introduction

The singularity theorems of Hawking and Penrose [1] have made it clear that
general relativistic models of physically reasonable situations (e.g. of collapsing
stars or the matter filled universe) are likely to contain timelike or null curves that
cannot be continued to arbitrarily large or negative values of proper time (or affine
parameter). The word "singularity" was used to denote this state of affairs, which
corresponds physically to the strange idea of particles or photons suddenly ceasing
to exist (or coming into being). One feels that there should be some "reason" for
such a situation, and so, in view of the properties of known exact solutions, one is
led to conjecture that in some sense the curvature of space-time becomes
unbounded along such a curve, the unboundedness leading to a breakdown of
general relativistic physics; or more generally it could be that the curvature
becomes unbounded arbitrarily near the curve in some sense.

A way of mathematically formulating this idea is to define singular points,
attached to the space-time of general relativity as a topological boundary, so that
one can talk about the behaviour of physical quantities, such as curvature, in the
limit as one approaches a singular point. Various definitions of such boundaries
have been proposed, the most natural mathematically being the bundle boundary
(b-boundary) of Schmidt [2]. The precise definition is given below, but roughly
speaking, it attaches to a space-time M a (topological) boundary dbM which
provides an endpoint for each curve in M that is incomplete in a generalised sense
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and which is such that incomplete curves in M that get "closer together" terminate
at the same end point. The b-boundary has the following features:

(i) The definition involves only the connection on M, not the whole Lorentz
metric and is applicable also to positive-definite Riemannian spaces in which case
it reduces to the normal completion of such a space.

(ii) If M is a space-time, each point of M has a neighbourhood which contains
no curves incomplete in the above generalised sense.
However it has the following drawbacks:

(a) In some space-times [3] some points of dbM are not Hausdorff separated
from points of M - their only neighbourhood in MudbM being M (which makes it
impossible to talk of approaching the "singular point")

(b) related to this is the fact [4] that in the k = +1 Friedmann cosmology,
which has physically singular limits both in the past and in the future, the
b-boundary gives just one singular point, representing both past and future
singularities

(c) not all the singular points are at the "edge" of space-time: there are some
which can only be reached by trapped curves, which continually reenter a compact
set.

A detailed survey of results on the b-boundary is given in [6].
In the present paper we give full details of a modification of the b-boundary

briefly announced in [5] that preserves (i) and (ii) while avoiding (a), (b), and (c).
The definition is given in Sect. 3 the basic properties are developed in Sect. 4, (a)
and (b) being dealt with by Proposition 5, (c) by Proposition 6.

2. Preliminary Definitions and Conventions

By a space-time, we shall throughout mean a fourdimensional, connected,
paracompact, Hausdorff, C°° manifold equipped with a Ck pseudo-Riemannian
metric (2 ̂ k^ oo) of signature ( + , -, -, -). We shall think of (M,g) as modelling
our universe, so that M should be non-compact and (M, g) should be inextendible
but we shall not use these properties except insofar as the construction to be
described becomes trivial when M is compact. LM will denote the bundle of
pseudo-orthonormal frames over M it carries a natural positive-definite metric
inducing a topological metric d. The b-boundary closure M of M [2] is
constructed by forming the Cauchy completion LMmetnc of LM with respect to d,
and then taking the quotient by a natural action of the Lorentz group, thus
defining a projection π:LMmetric-»M. We set dbM = M\M. A curve in M is called
b-inextendible if it is inextendible and its horizontal lifts in LM have finite length
in the Riemannian metric. Every such curve terminates at a point in dbM. IϊUξ=M
is an open subspace of M one can define a b-boundary closure of U, since (U,g\U)
is an (extendible) space-time, denoted by Ό distinguishing it from its topological
closure with respect to M, denoted by £7top.

3. The Projective Limit Construction

One can think of the b-boundary as formed by attaching an endpoint to every b-
extendible curve in M and then identifying the endpoints of curves having lifts that
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approach each other arbitrarily closely. The unwanted points noted in Sect. 1 seem
to arise from identifications between endpoints that one intuitively feels should be
separated. Some of these identifications are no longer made if one deletes a
compact subset from the interior of M. The idea of the projective limit con-
struction is to delete successively larger compact sets and form a limit of the
resulting boundaries. It can be split into several steps :

Let (M, g) be a space time as above.
(A) Let

p = { y :F£M,M\F compact}

for some indexing set A.

