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Abstract. We consider clustering G-invariant states of a C*-algebra 21 en-
dowed with an action of a locally compact abelian group G. Denoting as usual
by FAB, GAB, the corresponding two-point functions, we give criteria for the
fulfillment of the KMS condition (w.r.t. some one-parameter subgroup of G)
based upon the existence of a closable map T such that TFAB = GAB for all
A.BeW. Closability is either in L°°(G), B(G\ or ^JG), according to clustering
assumptions. Our criteria originate from the combination of duality results for
the group G (phrased in terms of functions systems), with density results for the
two-point functions.

1. Introduction

The so-called Kubo-Martin-Schwinger (KMS) condition plays an important role
both in physics, where it is the modern expression of the "Gibbs structure"
(independant of the thermodynamic limit) [1] and in the theory of von Neumann
algebras where separating normal states possess this property w.r.t. their "modular
automorphism groups" [2]. With 21 a C*-algebra and ί->αr a one-parameter
automorphism group of 21, a state ω is called β-KMS for α whenever, to each pair
,4, Be 21, there is a function / of the complex variable, continuous and bounded in
the strip O glmzrgβ, holomorphic in its interior, with boundary values

FAB(t)=ω(Bat(A))=f(t)

y '
This condition can alternatively be stated as follows in terms of Fourier transforms
(tempered distributions)

(1.2)
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It is clear from these relations that the KMS condition implies the existence of
a well-behaved map FAB-+GAB. Our purpose in this paper is to study the KMS
condition in relation with this map and to see wether the existence of an
appropriate map entails the condition. In fact we will consider the case of general
continuous abelian automorphism groups and of KMS states w.r.t. a continuous
one-parameter subgroup: inferring the KMS property for such a subgroup is then
a procedure of the same nature as that of reconstructing a group from a dual
object and this explains how our question leads us to duality. We restricted
ourselves here to the abelian group case but it would be interesting, both
physically and mathematically, to investigate in this sense the non abelian
automorphism groups (in fact our study of the chemical potential in collaboration
with Araki and Haag [3] pertains to a non abelian case - and Tatsuuma also
brought a contribution in that direction [4]).

In fact we hope that our paper will provide part of the equipment for
developing further algebraic statistical mechanics, and we are thinking in particu-
lar of the two following directions: on the one hand the derivation of the KMS
structure from a combination of locality (here represented by asymptotic abelian-
ness) and a quantum dynamical ergodicity (non splittability of the dynamical
system) with which we hope that the existence of the map FAB-*GAB is connected
in some way. The other direction concerns wider automorphism groups, moving
frames, symmetry breaking, etc.

Section 2 of this paper is purely mathematical. It provides a fourfold duality
result (Corollary 2.7), whose proof is cast in the language of abstract Banach
algebras in order to unify the approach for the different cases.

Section 3 is independent from Sect. 2 and deals with invariant states of
dynamical systems. It provides density results (from physically meaningful as-
sumptions) which ensure a sufficient size of the domain of the map FAB-+GAB.

Section 4 combines the results of the two preceding sections to develop criteria
for the validity of KMS based on the existence of an appropriate map FAB-*GAB.
We conclude with a short proof of an already known physical result as an
illustration.

2. Positive Characters and Duality1

The classical Pontrjagin-Kampen duality theorem tells us how one can identify a
given object with an element of a preassigned locally compact abelian group G2.
Namely, G is exactly identified with the set of all continuous unitary characters of
the dual group G of G. In this section, we shall study a method of identifying a one-
parameter subgroup of G.

Suppose that {g(t);t<=R} is a continuous one-parameter subgroup of G, i.e. a
continuous homomorphism of the additive group 1R into G. The classical duality
theorem entails at once that there exist a continuous homomorphism β:
peGH>β(p)eIR such that

(2.1)

1 A general reference for this chapter is [5]
2 We shall use the additive notation for the group operations in G and G
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where <g,p> means the value of peG at geG. We then consider a positive
character χβ of G given by

(2.2)

Thus, a continuous one-parameter subgroup g(t) gives rise to a continuous
positive character on G. Conversely, we have the following :

Proposition 2.1. If χ is a positive continuous character of G, then there exists a
continuous one-parameter subgroup {gχ(t}} of G such that

X(pf = <9x(t\P>, te^peG. (2.3)

We leave the proof to the reader. It is a straightforward application of the
duality theorem.

Thus, one can identify continuous one-parameter subgroups of G with
continuous positive characters on G. If we drop the positivity assumption from a
continuous character χ on G, then we get a continuous one-parameter subgroup
{0|χ|(ί}} of G corresponding to the absolute value of χ, and a single element g0εG
corresponding to the phase of χ.

We shall then rephrase this characterization of a continuous one-parameter
subgroup in terms of function systems over G, not directly involving G. To this
end, we consider the involutive Banach algebra M(G) of finite Radon measures on
G, where the algebraic structure in M (G) is defined as follows

(2.4)

We denote here by ^(G) the C*-algebra of all continuous functions on G
vanishing at infinity. For each μeM(G), we consider its inverse Fourier transform
&μ defined by:

(^μ)(s)=j[<s,p>dμ(p), seG 3 . (2.5)
G

It is known that 3F is a ^-isomorphism of M(G) into the C*-algebra ^b(G) of
bounded continuous functions on G. We denote by B(G) the range of &, and call it
the Fourier-Stieljes algebra on G.

