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Abstract. Using the powerful method of reflection-positivity and chess-board
estimates, we prove the existence of phase transition for certain class of
isotropic short-range interactions with continuous symmetry, provided that
the dimension of the lattice is at least two, and the temperature is low enough.

1. Introduction

There has been great progress recently in proving the existence of phase transitions
for systems of statistical mechanics. The powerful methods of reflection-positivity
and chess-board estimates were applied to both classical and quantum cases [1].
This made it possible to handle many anisotropic nearest-neighbor interactions
[1] and to recover some results of Dyson and Kunz-Pfister for long-range
isotropic interactions [2]. Further results of the authors of [2] are announced for
Coulomb gases and quantum field theory.

The purpose of this paper is to show the possibility of applying the methods of
[1,2] to isotropic short-range interactions with continuous symmetry. For such
interactions there exists a general result of [3] about absence of breakdown of
continuous symmetry. So the one-point correlation functions must be the same in
all phases. Indeed, in models we consider, the difference between phases is
manifested by the difference between two-point correlation functions of these
phases. The phases we will construct in Sect. 2 are translation invariant (after
suitable change of coordinates). It does not contradict, however, results of [4,5]
about uniqueness of translation-invariant states for some S1-invariant interac-
tions, because we are dealing with an entirely different class of models.
Nevertheless, several correlation inequalities of [4,5] are also valid for our
interactions (those of Ginibre type).

Finally, about the content of the paper. Section 2 contains the proof of the
simplest variant of our results. This is done for the sake of clarity. The general
result is formulated in Sect. 3. As the proof of it is essentially the same, it is omitted.
The paragraph is concluded by some discussions.
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2. The Main Result

Let 7L2 be two-dimensional lattice, LeC%2 be any sublattice of index two, and
L0=Z2\Le be the coset. We'll consider the model with the hamiltonian

-H = J1 £ cos(φi-φj)
i,jeLβ,\i-j\ = \/2

+ J2 £ cos Oft -φ,)
ίJeL0,\i-j\ = ]/2

+ J3 Σ cospOft-ς^ + π], (1)
ίeLeJeL0,\ί-j\ = l

where | | means euclidean distance, φteSl, J15 J2, J3 Φθ. Without loss of generality
we can suppose J1? J2, J3>0. The free measure is simply the Lebesque measure
dφ, §dφ = 2π.

Now, the first and the second terms in the hamiltonian are the interaction
between spins on Le, and L0. This interaction is attractive, and via it the spins on
each sublattice have a tendency of being parallel. The third term represents the
interaction between sublattices, and it is of such a tipe, that the spins have a
tendency to be perpendicular. The hamiltonian H is evidently rotation-invariant.
Moreover, it is also invariant under the transformation

<ft-»<ft, (pj^φj + π ; ieLe, jeL0. (2)

Thus, the groundstates of H are of the form :

and

|α — /?| = — modπ.

Being applied to this model, our main result implies the following :

Theorem 1. There exist at least two different phases for the interaction (1), provided
the temperature is low enough.

Both of them are, of course, rotation-invariant [3], but with probability
tending to 1 as temperature goes to zero, the rotation from φ(0,o) to Φ(o,i) *s

clockwise in one face, and counterclockwise in another (in a typical configuration).
The proof of this theorem is based on the reflection-positivity and chess-board

estimates method. As for reflection-positivity of the hamiltonian H according to
reflections in the coordinate lines of. TL2 and their Z2-translates, it can be seen
exactly in the same way, as it was done in [1] for the case of anharmonic crystal.
Indeed, after fixing any configuration on such a line ( = one-dimensional sublattice
for TL2, = union of two circles for two-dimensional torus), two resulting families of
spins are conditionally independent and identically distributed.

In order to introduce contours, we will slightly rewrite the hamiltonian H. To
do this we will use the trick previously used by Pirogov [6], when discussing the
anharmonic crystal result of [1]. Let J\ =2J1? I2 = 2J2, 73= J3/2, and let {cj be
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the collection of unit closed squares of Z2, where 5 runs over the sites of dual
lattice. Then

- HCs = /! cos (φi - φj) + 12 cos (φk - φt)

+7 3 {cos [2(φ. - φk) + π] + cos [2(φi - φt) + π]

+ cos [2(<pj - φk) + π] + cos [_2(φj - φ,) + π] ,

where {iJ} = csnLe, {kJ} = csnL0. Now let a configuration {φv teZ2} be given.
We call a square cs regular, if

<(5modπ for all αe{i,j}, βe{kj}.

Here i, j, k, lecs, \ί—j] = \k — l\= J/2 and δ is some positive real, which we will
specify later. Finally, we call a square cs irregular, if it is not regular.

A sequence cs(k) is called a path, if for any k two squares cs(k) and cs(k+ί) have a
common edge. If δ is less than, say, π/10, then we have two tipes of the regular
squares, according to the direction of the rotation from Le-spins to L0-spins. We'll
call a regular square to be of (+ )-type, if the rotation from Le-spins to L0-spins is
clockwise, and of ( —)-type, if it is counterclockwise. It is easy to see, that any path
cs(fe), which connects regular squares of different types, also contains at least one
irregular square between them. So the following definition agrees with the usual
feeling:

For a given configuration {φt, ίe2Z2}, we call a contour any maximal connected
component of a set of irregular squares.

The reader must note, that by "square" we mean closed square, so the set of
two squares, which have only one vertex in common, is connected.