Now Me^, so let M=Vω.
Then (i) A is partially ordered by

(ii) y u{0} is a topology on M.
If α ̂  β let iaβ '.Va-*Vβ be the inclusion map.

(B) (i) If VΛε3Γ then (Fα,g|PQ is a (possibly disconnected) space-time. If Fα is
connected then Va is well-defined and if not we define VΛ to be the disjoint union of
the b-completions of it connected components. We note that if V^op is the
topological closure of Va in M then if xeV£op\Va, there is a point in Va

corresponding to x only if there is a rectifyable curve in Fα ending at x. If this is the
case then there is certainly a b-finite curve in VΛ ending at x and so there is at least
one point in Va corresponding to x (see [1] p. 283). We shall denote the subset of Va

consisting of such x by Fα.
(ii) If u^β and iaβ>VΛ->Vβ is the inclusion, then we can extend it to a

continuous map iaβ'.Vy-*Vβ such that if α^β^y then iay = ipy

0iy^
This map is not necessarily injective.

(C) Regard Fα, Fα as subsets of Va and regard Fα as disjoint from M.
Let iα : Fα-» M include Va in M. Define Mα to be the adjunction space of M and

Va via the map zα as follows :
(i) Put a topology on MuFα by taking the disjoint union of the topologies on

M and Fα.

(ii) Define an equivalence relation on Muϊζ by:

x ̂  y<^> either iax = y or iay = x .

Let Mα = MuFα/~ , the factor space.

(iii) Topologise Mα by requiring that the topology on Mα is the finest for which
the projection: Muί^->Mα:x-> [x]_ is continuous.

Then this space Mα consists of M together with the endpoints of the
b-inextendible curves of VΛ. b-inextendible curves not ending at points in the
topological closure of Va in M have endpoints in Fα\Fα, regarded as a subset of Mα :
b-extendible curves ending at points in Fα have endpoints both in Fα\Fα and in M,
which are not Hausdorff separated (regarding everything as taking place in Mα).
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From the construction one finds that :
(a) There is a map rα: Fα-^Mα which is a homeomorphism onto its image.
(b) The is a map mα:M->Mα which is homeomorphism onto its image.

(C) FαKx> FαKx> m«M aΓC °PeΠ in M 'a'
(D) If α^β, we have

' r β rα, rβ, mα, mβ are homeomorphisms .

Mα Mβ

A /mβ

M

Define Qaβ:Ma-*Mβ by:

7 o F ~ 1 τ if
t.y β / -y Λ 11

° ~ 1 x i f

Then ρα/? is well-defined, continuous and if α^β^y then

£αy = £0y ° £αβ

(E) Now we can take the projective limit of the system {Mα, ρaβ} as follows:

M* = limproj{Mα,ρα/J

= 1x6

Let χα:M*->Mα:x-^xα be projection on the αth coordinate. Topologise M* by
requiring that it has the coarsest topology making each χα continuous.

Finally we make the following definitions :

Definition /. Let M°= f) χα(mαM)
aeA

and

d*M = M*\M°= \J

3*M is the set whose elements we interpret as representing certain singularities in
space-time.

4. Basic Properties

Proposition 1. (a) // xe M* and xω = mωm for some me M, then xa = mjn Vαe A and
so xeM°.

(b) // xed*M then xaεradbVa \eA where 3bVa= Va\Va.

Proof. First we prove the following lemma :

Lemma. Suppose V^V^ZΓ with αrgβ and that there is an XE Vβ such that x has an
open neighbourhood N with NniaβVa = β. Then there is no p£Ϋa such that i^p — X-
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Proof. Suppose 3peFα such that iaβp = x.

There is a b-inextendible curve y :[0, l)-»Vα ending at p whose image, iα/3°y,
defines a continuous y :[0, l]->ΐ^ such that

(i) y(l) = *,

Hence yN is open, contradicting *γN= {!}.

/ (cont.). (a) Assume Ξϊ jSeA such that xβφmβM. Choose U open in M such
that me 17 and t7top is compact.

Let

Then

η^β so xηφmηM .

Also

£^ = *co = ™com>

SO

ίηcύ(rηxη) = m (definition of ρ maps) .