Suppose that we have a continuous positive character χ on G corresponding to
a one-parameter subgroup {$(£); ίelR} of G. Set

Mχ = {μEM(G);χμeM(G)} (2.6)

j*x = &(Mx). (2.7)

Define a linear map Tχ of jtfχ into B(G) by:

l f , fes/,. (2.8)

_
<φ,μ*>=f[φ(-p)dμj(p)}-.

3 The Fourier transform ̂  on G is defined by:

s), μeM(G), seG (2.5')
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Proposition 2.2. Under the above assumptions and notations, we have the following :
(i) Tχ is multiplicative and preserves positive definiteness

(ii) Tχ extends to a multiplicative closed linear operator T on L°°(G), the
closedness of T refer ing to the σ(L°°(G), Ll(G)}-topology4

(iii) for every f in the domain @>(T) of T and every seG, there exists a bounded
holomorphic function F on the strip, — 1 ̂ ImzrgO, such that

F(t)=f(g(t) + s) }

{ '
for almost every ίeIR;

(iv) T commutes with translations.

Proof. Except possibly for (iii), it is straightforward to check the proposition.
Suppose f=^μ with μeMχ. We have

seG, teR. (2.10)
G

For a zeC with -l^Imz^O, set

F(z)=[^Pyχ(prdμ(p). (2.11)
G

Since χ is integrable with respect to the absolute value |μ| of μ, F is bounded and
holomorphic inside the strip and we have

F(ί)=/(ff(ί) + s) and F(t-i) = (Tχf)(g(t) + s). (2.12)

We next consider a strongly continuous one-parameter group {T*} of isometries
on LX(G) defined by:

( T * f ) ( s ) = f ( s - g ( t ) ) , /eLHG), seG, (2.13)

and its adjoint group {Tt} on LGO(G) defined by:

(Ttf)(s)=f(s+g(t)), /6L°°(G). (2.14)

We also consider the set HCO(D) of bounded functions on the strip D = {zE(C;
— 1 ̂ ImzgO}, holomorphic inside D. Let 3) be the set of all/eL°°(G) such that for
every gεLl(G\ the function ίeIRκ><Tί/,^>G(C extends to an element Fg of HCO(D)
with \\Fg\\ ^ ̂ Kf \\g\\! for some constant Kf^0. Clearly we have j/C^. For each
zeD and /e®, there exists fzeLm(G) such that

G). (2.15)

If we set T z f = f z for each /e^ and zeD, then we have

Tχf=T_J9 fes/. (2.16)

We shall show that T_t is closed. Let © be the graph of T_ . in LGO(G)®LGO(G).
We must show that (5 is weak*-closed. Since Lco(G)0Lco(G)-(L1(G)eL1(G))*, we

4 L°°(G) and L^G) refer to a Haar measure on G, while L°°(G) and L^G) refer to the Plancherel
measure on G
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need only to prove that the unit ball of (5 is weak*-closed. Let fn®T_tfne& with
II/JU IIΓ-i/Joo^l, converge to f@g in the weak* topology. If heL\G\ the
functions: zeDf-><Tz/π,/z>e(C belong to HCG(D) and are bounded uniformly by 1.
Since {TJ is weak* continuous, we have

> and <Γ f0,Λ> = Ikn <Tt_Ja,hy. (2.17)

By the maximum modulus principle, the function: ίt-»<7^/, /z)eC extends to an
element Fh of H°°(D) and HFJ^ H / z l ^ . Thus /belongs to ® and g = T_J. We set
T= T_ .. By construction the analyticity requirement for T follows.

Let j/ and ̂  be two involutive semi-simple Banach algebras such that $4 is the
dual space of $ as a Banach space. Suppose that

(i) there exists a ^-isomorphism tσ of j/ into L°°(G) such that w is weak*
continuous and the transpose map w^. is also an isomorphism of the convolution
algebra L^G) into SS\

(ii) there exists a homomorphism ρ of G into Aut(^) such that each ρs is a
weak* continuous isometry of $ί and its adjoint ρ* gives rise to a strongly
continuous representation of G on the Banach space 3§

(iii) w intertwines the action ρ of G on si and the action λ of G on L°°(G) given
by:

&/)(r)=/(s + r), /eL°°(G), r,seG. (2.18)

(iv) The spectrum of ̂  is the dual group G and the composition of the Gelfand
representation w of ̂  and w^ coincides with the Fourier transform 2F on L'(G\

In applications, we consider the following two examples of { j</, ̂ , ρ, ro, m} :

Example 2.3. Let j/ = M(G), the convolution algebra of finite measures on G and
$ = ΉJ(G\ We define m, ρ, and w as follows:

(2.19)

w(φ) = <

It is straightforward to check the above postulates. In this case, we have
) = B(G), the Fourier-Stieljes algebra on G.

Example 2.4. Let .s/ = Lx(G) and ̂  = L1(G). We define w, ρ, and w as follows:

(2.20)

= ί<s,p>/(s)ds, feL\G),
G

It is also straightforward to check the above requirements. In this case, we have
) = A(G\ the Fourier algebra over G.

Theorem 2.5. Suppose that {<$/, &, w, ρ, w} satisfy the above postulates (i) through
(iv). Let Q)bea weak*-dense subalgebra of sέ globally invariant under the action ρ of
G. If T is a weak*-closed homomorphism of 2 into s$ commuting with ρ, there exist a
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s 0eG and a continuous one-parameter subgroup {g(i)\ ίeIR} of G such that for each
and seG there exists FejFί00(D) with boundary values:

= w(a)(g(t) +
l ' j

for almost every ίelR.

For the proof, we need the following elementary lemma, which is more or less
known. We include the proof for the sake of completeness.

