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Abstract. We study continuous statistical systems interacting via a regularized
dipole potential in the grand canonical ensemble. In the explicitly given region
of high temperature (or low density) we show that the effective potential between
two parallel dipoles is not absolutely integrable (it is, however, square inte-
grable), which implies that the effective potential does not fall off faster than
I x I ~3 in some directions.

We consider continuous statistical systems interaction via a dipole potential in
the grand canonical ensemble. Since the dipole potential is not stable, we regularize
the potential at the origin so that the system is well-defined. In [3] we have shown
that the thermodynamic limit of correlation functions and the pressure exists.
It is of great interest to know whether there exists some kind of screening. By
defining an effective potential between two dipole moments in the grand canonical
ensemble it turns out that the effective potential between two parallel dipoles is
not absolutely integrable in the explicitly given region of high temperature (or low
density). On the other hand, we will show that it is square integrable. The result
implies that the effective potential does not fall off faster than | x \ ~3 in some
directions (for high temperatures or low densities). This is in contrast to dilute
coulomb gas for which Debye exponential screening occurs [1].

Since the dipole potential is of long-range, the method of the cluster expansion
[7] cannot be applied. The technique used in the proof is the Gaussian integral
formalism of statistical mechanics, which has already proved to be a very powerful
technique [2, 3,4, 6]. We primarily follow the notation of [3] and use some of its
results.

We first briefly introduce the notation and the model we are interested in.
The regularized dipole potential between a particle with dipole moment σe(R3,
at position x e {R3 and one with dipole moment σ' at position x' is defined by

V(σ,xισ\x') = (2πΓ3/2$d3keik'(χ-χ\σ k)(σ' k)k-2\^ (1)

where κ(k) is the Fourier transform of a regularization function κ(x] in CJ((R3)
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which satisfies the following conditions :

κ(x) = 0 if x| > R for some R > 0. (2)

Since the function κ(x) is isotropic, one may apply Newton's law to see that for
I x - x' I > 2R the regularized potential equals the usual dipole potential. Further-
more I V(σ, x σ', xf) \ < oo for all σ, σ', x and x f . We set

(σ)N = (σ^ ,...9σN), (x)N = (x19...9xN)

\d*σf(\σJ\-l))...9 d(x)N=f\d*Xj (3)

The potential for Λf-dipole particles at position (x)N and with dipole moments
(σ)N is given by

U((σ)N9(x)N)= Σ V ( σ i 9 x i ' 9 σ J 9 x j ) (4)
l^ί<j^N

We also write that for α, α'e R

I7(ασ,x;αV,x;((τ)N(^^ (5)

WN(uσ, x α'σ', x' (σ)N , (x)N) = ααr V(σ,x; σ', x')
JV N

+ α X F(σ,x;σ.,x.) + α' Σ V ( σ r

9 x f ; σ J 9 x J ) .
j = l 7=1

One may check that WN is the change of the potential energy when one introduces
two dipoles with moments ασ and αV at x and x' respectively. For a system of unit
dipoles the grand canonical partition function in a compact region A c [R3 is
defined by

#ΛM)= Σ ̂  ί d(σ)w ί ΦV-"ϋ((')w Ww) (6)
JV = 0 JV

 (S2)W Λ»

where we set the term corresponding to N = 0 equals to one. Let

pA(β,Z ,«σ,x;ofσ',xr) = £A(β,zrl Σ ̂  ί Φ)w ί Φ)w
J V = 0 iV ' (S2)JV ^N

^ αV^' ίσ^,^)] (7)

The function pΛ is the two particle correlation function (distribution) with dipole
moments ασ and αV at the positions x and x' respectively. We define the effective
potential between a particle with dipole moment σ at x and one with dipole moment
σ' at xf by

WΛ(β9 z σ, x σ', x') = - -p —p p^(j8, z ασ, x, α'σ', x') (8)

It is easy to check that the effective potential becomes the dipole potential (1)
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for either z = 0 or β = 0. From the results in [3] it follows that the thermodynamic
limit

W(β9z 9σ9σ' 9x'-x)=W(β9z 9 σ 9 χ 9σ'9x')

= limϊ^(ftz;σ,x;σ',x') (9)
ΛtR

exists and is translation invariant. We will discuss the existence of the thermo-
dynamic limit in more detail later.

We now introduce our main result. We denote

;σ,0)<oo (10)

for σ| = 1. Our main result is:

Theorem 1. (a) For (4πβ)zβeβκ < 1, the effective potential W(β,z;σ,σ;x) between
two parallel dipoles separated by xeίR3 is not absolutely integrable.

