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Sensitive Dependence to Initial Conditions
for One Dimensional Maps*
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Abstract. This paper studies the iteration of maps of the interval which have
negative Schwarzian derivative and one critical point. The maps in this class
are classified up to topological equivalence. The equivalence classes of maps
which display sensitivity to initial conditions for large sets of initial conditions
are characterized.

There has been recent interest in the relationship between the "chaotic" asymp-
totic behavior of complicated solutions to ordinary differential equations and
physically unstable phenomena such as those encountered in fluid flow [21]. This
has led to numerical studies of a variety of systems of differential and difference
equations which appear to have large sets of initial conditions yielding com-
plicated asymptotic behavior. The mathematical theory of Axiom A "strange
attractors" provides a satisfying description of some systems which do have
complicated asymptotic behavior, but there is little overlap between the numerical
studies referred to above and the class of systems with Axiom A attractors.
Perhaps the "Lorenz system" [16], is the only example of an explicit system of
equations used in a physical problem for which there is a convincing argument
that a large set of its solutions have complicated asymptotic behavior.
Nonetheless, the numerical studies of such examples as the "Henon" map [9], the
mechanical systems studied by Holmes and Moon [11], the "strange attractor" of
Spiegel [26], and the density dependent population models of [8] all provide
evidence for the prevalence of complicated solutions in systems near those with
homoclinic tangencies. From a practical point of view the distinction between
trajectories tending to complicated periodic orbits with very long periods and
trajectories with aperiodic asymptotic behavior may be slight, but we would like to
understand the extent to which numerical computations of strange attractors reflect

* Research partially supported by the National Science Foundation and the Volkswagen
Foundation. We gratefully acknowledge this support and the hospitality of the Courant Institute for
Mathematical Sciences and the Institut des Hautes Etudes Scientifiques

0010-3616/79/0070/0133/S05.60



134 J. Guckenheimer

the mathematical properties of the systems being studied. This paper aims to study
some of these mathematical questions in the simplest situation in which they arise:
the iteration of a single real valued function of "quadratic" type. In this context we
give a reasonably complete topological picture of what is involved in chaotic
behavior and sensitive dependence to initial conditions while failing to answer the
outstanding question about their prevalence.

1. Introduction

There have been many numerical studies of the asymptotic properties of the
iterates of a real function /:/->/, / = [0, 1]. The quadratic functions fa(x)
= ax(l — x), 0^α^4, have been studied intensively. These numerical investi-
gations indicate that there are many functions / which have typical solutions with
complicated asymptotic behavior. For example, the calculations of Shaw [24]
indicate that for the quadratic family, there is a set of ae [3, 4] of large measure for
which the typical trajectories have positive Liapounov exponents. This leads one
to speculate that in some suitable class of one parameter families of maps fa :/-»/,
each family has a set of parameter values of positive measure such that the
corresponding maps have trajectories which depend sensitively to initial con-
ditions. We give our definition of sensitive dependence.

Definition. Let X be a metric space with a measure μ and f:X-+X a continuous
map. Then / has sensitive dependence to initial conditions if there is a set YcX of
positive measure and an ε>0 such that for any xe Y and neighborhood U of x,
there is ye U and n^O with d(fn(x\ fn(y))>ε.

Certainly other definitions of sensitive dependence are possible, but this one is
suitable for our purposes. We shall specify a class of maps /:/->/ for which we can
give a precise topological characterization of when they have sensitivity to initial
conditions.

Two maps /, g \X^X are topologically equivalent if there is a homeomorphism
h\X-+X such that hf = gh. A topological equivalence h maps /-trajectories to
^-trajectories. For the maps which we study, sensitivity to initial conditions will
depend only on the topological equivalence class of the map. We shall give a
complete enumeration of the topological equivalence classes having sensitivity to
initial conditions. Thus we are able to focus the question of the prevalence of
sensitivity to initial conditions in rather sharp terms. Let us proceed to describe
these results precisely.

The Schwarzian derivative [4] of a function /:/->/ is defined by Sf(x)

3 ff'(x)\2

. We shall work with the class of functions C defined by

1) /:/->/ with /(0) = /(1) = 0 and /eC3(/).
2) / has a single local maximum c = cf. The function / is strictly increasing on

[0, c] and strictly decreasing on [c, 1]. /"(c)<0.
3) The Schwarzian derivative o f/ is negative: for all xe/ — {c}, S/(x)<0. We

explain below the significance of 3), which we call the Schwarzian condition.
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Throughout the paper the symbol "c" means the critical point of whichever map is
under discussion. If there is ambiguity we write cf for the critical point of / It is
clear that many of our results hold for larger classes of function than those in ̂
and we occasional indicate results which hold in greater generality, but for the
most part we focus attention on #. Here the theory we describe is most complete.
Note that quadratic functions have negative Schwarzian derivative since their
third derivatives are zero.