Lemma 2.6. Let Abe a regular semi-simple abelian Banach algebra with spectrum
Ω5. Then the ideal J^A = {/e A :/ has a compact support in Ω}, where f denotes the
Gelfand representation off, is smallest among all dense ideals of A.

Proof. Let J be a dense ideal of A, and K a compact subset of Ω. We shall show
that /e </ whenever supp/cK. Let ̂ K = {feA;f=Q on K}. Then J>κ is a closed
ideal of A. Consider Aκ = A/J>K and the canonical map πκ:A->Aκ. The regularity
of A implies that the spectrum of Aκ is canonically identified with K. Then the
compactness of K entails that Aκ is unital. The image πκ(</) of */ is a dense ideal of
the unital algebra Aκ, so that πκ(V) = Aκ. Hence J contains an element he A such
that h=l on K. Hence hf=feJ> whenever supp/cK. Hence 3

Proof of Theorem 2.5. We consider the graph (5 of T in stf®^. The weak*-
closedness of T yields that (5 is closed under the weak* topology in j/0^/
determined by ^0 .̂ Since T and ρ commute, (δ is invariant under the action
Q = Q®Q of G Hence ρ gives rise to an action of Ll(G) on ©, denoted also by ρ :
this means that the action ρ/; /eL1(G), defined by

commutes with T, i.e. ρf(<£ι)c&! and Ύ*ρf = ρf°T.

Let ^* denote the definition domain of the adjoint operator T* in $, it follows
that *2* is invariant under ρ^, /eL1(G), and T*°ρ*=:ρJoT*. We next claim that

ρ*(fe) = m s | t(/)fe, fεL^Glbεa. (2.22)

For all αej/ and f,geL1(G), we have

- (ρ/α), tn^fe))

= J <ρs(α)s ^s|tte)>/(s)ώ= f <m(ρs(α
G G

G GxG

= JJ tB(fl)(r)fli(r-s)/(s)drds = <ιD(α),/*&>. (2.23)
G x G

Thus ρ*(tσHς(gf)) = ΐσslί(/)tσs!ί(gf). Since L^G) separates C7(j^)5 wήί(Lί(G)} is dense in J*;
thus we get (2.22).

5 A semi-simple abelian Banach algebra is said to be regular if the hull-kernel topology coincides
with the weak* topology on the spectrum
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Therefore Q)* is invariant under the multiplication by w^(L1(G)). For any

and ce J*, there exists a sequence fneLl(G) such that lim \\w^(fn) — c\\ = 0, and we

have bc= lim bwAQ and
n = oo # ̂  «7

= hjn T*(ί?K(/J = im T*(bwtfJ) . (2.24)

Hence bce@* and Γ*(fec)= Γ*(b)c. Therefore @* is an ideal of ̂ . Furthermore <$*
is dense. Since w°w^ is the Fourier transform of LX(G), w(^} contains A(G\ which
means that 3& is regular. Thus, Lemma 2.6 entails that w(@>*) contains
m(^)nJΓ(G), in particular m(^*)D^(G)nJΓ(G).

We define an operator T on w(S>*) by

T-ΐπoT^otiΓ 1. (2.25)

We then have

f(φιp)=f(φ)ψ, φew(@*l ψew(3S). (2.26)

Hence we have, for all φ, \pew(S)*\

φf(ψ) = f(φψ) = f(φ)ψ, (2.27)

which means that there exists a continuous function χ on G such that

f(φ) = χφ, φew(@*}. (2.28)

Noticing that w is a norm decreasing map of 2% into ̂ (G), we have a dual map w*
from M(G) into stf. For each /eL1(G) and μeM(G), we have

<^/, μ> - <mom*(/), M> = <**(μ), tπ*(/)> - <moτi7*(μ),/> (2.29)

so that tu°ΐπ*(μ) must be the Fourier transform 3F{\ί) of μ. Since w is multiplicative
on ^/, w* maps the convolution product in M(G) into the product defined in j^.
Suppose that μeM(G) has the property that χ is integrable with respect to |μ|. For
every be^*, we have

*fc), μ> = <tm(fe), μ> - f m(b) (p)χ(p}dμ(p)

= (w(b\χμy (2.30)

so that m*(μ) belongs to the domain 3) of T and

(2.31)

for every μeM(G) with χμeM(G). The multiplicativity of T together with that of
w* entail that

X(μ*v) = (χμ)*(χv) (2.32)

for all μ, veM(G) with χμ and χv finite. Thus χ must be a continuous character of
G. Therefore, there exists an s0eG such that

(2.33)
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with jβ(p) = log|χ(p)|. Thus we obtain a continuous one-parameter subgroup {g(t);
such that

> = eίf*(p), peG. (2.34)

Set Tt = ρg(t)9 ίeR We have a homomorphismT:ielRh>r feAut(j^)such that {7^*;
ίeIR} is a strongly continuous one-parameter group of isometrics of 3$. Let ̂ 0 be
the set of all those aestf such that for every be&, the function ίelRt-*<7](α),b>e(C
extends to an element Fb of HCO(D) such that

lΉlloo^U&ll (2-35)

with a constant /c f l>0 independent of b. As in the proof of Proposition 2.1, we
define a closed operator T_ί with domain ®0. We claim that ρS o°TL f extends T

To prove the claim, we shall first show that if χtπ(b) = m(c) with b,ce$ then
* and T*b~c. For every xe^*, we have

w(T*bx) = χro(έ>x) = χm(b)t&(x) = t&(c)tπ(x) = τπ(cx) (2.36)

so that

T*bx = cx, XE@*. (2.37)

By (2.22), w~l(3f(G}r\A(G}} contains an approximate identity {xn}, so that we
have

b=\imbxn and limT*(fcxπ) = limcxπ = c. (2.38)

Thus be@* and T*b = c. From this, it follows that the image 2l of (μeM(G);
χμeM(G)} under tπ* is a core of T As in the proof of Proposition 2.1, we observe
that

Q^T_tw(μ) = w*(χμ) (2.39)

if μ and χμ belong to M(G). Thus Tand ρso° T_f coincide on ̂ 1. We completed the
proof.