But t7n ί̂  = p by construction and me 17, so the lemma gives a contradiction. It
follows easily that xβ = mβm MβeA.

(b) xeδ*M=>xαeFα\F Vαe,4 [by part (a)].
Suppose 3βeA such that x^e Vβn(Vβ\Vβ)ι then xωemωM, and so xe M° by (a),

a contradiction. Hence the result. Π
This proposition allows us to think of points in M° as sequences of constant

projection and points in d*M as sequences of points in the "genuine" b-boundaries
of the various VΛ.

Proposition 2. & = {χaU : aeA, Uξ=Ma is open} is a basis for the topology on M*.

Proof. First the following lemma :

Lemma. // U = χβW where βeA and W is open in Mβ, thena^β=>3 W open in Ma

such that U = χΛW.

Proof.

Put W = ρaβWQMa which is open by continuity. Π

Proof (cont.). Now it suffices to show that έ% has the finite intersection property
Take χUy..^χU in <0. Let

α ι . . . F α n ( = M\[7βlu...u7J

Then y ^αt i — 1, ...,n.
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Hence there is an open U'tQMy for i= 1, ... such that χγU
f

ί = χaiUi i = 1, ... . Hence

.
i — 1 i — 1

i = n

But P) L/J is open in My whence the result. Π

Using these results and similar techniques one obtains (cf. [6] for details) :

Propositions. Vα, χα|M°:M°->mαM is a homeomorphίsm with inverse χα|mαM.
Hence M° is homeomorphic to M. Π

Proposition 4. M° is dense in M*. Π

These propositions mean that it is sensible to speak of d*M as a topological
boundary to M.

Proposition 5. (a) // x, yeM* and for some aeA, xα, yα αr<? Hausdorff separated,
then x αnJ y are Hausdorff separated.

(b) // xeδ*M and yeM° t/ieπ x and y are Hausdorff separated. Π

(a) Says, roughly, that if we can separate the endpoints of two curves in M by
the removal of a compact set, then in M* their endpoints, if they have endpoints,
will be separated.

(b) Is a consequence of (a) and says that the boundary δ*M is Hausdorff
separated from the interior M°. It follows that any continuous curve in M° which
is totally trapped in a compact set cannot admit continuous extension to a point
of d*M.

The next proposition characterises the curves in M°(^M) which admit
continuous extension to points in δ*M and proves that all points in δ*M are
determined in this way.

Proposition 6. (i) // y is a b- finite inextendible curve in M° which is not totally or
partially trapped in any compact subset of M°, then y has an endpoint xeδ*M.

(ii) // xe δ*M then x is the endpoint of a b- finite inextendible curve in M° which
is not totally or partially trapped in any compact subset of M°.

Proof. First we note the following, the "universal" property of M*.

is any topological space and ξa:X-+Ma are a system of continuous maps
such that oc^β=^>ββ = ρaβξa, then there is a unique continuous map ξ :X-+M* such

Proof of (i). Via the isomorphism M° « M, y : [0, 1)->M° defines y' : [0, 1)->M such
that, for all αev4, there is a ίαe [0, 1) such that ί > ία=>/(ί)e Va (regarded as a subset
of M).

Therefore the curves mα°7/:[0, l)-»Mα admit continuous extension to xα in
Mα\mαM with α g β=>Qaβxa = xβ.

Let yα : [0, l]-»Mα be these extensions. Then by the "universal" property above
3Γ: [0, 1]->M* such that ya = χa°Γ and Γ(l) is obviously an endpoint for y in <3*M
[in fact it is the sequence (xα)αe^].
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Proof, of (ii). Suppose xed*M. Let xω = p.

Let {Fn}neN be a countable collection of cocompact sets such that

(a) Fαe T=>3ne N such that Fα 2 FΛ,

(b) m^n=>VmgVn,
(c) FO=M,
(d) FngM VrceN,

- such a collection exists since M is paracompact. To avoid relabelling we assume
that N£A

Then xn = χnxedbVn [by Proposition l(b) and using the identification F"1].
Choose a b-inextendible (finite) yn:[0, l)-»Fn ending at xn. Lift yn to yn in LFn,

ending at xne L V^Qtric in such a way that m g; n=>7mnxm = 3cn and let x0 = p, where 7mw

includes LP^ in LP^ and Imn is its continuous extension.
Choose XJ, on yn such that dn(X'n,xn)<l/2n where dn is the Schmidt metric on