A primary reason for working with negative Schwarzian derivative is Singer's
theorem. To state this theorem recall a couple of definition. A point XE! is periodic
with period n if fn(x) = x but /'(x) φ x for i<n. A periodic point x of period n is
(one-sided) stable if there is a non-trivial interval U with fn(y)—>x for all ye U. An
interval is non-trivial if it has positive length a trivial interval is a point. A
necessary condition for x to be stable is that \Dfn(x)\ 5Ξ 1. A sufficient condition for
x to be stable is that \Dfn(x)\ < I.We denote the derivative of/ by either /' or Df as
convenient.

Theorem (Singer [25]). Let /:/-»/ have negative Schwarzian derivative. For every
stable periodic point x of period n, there is an i<n and a critical point c or endpoint
of I such that ye[c,/'(x)] implies fkn(y)-^fi(x) as fc->oo.

The proof of Singer's theorem is based upon several facts about Schwarzian
derivatives which we list here and use later :

1) S(fog) (x) = Sf(g(x)) - (g'(x))2 + Sg(x). If Sf is negative, then Sf1 is negative for
all rc>0.

2) If Sf is negative, then |/'| has no positive local minimum. If J = [α, ft] is an
interval on which / is monotone and xeJ, then |/'(x)|^min(|/'(0)|, \f'(b)\).

ίv _ -v \ ί γ _ -y \

3) Denote (x1 ?x2,x3,x4)= — ̂  - ̂ —r - - ̂ -. Sf is negative if and only if for
(x4 — x3)(x2 — x1)

each X 1 <x 2 <x 3 <x 4 contained in an interval on which / is monotone,
(x1? x2, x3, x4) < (/(xj, /(x2), /(x3), /(x4)).

4) If / is a polynomial such that all zeros of /' are real, then Sf is negative.
The proof of Singer's theorem rests upon the fact that an increasing function

with negative Schwarzian derivative cannot have a stable fixed point between two
unstable fixed points. Each stable periodic orbit has associated with it a critical
point.

Corollary. // /e^, then f has at most one stable periodic orbit
In Sect. 3, we prove that if / has a stable periodic orbit, then it is not sensitive to
initial conditions. Thus the primary interest in sensitivity to initial conditions
forces us to devote our attention to those /e^7 which do not have stable periodic
orbits. The structure of these maps can be quite complicated. They are far from
being hyperbolic or structurally stable, so the techniques used to study Axiom A
dynamical systems are not sufficient for a topological characterization of these. It
is here that the one-dimensionality is exploited in a rigorous way. Just as order of
points on the circle leads to the theory of rotation numbers for homeomorphisms
of S1, the order on the interval leads to invariants of a map /:/->/ with respect to
topological equivalence. Milnor and Thurston [17] have introduced a language,
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the kneading theory, which systematically exploits the order of the line in studying
topological properties of a map under iteration. We shall use this language in Sect.
2 to construct the topological classification of maps feΉ, so we introduce the
necessary background from the kneading theory here.

Milnor and Thurston study piecewise monotone maps. The map /:/—>/ is
piece wise monotone if it is continuous and there are 0 = c0<c1< ...<cl = l such
that /lEc -ucJ is strictly increasing or strictly decreasing. Assume that the set
{cjj.=0 is chosen as small as possible. Then the c/s are called turning points and the
intervals /f = (c ί_1,c/) are called laps. Associated to each xe/ is a sequence
A(x) = {An(x)}*=0, called the itinerary of x. The n-th term An(x) is called the n-th
address of x and is defined by An(x) = It or Cf as fn(x)elt or /"(χ) = cί. The
itineraries of the turning points are called kneading sequences. It is easily seen that
if h is an orientation preserving topological equivalence from / to g, then the
kneading sequences of / and g must be the same.

By introducing signs to the addresses, one can order these sequences in a way
which is consistent with order on the interval. Define the sign ε(7 .) of the symbol /.
to be + 1 or — 1 as f \ I t is increasing or decreasing. The sign ε(Cf) is defined to be 0.
Given a sequence a = {an}™=0 of the symbols /., C , define the invariant coordinate
θ(a) = {θn(a)}^0 by Θn(a) = ε(a0) ε(a1)...ε(an_1)an. If xe/, we write θ(x) = θ(A(x). We
introduce an order of symbols by

With this order of symbols, we order the sequences θ(a) lexicographically :
θ(a)<θ(b) if αφb and θn(a)<θn(b) for the smallest n with anή=bn. The fundamental
observation of Milnor-Thurston is the monotonίcity of invariant coordinates :

Theorem. Let f : I-+I be piecewise monotone. If x<y, then θ(x)^θ(y).