Corollary 2.7. (i) Let & be a weak*-(resp. norm-) dense subalgebra o/L°°(G)
^(G)^, invariant under the translations. If T is a weak*-(resp. norm-) closed
homomorphism of & into L°°(G) (resp. ^^(G)) commuting with the translations, then
there exists a s0e G and a continuous one-parameter subgroup (g(t) ίelR) of G such
that for every seG and fe@ there is an FeHco(D) with boundary values :

F(t)=f(s (140)

(ii) In the above assertion, one may replace L°°(G) and ^(G) by B(G) and A(G)
respectively, where the weak* -topology in B(G) refers to the identification

3. Density of the Two-Point Functions of Invariant States

We begin by giving definitions and fixing notation.
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Definition 3.1. Given a C*-algebra $1 and a locally compact group G, an action of
G on 21 is a homomorphism g^>ag of G into the automorphism group of 21 such
that the map geG-*&g(A) is continuous for all ,4e2l. With an action α of G on 21
the triple {21, G,α} is called a C*-system.

Definition 3.2. An ^-invariant state of the C*-system {21, G,α} is a state ω of 2ί
such that ω°ag = ω for all 0eG.

The two-point functions FAB, GAB, resp. truncated two-point functions fAB, gAB,
are defined as

resp.

JAB * A B ~

and we set

In terms of the Gelfand-Neumark-Segal (GNS-)construktion {π, U, 3f, ξω} of ω,
the functions (3.1), (3. la) respectively read

FAB(g) = (π(B*)ξω, U(g)π(A)ξω)

GWί) = W^*)
and

with U0 the representation induced by U in the subspace of &C orthogonal to ξω.
We see that the sets ^, <§, f, and 9 are within the linear span B(G) oϊB + (G\ the set
of continuous positive type functions on G. Setting6

(3.4)

(3.5)

(3.5a)

we note that J^ + , f + C 5 + (G), &? M CB + (G).
We shall mainly be interested in the case where G is abelian. B(G) is then

isomorphic to M(G) = (^7

00(G)* and equipped as such with the weak* topology
σ(B(G\ ^(G)). On the other hand B(G) is immersed in L°°(G), which we equip with
its weak* topology σ(Lco(G),L1(G)). The two following facts are important for the

6 We recall that for /eJ3 + (G), \\f\\m is the value of / at the unit of G
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sequel: σ(L°°(G),L1(G)) coincides with the weak* topology of B(G) on bounded7

subsets of the latter and these topologies coincide with the topology of uniform
convergence on compacts on subsets of B + (G) bounded7 above and below by
positive constants (cf. [6], 2.7.5 and 13.5.2).

We finally note the properties (stated for G abelian)

GAB(g) =JW(0) A β gj Gr> ί \ T- ί \ •> A,D£ 41, £/, S fcU , /"} /TVGAB(g) =FBA(-g) (3.6)

(37)

holding also if we replace FAB, GAB by fAB, resp. gAB : we see that ̂ , ̂ , f , and g are
(globally) translation invariant sets of functions.

Definition 3.3. Let, with the above notation, ω be an α-invariant state of the
C*-system {91, G,α}. Assume the group G amenable non compact and denote by
Jί(G) its set of invariant means [i.e. the set of states of the C*-algebra L°°(G)
invariant under translations by elements of G]. Let, on the other hand, 9I0 be a
norm-dense, globally translation invariant *-subalgebra of 91. We say that we have
ω-asymptotic abelianness whenever

(3.8)

and ^-asymptotic abelianness on 9I0 whenever

{^poc^-a/BMllleLHG), A,BeW0. (3.9)

On the other hand we say that the state ω is weakly ^-clustering whenever8

(3.10)

(^-clustering of order n (n a positive integer) whenever, to each set A19 . . . ,^
^n, there is a positive function φe^7

00(G) with

lω^α^μj, ...,αj^))|gφ(^-^.), i*j (3.11)

(here ωfp) denotes the truncated function of order p see, e.g. [7]. VI, Appendix).
L1 -^-clustering of order n on 9ί0 whenever, to each set Aί9 ...5y4pe2ϊ0, p^π,

there is a positive function φeLί(G) fulfilling (3.11).
We note that for n=2 the two last properties (to which we then simply refer as

clustering, resp. L2 -clustering on 910) reduce to

f^eV^G), A,BeM, (3.12)

resp.

fABeLl(G), A,BeK0. (3.13)

7 For the sup norm

8 It is well known that under the above asymptotic abelianness properties weak (^-clustering of ω is
equivalent to extremal α-invariance
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We now state our first density result :

Proposition 3.4. Let ω, with the above notation, be an a-invariant state of the C*-
system {91, G, α}, where G is abelian. We have that

(i) ̂  (or <8, or, f, or gj is weak* total in B(G) ίff$pU = G;
(ii) these sets are even weak* dense in B(G) if we assume in addition the existence

of an action τ of a locally compact group H on 91 commuting with α 9 and such that ω
is τ-invariant and τ-clustering (in particular if, in addition to Sp U = G, ω is α-
clustering).