(b) For any β ̂  0 and ze R, W(β, z σ.σ x) is square integrable.

Remark. (1) Part (a) of the theorem implies that for (4π/3)zβeβκ < 1 (i.e. the high
temperature or low density region) exponential screening does not hold for the
dipole system. In particular, it implies that effective potential does not fall off
faster than x \ ~ 3 in some directions. The theorem (b) suggests that it falls off faster
than |x |~ 3 / 2 for all β and z.

(2) The result is in contrast to the dilute coulomb gas for which by a slight
modification of Brydges method [1] one may show that the effective potential,
defined in the manner similar to that of (8) and (9), falls off exponentially .

The rest of this note is devoted to the proof of Theorem 1. As in [2] we will
express the partition function and the effective potential in terms of a Gaussian
integral. For details we refer the reader to [3]. Let dμ(φ) be the Gaussian measure
with mean zero and co variance given by F(σ,x;σ',x'). (Notice that F(σ,x;σ',x')
is of positive type.) Let V be the operator on I2([R3 x IR3) defined by its kernel
V(σ,x;σ',x'). For φe&"(U3 x IR3) and/e^(IR3 x 1R3) we have

r> (11)

where </,#> = $d3σ \d3xf(σ,x)g(σ,x). We define Wick ordering by

(12)

From (11) and (12) it follows that

By taking /.(σ', x') -+^fβδ(σ' - σ^δ(x' - Xj) one concludes

f dμ f] •' el

7=1
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We define

x)): (14)
S2 A

From (13) the partition function can be written as

ZΛ(β,z) = ίdμe>c* (15)

For F(φ)€L1(dμ) we write

< F yΛ(β, z) = ZΛ(β, zΓ l \dμF(φycβ- (16)

Using (13) one may check that

pA(β, z;aσ,x; a'σ', x') = z\: <&*«••<* : : e«« Vf«« .*> yΛ(β, z) (17)

and so the effective potential can be written as

WΛ(β,z;a,χ ,a',x') = (φ(σ,x)φ(σ',x')yΛ(β,z) (18)

The above somewhat formal derivation can be justified rigorously [3].
We summarize some results in [3] for our system. In [3] we have shown that

for/e

exists and it is the characteristic functional of a translation invariant probability
measure on ^((R3 x (R3) (Theorem 4.2, [3]). Furthermore, the limit

S,z)=l im<0 (f)φ(f) yΛ(β,z)

exists and satisfies the bound (Theorem 4.3, [3]).

(19)

for all β and z. The above results are consequences of correlation inequalities [3]
(also see [6]). We will need the following result:

Proposition 2. For anyfe^(U3 x (R3)

< Φ(f)Φ(f) > 08, z) ̂  (1 - (4π/3)zβeβκ) < /, Vf >

where K is defined in (10).
We postpone the proof of the proposition to the end of this note.

Using the translation invariance of the expectation < > (β, z) we write

< φ(σ, 0)φ(σ, x) > (β, z) = < φ(σ, - x/2)φ(σ, x/2) > (β, z)

= (2π)~ 3/2 $d3keik χW(σ,σ;k;β, z) (20)

We write

V(σ,σ;k) = (2π)~3l2$d3xe-k'xV(σ, - x/2;σ,x/2)

= (σ k)zk-2\κ(k)\2 (21)
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Lemma 3. a) For (4πβ)zβeκβ < 1 there exist a constant a > 0 such that

b) For any β and z

W(σ9σ 9k 9β9z)^V(σ9σ:k)

Proof. By choosing a sequence of function { fn} , /„£&*, such that

the lemma follows from Proposition 2 and the bound (19).
Using Lemma 3 we now prove Theorem 1. Without loss of generality we may

choose σ = e3, the unit vector along the positive z-axis. From (18) and (20) it
follows that

= W(β9z;e39-χ/2ιe39x/2)

= (2π)-*l2$d3keik χW(k) (22)

W(k)=W(e39e39k'9βyZ) (23)

Proof of Theorem 1. (a) We assume that

\\W(x)\d3x<M

for some M< oo. By deducing a contradiction we prove the theorem. From
Lemma 3 and (23) it follows that for (4πβ)zβeκβ < 1 there exists a positive constant
a > 0 such that

a^\m\2^W(k)^\m\2 (24)

where fc = (fc 1 ,k 2 ,fe 3 ). We assert that W(k) is not continuous at the origin if

(4πβ)zβ eκβ < 1. Choose a sequence {fc(w)}, k(n} = (δ2n, δ2", δ"), 0 < δ < l . A s n - > o o ,
k(n} -> (0,0,0). From the left inequality of (24) and the fact that κ(0) = 1 it follows
that lim W(k(n})^a. Next, choose a sequence {k(n)},k(n) = (δn

9δ
n,δ2n)9Q<δ< 1.