Let s, t be two vertices of the dual lattice, and let P* denote the characteristic
function of the event that the square cs is of (± )-type. To prove our theorem it is
enough to show that

uniformly in s,t,Λ, where by < yΛfβ we mean the integration respect to measure

ίeΛ

with periodic boundary conditions,

ZA(β)= J πp{
ίeΛ

and, of course, the period is supposed to be even.
To see it is enough, let us decompose any limit point 3P^ of the sequence

Λ-+CD into ergodic components, ̂ β = \^dτ. Then

(4)
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If β is large enough, then the r.h.s. of (4) is uniformly small in s, t. But by the ergodic
theorem it tends to

as |s — 1\ -> oo. Hence there exist a set of τ-s of measure almost equal to 1, for which
the product

is small. But the sum of those two integrals tends to I as β-> oo as we shall show, so
one of them is near one, and the other-near zero for each τ in this set. The proof is
completed by using the symmetry transformation (2).

The estimation (3) follows in the same way as in [1], using Peierls-chess-board
arguments with minor modifications. There are some difference in the entropy
estimate, i.e. in estimating the number of different contours with the same length. It
is easy to see by induction, that for any connected graph there exists a walk on it,
with the property, that one passes along every edge of the graph exactly twice. So
the number of different contours consisting of y squares is bounded by 82(y~1}. So

oo

where by (yyΛtβ we denote the probability of finding the contour of size y,
maximalized over all possible shapes of them.

The chess-board estimate gives us the following bound for (y)^ β:

/y\ </p y/(2|Λ|)

where PΛ is the "universal projector" of [1], i.e. the characteristic function of the
following event: all squares cs are irregular. To complete the proof we need only
the appropriate upper bound for (PAyΛίβ. In other words, we must estimate the
probability of every square cs to be irregular.

In order to this, we make first the following estimate of the statistical sum,
ZΛ(β). (Here, A is two-dimensional torus.) Let the spin <p(0,o) be fixed, and consider

all the configurations with |φ(0 0) —φ.|<α

\φk — Φj| < ^ , fe, ίeL0, where α is arbitrary. Then the energy of any such con-

figuration is not more than

so

2 2π (2α)M|-1.

Here 2 comes from 7L2 -symmetry, and (2π) from S Asymmetry. This bound is valid
for any α.
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Next we estimate the integral

taken over all configurations with every square being irregular. The energy of such
a configuration is not less than

-β(I1+I2 + 4I3+±{I1(cosδ-l);I2(cosδ-l);4I3(cos2δ-l)})\Λ\

for some positive / and sufficiently small δ. So the integral is not more than

exp {/^ + 12 + 4/3 - I

and finally,

We can see now, that for any δ there exists α>0 which makes the β-coefficient
negative. In other words,

Hence, for β sufficiently large the sum (5) is finite and goes to zero as j3->oo, and
the proof follows.

3. Generalizations and Discussions

3.1. The theorem we have proved is valid in more general setting. Let G be any
compact connected Lie group, and φ^G for any ieZ2 (instead of S1}. Let U be
four-particle interaction :

is the only nonvanishing interaction, e.fεTL2 are two orthonormal vectors.
We need the following properties of the interaction :

(a) Reflection-invariance :

= Ui + f(φi + f,φi + e + f,φi,φi + e) for any i.

(b) Symmetry:
Let TLp C G be any discrete subgroup of prime order (the existence of them is

well-known).
Let us consider the following action of G x TLp on the four-spin configuration

space Gt x Gί + e x Gί + f x Gi + e + f :

where ωeZpCG and iεLe. Let M be the orbit-space of this action, and eeM be the
image of the point e x e x e x ee(G)4 under natural projection map π : (G)4->M.
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We suppose J7(0 0) to have a form π*F, where V is continuous function on M
which takes it maximal value exactly in one point e.

Then we have the following.

Theorem 2. // the interaction U satisfies conditions /, 2, then for sufficiently low
temperatures we have at least ρ different Gibbs states for this interaction. If, in
addition, the potential is of class C2, then all this states are G-invariant measures
according to natural G-action on the configuration space.

The first statement of the Theorem 2 can be proven exactly in the same way, as
the Theorem 1. In fact, Theorem 1 is a corollary of the Theorem 2 (after
introducing new coordinates). The second statement of the Theorem 2 follows
from the general results of [3].

3.2. The general ideology of two-dimensional systems says that there can be the
break down of the hamiltonian symmetry if it is discrete, and it cannot be if it is
continuous. So the Theorems 1 and 2 bring a unified example supporting this
statement.

3.3. Of course, the statement about absence of breakdown of continuous symmetry
is valid only for smooth potentials. It is an interesting open problem to prove, that
for nearest-neighbor ^-invariant interactions with singularity of the type ( — |x|α),
α < 2 at its maxima, there are infinitely many Gibbs states even in two dimensions.
However, there seems to be no methods up to now to attack this problem.

3.4. All the arguments above can be extended to three-dimensional cases. But for
this case one has also spontaneous magnetization (G = S1), as it follows from
Ginibre-Dunlop inequalities and infrared bounds. Let Tt be the critical tempera-
ture for continuous symmetry breaking in three-dimensional version of the model
(1), and T2 be the critical temperature for discrete symmetry breaking. An
interesting open problem is to show that T2 > Tγ (it is easy to see, that T2 ̂  TJ.
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