(iii) assume ω ^-clustering (so that f, QC^^G)) : then SpU = G iff \ (or gj is
total in ̂ (G) for the sup norm.

Proof. Owing to (3.6) we need only consider the case of 2F and f. The proof of (i)
rests on the following known fact (see, e.g., [6], Sect. 18):

Let K with spectrum ΣeG, be a continuous unitary representation of the
abelian locally compact group G on the Hubert space ffl and let

^ = {{0eG^fo7(0)φ)};φεϊ,||φ|| = l}, (3.14)

where ϊ is a dense linear subspace of Jf . Then the weak* closed convex hull of ̂  in
B(G) consists of the functions in B±(G) whose Fourier transforms have support
within Σ.

Applying this to V= U and l = π(<H)ξω [resp. V = U, and l = E0π(A)ξω, E0 the
projection in ffl onto the subspace orthogonal to ξω], we see that the closed
convex hull in B(G) of the set J^+, (resp. f^) is the whole ^(G). Assertion (i) then
follows from the fact that J3^(G), resp. B + (G\ generate B+(G\ resp. B(G) by
homogeneity, resp. linearity.

The proof of (ii) (as well as other arguments to come) follows a pattern
described by

Remark 3.5. Let X and Y be topological spaces, with (b,a)eX x Y-*b°aeX a
separately continuous map. If the respective subsets S and T of X and Y have
closures S and T such that T°ScS, one has T°ScS (immediate : let x e S and y e f
be the respective limits of generalized sequences {xσ}c5 and {yτ}cT: one has

successively y^x^— *yτ°xeS for each fixed τ ; and yτ°x-+y°xeS).

Choosing X=Y= B(G\ S=T= J^_pr f , and a b = a + b, we see that (ii) follows if
we prove that ̂  + ̂ C^ and f + f Cf.

Now τ-clustering of ω entails that one has, for all A19 A2, J31? B2e9I,

]1, (3.15)

) + ω(B1)ω(A2) ]t, (3.16)

poinwise and, since the functions on the left are uniformly bounded, in the σ(L°°(G),
L^G)) and σ(B(G), ^^(G)) topologies. Now (3.17) shows that f + f C f. Further we see

9 I.e. τ Λ °α =α °τή, geG, heH
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from (3.15) FAιBι+λtε& for all A19 B^W and λeC [choose A29 B2 with ω(Eί

+ B 2)φO and ω(A2) = [λ-ω(Aί)ω(B2)']/ω(B1+B2)']. This combined with (3.16)
shows that ^Ή-^c^.

We now prove (iii) : Sp U = G entails Sp UQ = G, from which follows that U0(f)
= 0, /GL1(G)5 iff / = 0 [l/o denotes also the associated representation of Ll(G] and
M(G)]. Let now μeM(G) be non vanishing: there is an feL1(G) with μ*/Φθ and
thus C70(μ*/)=C70(μ)LΓ0(/)ΦO, whence L/0(μ)φO. But, from (3.3a) we have

(π(B*)ξω, U0(μ)π(A)ξω} = $ fAB(g)dμ(g) = <μJAB>, A9BeW, (3.18)

and ξω is cyclic : thus μ vanishes on f iff U0(μ) = 0 : we see that f is total in ^(G) iff
SpI = G.

Remark 3.6. We also proved that in the frame of Proposition 3.4 one has Sp U = G
iff the weak* closed convex hull of any of the sets J^ + , ̂  + , f + , g + (Ĵ 1 + , # + , f + ,
9^) coincides with 5 + (G) (B^(G)); and further that if ω is τ-clustering, the weak*
closures of J^ + , ̂  + , f + , and g+ are already convex.

Our next result pertains to density in L°°(G).

Proposition 3.7. Lei ω, with the above notation, be an (^-invariant state of the C*-
system {2ί, G, α}. And assume the existence of an action τ of an amenable group H on
% commuting with α, ω-asymptotically abelian, and for which ω is weakly τ-
clustering. //Sp U = G the sets J% ̂ , f, g are all weak* total in LCC(G). These sets are
even dense in L°°(G) if ω is τ-clustering.

Proof. We need only consider 3F and f whose weak* closed linear hulls in L°°(G) we
denote [J^]00, resp.~ [f]°°. As a first step we shall prove that the latter are
multiplicative. For this we observe that by Remark 3.6 withZ= 7 = L00(G), S=T
= & or f, and a b = ab, it suffices to show that ̂  - ̂  C [̂ ] °° and f f C[f]°°. This
will result from the assumed clustering and asymptotic abelianness.

Consider the functions
Φ =

u ~Aιτu(A2),Bιτu(B2)

and let ηeJί(H). Since the representation of L°°(H) by pointwise multiplication
on L2(H) is faithful1 0 there is a net {ησ}cL^(H) such that >7σ->?/ in the weak*
topology of L°° (//)*. Smearing out the functions (3.19) with the ησ:

(3.20)

we obtain, as shown by the Fubini theorem, respective elements of
and f11 = [f]°° yielding the pointwise limits

4B-JAB ""V-2AMB < "VMAM B ^^

10 See [6]
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as follows from the weak τ-clustering of ω, owing to

Φ«(0) = 9u(9} + <»(Asu(A2) ω(Bΐτu(B2))

= ω(βιαβ(^)τM(52α,(^^

(3.22)

since η vanishes on the last term, due to ω-asymptotic abelianness for the action τ :
(3.21) now entails ̂  ̂ cE^]00, f f C[f]°°, observing that Φσ and φσ are bounded
by MJ II^IHIβJ l l^ l l , and thus that the limits hold in σ(L°°(G), LX(G)) by
dominated convergence.