LFn. Define XneLM = LVQ by XΛ = /wσX'/

fI. Then, we break down the rest of the
argument in steps

(A) dΛ(^+1,nx;+1)^W

So 3Γή n+ 1 : C1 - V(n- 1), 1 - l/n\-+LVn such that:
(i)iΓ;Λ + 1(l-l/(n-l))=^

(ii) Length Γ;Λ+I< 1/2"- S
(iii) ye Image Γ;n+

(B) Define Γk:[l-l/(fc+l),lH^k by Γk(ί) = /Bk<>Γ ι; f l I+1(ί) for

as n ranges over fe + 2, k + 3... and k over 0, 1, 2, 3, . . . .
Then:

Length Γk^ X Length Γn f l l + 1

n^k+2

g Σ Length Γπ > n + 1

n ^ 2

< oo by construction .

Also for ίe[l-l/(n-l),l-l/n] we have

< 1/2" -2 by (A) (iii).

So Γk(t)-*xk as ί-*l.
Hence πk°Γ fc:[l — l/(k + l), 1)->P^ is a b-inextendible path ending at πk(xk)

= xke Vk where πfc:Ll^metric-> J^is the extension of the bundle projection πk:LVk-^Vk.
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Let (^[l — l/(/c +!),!]-> Ffe be the continuous extension of πk°Γh such that
ξk(ί) = xk and define yk:[0, l]->Mk by:

*°£o for

f, for ίe [!-!/(*+ 1), 1].

Then we have :
(i) k^j=>ρkjyk = yj.

(ii) We can define yα : [0, l]-»Mα for all αe^4 (not just in N£^4) by picking ne N
such that Vn g Fα and defining yα = ρπαyn. This is independent of the n chosen by (i)
immediately above.

The ya satisfy
(i) u^β=>yβ = ρΛβyΛ.

(ϋ) ?«(!) = **•

Hence by the universality of M*, there is a continuous map η : [0, 1]-»M* such
that Vαev4 yoc = χa°η. Therefore 7?|[0, 1) has x as an endpoint and under the
isomorphism M°^M is equal to £0|[0, 1) which was b-finite and inextendible by
construction.

(C) Now we need to show that η \ [0, 1) is not totally or partially trapped in any
compact subset of M°. If it were then ξ°\ [0, 1) would be trapped in some compact
subset K of M.

Let

VΛ = M\K.

Choose rceNsuch that Fα2Fπ, then by construction ξ°(t)eVn for l>t
^ 1 — l/(n— 1), a contradiction to any kind of trappedness in K. [Here we regarded
the Fα as subsets of M, unlike as in (A) and (B).] D

5. The Choice of a Boundary

How adequately do the points of d*M represent singularities of space-time? In
favour of δ*M we can note that the arguments, that the b-boundary involves only
the connection and does not introduce "internal" boundary points [(i) and (ii) of
§ 1], apply equally to δ*M; moreover δ*M is free from the drawbacks we have
noted for BbM [(a), (b), and (c) of § 1]. Also the two boundaries rank about equal in
their ease of computation: d*M involves only local considerations (with respect to
the topology 3?~u{0}\ which is a simplification but the topology of δ*M is more
involved. On the other hand, it could be argued against δ*M that it is certainly
outclassed by dbM in mathematical elegance.

We would hold that it is probably misguided to look for "the" perfect
boundary for space-time. Instead, one should equip oneself with a range of
possible boundaries so as to have tools available for various contingencies. A wide
range of boundaries is provided by the following generalisation of the construction
of Sect. 3. One starts with sets

{WgM'.W open and P(W)}
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where P is some property satisfying:
(a) For each meM, 3 open UζM and closed VQM such that meUQV and

P(M\V).
(b) P(W1)y..9P(W^P(Wί^...nWn).
(c) If we index the above family as {Wa :aeA} then there is a countable subset

{Z ieN) with
(iJZo^Z^Z^...,

(ii) P(X>>JQZΠ for some πeN.
The boundary generated by applying the construction of Sect. 3 to such a

collection of initial sets would then satisfy Propositions 1-6 appropriately
modified if necessary. However, it might prove difficult to interpret such a
boundary physically if P is chosen so that {X: P(M\^Γ)} do not correspond to a
notion of "physically interor" sets.
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