«->• oo

From the right inequality lim W(k) = 0. This proves our assertion. We note that
n— > oo

W(k) - W(k) = (2π)~3/2 fa** - eίk''x)W(x)d3x

By the assumption and the Lebesgue dominated convergence theorem we conclude
that

W(K) -» W(k) as kf -+ k for all keU3

i.e. W(k) is continuous for all k. But this contradicts the previous deduction that
W(k) is discontinuous at the origin. This proves Theorem l(a).

(b) Theorem l(b) follows from the right inequality of (24). Thus we have proved
Theorem 1 completely.

We now prove Proposition 2.
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Proof of Proposition 2. To show Proposition 2 we will use integration by parts [5] :

δφ(σ, x)

9x

x') (25)

The above formula is a consequence of the gaussian nature of the measure dμ(φ)
and it can be justified by finite approximation of dμ(φ).

Remark. Alternatively one may derive the inequality (28) below directly (without
using (25)) in the following way : expand exp [zC^] by Taylor series in the both sides
of (28) and compare the coefficients of ZN. Using the gaussian integration (13) one
may compute the coefficients of ZN of the both sides of (28) explicitly. These co-
efficients are

^ $d3σ J d3x μ V ί d3x'f(σ, x)/(σ', x')

• I d(σ)N ld(x)NWN(σ,x;σ',x';(σ)N,(x)N)e-'>u^ ^
(S2)N ΛN

where

WN(σ, x σ', xf (σ)N , (x)N) = F(σ, x σ', x')

~β\ ί V(σ9x'9σJ9Xj)]\ Σ V(σ'9x' 9σJ9Xj)\
L j = ι J L j = ι J

In this way one may prove the equality of (28) directly. In this sense we do not need
(25) to show Theorem 1.
We now use (25) to derive (28) below. Define

Aβ

Λ(φ) = j j d3σJ3x/(σ, χ)V(σ9X σ', x')

x)): (26)
s2 vi

σ J^3x/(σ, χ)V(σ, x σ', x') ,

= -j8 f d 3 σfd 3

S2 /I

where

(K/)(σ,x) = $d3σ'$d3xΎ(σ,x;σ',x')f(σ',x') (27)

From (25) and (26) we obtain

+ z2$dμ\A*Λ(<i>)\2e^ + zldμB^φ^ (28)
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The second term of the right-hand side in (28) is positive. Since

where K is defined in (10), we conclude that

<φ(f)Φ(f)>Λ(β,z) Z<f9Vfy- zβeβκ fd3σ fd3x\(Vf)(σ9x)\2 (29)
S2 A

We write

F(k)=$d3σ(σ k)f(σ,k).

We now use the definition of Fin (1) and the fact that | κ(k) \ rg 1 to obtain

S2 A S2

^ (4π/3) jd3k p I κ(k) \2F(k)F(k]
κ>

= (4π/3)</,7/> (30)

Using (30) and taking the limit ΛΐίR 3 of (29) we complete the proof of Proposition 2.

Note. After the completion of this manuscript we learned that J. Frόhlich and T. Spencer have obtained
a result similar to ours by a different method [8].

References
1. Brydges, D.: Commun. Math. Phys. 58, 313-350 (1978)
2. Frόhlich, J.: Commun. Math. Phys. 47, 233-268 (1976)
3. Frόhiich, J., Park, Y. M.: Commun. Math. Phys. 59, 235-266 (1978)
4. Frόhlich, J., Park, Y. M.: In preparation
5. Glimm, J., Jaffe, A., Spencer, T.: The contribution in constructive quantum field theory (eds.

G. Velo, A. Wightman). Lecture notes in physics, Vol. 25. Berlin, Heidelberg, New York : Springer
1973

6. Park, Y. M.: J. Math. Phys. 18, 2423-2426 (1977)
7. Ruelle, D.: Statistical mechanics. Reading-London-Amsterdam-Tokyo: Benjamin 1969
8. Frόhlich, J., Spencer, T.: Private communication

Communicated by E. Lieb

Received June 18, 1979