From the multiplicativity of [̂ ]°° and [f]00, and from (3.6), (3.7) we now
conclude that [J^n^]00 and UΓnCg]00 are both globally translation in-
variant von Neumann subalgebras of L°°(G). Theorem 2 of [8] then asserts that
they are describable as subsets of L^-functions invariant under some closed
subgroup of G : but the latter has to be trivial due to Sp U = Sp U0 = G. Thus [J^]00

= [0]°° = [f]00 = [g]00 =L°°(G). And we proved earlier [cf. proof of Proposition 3.4
(ii)] that if ω is τ-clustering the weak* closures of these sets are already linear.

We now prove density in Ll(G) under a sharper clustering assumption (for a
neighbouring result, see [9]).

Proposition 3.8. Let ω be an ^-invariant state of the C* -system {$ί, G,α}, with G
abelian and $ί unitaL If ω is L1 -a-clustering of order 4, and Sp U = G f and cj are both
total in Ll(G\

Proof. Since ω is a fortiori L1 -clustering, we have f, cjCL^G). Let [f^ be the closed
convex hull of f for the L1-norm, we must show that [f]1=L1(G). Since f is
globally translation invariant, [f]1 is a closed ideal of the group algebra L^G).
Thus if Σ0 is the set of points of G at which the Fourier transform of at least one
element of [f]j does not vanish, we shall have [f]1 =Ll(G) if we show that Σ0 = G.
Now this will hold if we show that [f]x is stable under multiplications by all
elements of L°°(G), since, taking for the latter all characters of G, Σ0 is seen to be
translation invariant in G, and hence to cover G due to Sp UQ = G.

Our proof thus boils down to proving that Lao(G) tf']1C[f]1, i.e. [f]00

•[f]ιC[f]ι by Proposition 3.7. Now Remark 3.5 reduces this to showing that
HcCίli [choose X = L\G) with its weak topology, y = L°°(G) with its weak
topology, S=T=f, a°b = ab; and observe that weakly closed and norm closed
linear hulls in Z/(G) coincide].

The fact that f fcCf]] . will now result from the L1-α-clustering of ω by a
sharpening of the argument establishing Proposition 3.7. We shall use the function
φu in (3.19) with τ = a and a modified form of A^ A2, B^ B2. Note that if we define

A' = A-ω(A)t, AεW, (3.23)

we have the following straightforward properties

ω(A') = Q, AeW, (3.24)

(3.25)

), ^eSI, (3.26)

) = fAB(g) , A9BeW9gεG, (3.27)
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[(3.26) is immediate from the fact that any truncated function vanishes whenever
one of its arguments is a multiple of the unit]. From (3.26) and (3.25) follows that if
(3.11) holds, it also holds with (some oί) the At replaced by the corresponding A[
Let now A^ A2, B^ B2etyί and expand in terms of truncated functions the first
term in the r.h.s. of the second line in 1 1

u(A'2V (3.28)

We obtain taking account of (3.24) through (3.27) above

( a u ( B 2 ) a ( A ί ) ) , (3.29)

where, due to the assumed ZΛα-clustering of ω of order 4, the two last terms are
majorized by a fixed //-function of g, and tend to zero for u~+co. The dominated
convergence theorem then implies that φ'u — - — > f^s/t^^' whence f fC[f]0.

We end up this section by collecting results in the physically important case
G = 1R, the additive group of reals, where asymptotic abelianness and weak
clustering are known [10] to imply a "spectral alternative".

Proposition 3.9. Let ω be an extremal invariant state of a C*-system {$ί,IR,α}
assumed ω-asymptotically abelίan. Adopt the notation of Definition 3.2 and denote by
[]*> D00. Oι» Goo closed linear hulls in respectively in J8(R), L°°(IR) for their weak*
topologies and //(IR), ^(IRJ/or their norm topologies.

One has then the following alternative (i), (ii), (iii) :

(i) SpC/ = lR; C^^CT^m^Cgl^BflR); and

(ii) Spl/ = {nα; πeZ} for some α>0; π(9I) is abelίan
= [9]# = {/e#(IR)>' f is periodic with period 2π/a}

\yγ = [ίF)» = [f]» = [fl]» = {/eZΛG) f is periodic with period 2π/a}

(iii) Spl/n(-Spl/) = 0 and [̂ ],n[ίί]#, [f],n[g]#, [^]»n[^]», and
[f]GOn[g]00 all reduce to the constant functions.

Moreover, if we assume that ω is a- cluster ing, the weak* -closures ofέF, &, f and
cj in both β(IR) and L°°(1R) are already linear (thus coincide with the above closed
convex hulls) alternative (ii) is excluded; and [f]00 = [g]00=

(^00(lR).

Finally, if SpU = ]&and if ω is L1 -clustering of order 4, [f]i = [g]x =L1(R).
The density proofs for case (ii) are analogous to those presented earlier for

case (i); and the result in case (iii) follows from the fact that the set of Hardy
functions intersects its complex conjugate along the constant functions.

4. Criteria for the KMS Property

Combining the duality results of Sect. 2 (specifically Corollary 2.6) with the density
results of Sect. 3, we now obtain criteria for the KMS nature of invariant states of

1 1 For the full expression of this expansion in the general case, see the Appendix
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C*-systems with varying degrees of clustering. For weakly clustering states we
have

Theorem 4.1. Let ω, with the notation of Definition 3.2, be an oc-invariant state of the
C*-system {21, G, α}, with G abelian and SpU = G. Assume that ω is extremal τ-
invariant for an action τ of an amenable group H on $1 which is ω-asymptotically
abelian and commutes with α. Denote by £/ either L°°(G) topologized by σ(L°°(G),
L1(G)) or B(G) topologized by σ(5(G), ̂ (G)). If there is a closable linear operator T0

in jtf, with domain the linear span o/J^(f)12, such that T0FAB = GAB(T0fAB = gAB)for
all A, J3e2ί, then ω is KMS for some continuous one-parameter subgroup o/G1 3.

Proof14. The conclusion will follow if we show that the closure T of T0 can be
taken as the operator T in Corollary 2.6 : indeed, from (3.5) and (3.6) we have that
T commutes with /->/*, where /*($) = /( — s), seG, entailing s0=Q in the
conclusion of Corollary 2.7.

Let &)τ be the domain of T: since it includes the linear span of ^"(f), it is dense
in ̂  by Propositions 3.4 and 3.7. On the other hand, it is clear from (3.7) that Q)Ύ is
stable under all translations by elements of G and that T commutes with these
translations. Thus we are left with the proof that <3)Ύ is closed for products and that
T is multiplicative. For this (and later arguments) we need the following general
fact :

Remark 4.2. Let jtf be a topological space with (fl,f2)€jtfχjtf-+fl°f2Ejtf a
separately continuous map. Let T0 : £f C <$$-+<$? be a closable operator and assume
that the closure T of T0 fulfills ^^c@τ and T(/1o/2) = (Γ0/1)o(T0/2)5 /1? /2e^.
One then has for all φl9 φ2e@τ, φ1oφ2e^Γ with T(φloφ2) = (Tφl)o(Tφ2).

The proof of this fact is immediate: let, for φ1,'φ2E@τ, (Φi) and {φτ

2} be
generalized sequences in £f such that

φ\— *q>i whilst T0φ
σ

l—^Tφ1 1
(4.1)

φ2-^φ2 whilst T0φ
σ

2-+Tφ2.\

By assumption φ\°φ2<Ξ@τ with T(φσ

l°φ
τ

2) = (T0φ\)°(Tφτ

2). Thus (4.1) implies
successively, by separate continuity

Φί°Φ2-^Φι°Φ2 whilst T(φτ

1o^2)->(Tφ1)o(T0φ
τ

2) (4.2)

for each fixed τ, whence φ1oφτ

2eS>T with T(φί^φτ

2) = (Tφ1)o(Tc>φ
τ

2J, and

φ ]oφ 2-->φ 1oφ 2 whilst T(φ1oφτ

2)->(Tφ1)o(Tφ2). (4.3)

We now resume our proof, which by the preceding Remark (with £f the linear
span[^"] of 3F ([f] of f) and /ιo/2 = /ι/2) boils down to the proof of

with T(/1/o) = (Vι)0(V2)ί /ι,/2e[^]([f]). (4.4)

12 The theorem remains valid if one replaces J^Xf) by the set «^Ό(f0) obtained by restricting A, -B to a
translation invariant, norm dense *-subalgebra 5ί0 of 51
13 If G = IR, the additive group of reals, the conclusion means that ω is β-KMS for some real β
14 The proof is effected at the same time for the two choices ̂  = LGO(G) and &/
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By linearity, this reduces to

with T(FAιBί FA2B2) = GAιBι GA2B (4.5)

with T(fAB.fAB) = gAB.gAB, !' 2' !' 26a'(4.5a)

a property which will result from asymptotic abelianness and clustering. To show
this, we consider again the functions (3.19), (3.20), together with their counterparts

Ψ —
τ ^ ^ g\

and

y = Φ ( u ) d u
(4.7)

whereby the ησ are now chosen continuous with compact support [possible, since
one can approximate weakly the state η of L°°(fί)] using the dense subset ^(JT) of
L2(H). This allows us, approximating the integrals (3.20) and (4.7) by finite sums 15,
to write

n, y σ =limT 0 Φ n (4

where the sequences at the right consist of uniformly bounded elements of
resp. [f], and the limits can thus be taken in the weak* topology of stf : from this
follows that

Φ e@T TΦ =Ψ ]

On the other hand ω-asymptotίc abelianness and weak τ-clustering of ω entail
that, for all A19 A2, Bv B2.

(4.10)

(4.10a)

whence (4.5), (4.5a) since these limits again hold in the weak* topology of
because the nets at the left are uniformly bounded.

15 Observe that the Dirac measures are total in M(H)
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Theorem 4.1 can be sharpened as follows if ω is assumed τ-clustering :

Theorem 4.3. The conclusion of Theorem 4.1 is maintained under the following
changes in the assumptions

(i) ω is assume τ-invariant and τ-clustering (instead of only extremal τ-
invariant)

(ii) T0 is merely defined on ^~(f) and closable in stf (the linearity assumption for
TQ, and its domain, is suppressed).

Proof. We reduce this result to Theorem 4.1 by showing that the τ-clustering
assumption automatically implies that Q)Ύ is linear and T linear on it.
Homogeneity is trivially shown. And the proof of linearity is reduced by Remark
4.2 (with jtf and £f unchanged but /ι°/2=/ι +Λ) to tne proof of

ΓA2B2

resp. the same fact for the fAB instead of the FAB. To establish this, we use the
functions in (3.15)-(3.17) and their counterparts. The τ-clustering of ω entails

r x F _j_ n Ί
ΓA1+τu(A2),B1+ τ2u(B2) u = ̂  L ^i^i ̂  ΛJL

A^B^Ml (4.12)

u-oo J

with the choice of A2, B2 made in the proof of Proposition 3.4(ii) in order to match
a given /ίe(C on the r.h.s. further

1)ω(B2) + ω(Bi}ω(A2)-]t—^FAίBi+FA2B2

' (4.13)
^τu(B2)-\-ω^l)W^n2)^UJ^ l)^(^2^ u = o o > G ^ i a i

and

^^^

for all A19 Bv A29 jB2e2ί: (4.13a) directly implies the counterpart of (4.11) for the
fAB. As for (4.11) itself, it follows from the combination of (4.13) and

with T(FAιBί+λt) = GAιBί+λt, A^BteW, (4.14)

obtained from (4.12).
Our last criterion applies to states clustering of order 4 (without having to

assume asymptotic abelianness).

Theorem 4.4. Let ω, with the notation in Definition 3.2, be an ^-invariant state of a
C* -system {9ί, G, α}, with G abelian and 21 unital Let Sp U = G, and assume that ω is
^-clustering of order 4. If there is a closable linear operator T0 on ^(G) (with its sup
norm) such that T0fAB = gABfor all A, Be 91, ω is KMS for some continuous one-
parameter subgroup of G.

Proof. We now use the ̂ (G) version of Corollary 2.6, T now denoting the closure
of T0 for the sup norm. The fact that <£>τ is dense in ̂ (G) follows from Proposition
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3.4(iii). The proof that T commutes with translations (2>τ being translation
invariant), and that of the vanishing of s0 are as above. And Remark 4.2 with
^ = ̂ (0), £f the linear span of ̂ , and fl

 Of2=f1f2

 now applies to reduce the rest
of the proof to showing that1 6

with T(fAίAΓfA2Aί) = gAιAl gA2Aί, At,A2€^, (4.14)

To establish this, we consider the following functions [analogous to the function in
(3.28) but now chosen of positive type]

ι = < — * A CH fΛ \ς\
where A-A^ (415)

for which expanding in truncated functions now yields

J),^ί,αί(X1),«β + I,μ2))'

(4.16)

The fact that ω is α-clustering of order 4 now implies that

(4.17)

in a manner dominated by a fixed ^00(G)-function of g.

We now prove (4.14), whereby we can assume that neither fAlA* nor fA2A*
vanishes since otherwise the result is trivial. Now (4.14) follows from (4.17) if the
convergence there is uniform, which will be the case if it is uniform on compacts,
since φ"u and \$"u are (<ί00(G)-dominated. Now simple convergence and domination
imply convergence in the σ(L°°(G), Ll(G)} topology by the dominated convergence
theorem, and σ(Lco(G), Ll(G}) convergence implies in turn convergence on
compacts for positive type functions bounded above and below in sup norm. Thus
it suffices to check that the functions φ"u and \p"u are bounded below in norm by a
positive constant. But this follows from simple convergence since the latter implies

(4.18)

where the first expression on the r.h.s. does not vanish by assumption, this holding
also for the last from the existence of T0.

We conclude with an alternative proof, along the lines of this paper, of a result
first stated in [11] and first fully established in [9] 17.

16 We used polarization to restrict yourselves to elements of f +

17 The gap in [11], inherited from [12] and [7] consists in assuming the existence of a gAB(E)ή=Q for
all £eIR without motivating this assumption
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Theorem 4.5. Let {$!, R, α}, with $1 unital, be a C*-system L1 -asymptotically abelian
on a norm-dense, translation invariant *-subalgebra 910 ofW. Let ω be an a-inυariant
state o/2I and assume ω (i) stable for local perturbation of the dynamics 18, (ii) L1-
clustering of order 4 on 9I0. Then ω is either a ground or ceiling state (i.e. SpU is
one-sided) or it is β-KMS/or some real β.

Proof. From stability one reaches as in [7], VI the "two-fold relation"

fA^fA2B2dt=\9A^9A2B2dt, A19A2,Bl9B2eWQ. (4.19)

Let then the net A\, Aσ

2 be such that

,4,0,

. By dominated convergence we then have

^2,52e2I0? (4.21)

which implies by Theorem 3.8 that 0 = 0 since ^0 if total in J3(]R) by the norm-
density of 2ί0 in 2ί. The map fAB-*gAB, A,BE^Q, thus fulfills the assumptions of
Theorem 4.1 (see footnote there).

One could also, proceeding as in [7], VI, infer from (4.20) the relation

fAlBl(E)gA2B2(E)=fA2B2(E)gAiBi(E), EeR, (4.22)

and use Theorem 3.8 to infer the existence of a continuous function Φ such that

fAB(E) = Φ(E}gAB(E), EεR, (4.23)

from which one immediately deduces the assumptions of Theorem 4. 1 for the map

Appendix

The following expansions are valid for arbitrary Aίt A2, Blt B2:

+ ω(B ! )ω(

Γ

3)(αM(B2), ag(A l ), αfl + a(A2)) + ω(B2)ω^(B 1 , ag(A 1 ), αa + U(A2))

1)ω(

Γ

3)(β1, αB(B2), *g+u(A2)) + ω(A2)ωr

m(B,, aB(B2), v.g(A,}} ,

.u(A*\ A*, ̂ (A,\ «t + u(

18 For the definition of this see [7], Definition 6.2
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The terms in the lines containing the equality signs are those motivating the
introduction of the A't instead of the At in the proofs of Proposition 3.8, resp.
Theorem 4.4. L1-clustering, resp. clustering, of order 4 makes the remaining terms
tend to zero in a dominated manner as w->oo.
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