The proof of this theorem follows easily from the fact that the sign of θn(x) is
-f 1 or — 1 according to whether /" is increasing or decreasing at x. If x < y and n is
the smallest integer with An(x)=\=An(y), then /" is monotone on the interval [x,y].
One has fn(x) < fn(y) or /"(x) > fn(y) depending upon whether the signs of θn(x) and
θn(y) are + 1 or - 1.

For a map /e^, the itineraries of the endpoints are fixed, and there is one
interior turning point c. The itinerary y of c we call the kneading sequence of / It
plays a role for / analogous to the rotation number of a homeomorphism of the
circle. In the first part of Sect. 2, we discuss how y determines the itineraries of
other points xe/. We also examine which symbol sequences occur as the kneading
sequence of some map /e#. An important role in these considerations is played
by the shift map σ on sequences. If a = {an}™=0 is a sequence, then σ(a) = b is the
sequence obtained by dropping α0 and renumbering: b = {bn}^=0 and bn = an+ί.
Using the monotonicity of the invariant coordinate and the shift map, we
determine recursive conditions for a sequence a of /0, C, and I± to occur as the
kneading sequence of /e^. (We number the two laps of / as /0 and /1 rather than
/! and /2.)

The kneading sequence of /e^7 comes very close to being a complete invariant
of its topological equivalence class. In the second half of Sect. 2, we show that the
kneading sequence of / determines whether or not / has a stable periodic orbit. If
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/ and g in # have the same kneading sequence and do not have stable periodic
orbits, then we prove that they are topologically equivalent. The earlier topologi-
cal discussion determines that / and g have the same sets of itineraries, and the
monotonicity of invariant coordinates implies that points with given itineraries
occur in the same order on the interval. The analytic part of the argument which
uses the Schwarzian condition is that each itinerary is assumed by just one
point. There are no non-trivial intervals J for which fn\J is monotone for all n.
(Misiurewicz has suggested the name homterval for intervals with this property.) A
topological equivalence from / to g is then constructed by associating points with
the same itinerary.

The kneading sequences of feΉ which do have stable periodic orbits are of
three types. If y is the kneading sequence of such an /, then σ(y) is periodic of
period n. If yn is C and g has the same kneading sequence as /, then / and g are
topologically equivalent. If γn φ C, then the possibilities depend upon the number fe
of 71's among y 1 ? . . . , yn. If k is even, then the stable periodic orbit of / has period n
and is stable either from one side or from both sides. This additional bit of
information determines the topological equivalence class of /. If k is odd, then the
stable periodic orbit of/ has period n or 2n9 and this bit of information determines
its topological equivalence class.

Throughout Sect. 2, for xe/ — {c} we have occasion to look at the point y φx
such that f(y) = f(x) The point y is well defined since / is 2 to 1 on I — {c}. We
denote this point y by x'. If Sd — {c}, then we write S' for the set {yεl\ there is
xeS with y Φ x and f(y) = f(x)} One uses this map "'" in the following way. If
ye(x, x'), one says that y is closer to c than x. We study the iterates of x, looking for
ones which are closer to c. The induced map F of / is defined by F(x) = fn(x) with n
the smallest integer such that /"(x)e(x,x') The induced map is not defined at all
points and it is discontinuous, but it has good expanding properties if/e#. This is
the basis of the analytic arguments in Sect. 2.

In Sect. 3, we determine which /e# have sensitivity to initial conditions. As we
have already mentioned, if /e# without stable periodic orbits, some have
sensitivity to initial conditions and some do not. To understand this, we examine
periodic points of / If p is a periodic point of period n, then we say p is central if fn

is monotone on the interval [p, c] and Dfn(p) > 0. The central point p is restrictive if
fn(c)e(p,p'). This means that /" maps the interval (p,//) into itself. The condition
for /e^ without a stable periodic orbit to have sensitivity to initial conditions is
that there is an N such that / has no restrictive central points of period larger than
N. This requirement can be expressed in terms of the kneading sequence y of /
This condition is closely related to the decomposition of the non-wandering set of
/ into "basic" sets by Jonker and Rand [15]. Those /e# without stable periodic
orbits and a non wandering set with a finite number of basic sets have sensitivity to
initial conditions. The /e# which have an infinite number of basic sets have
neither stable periodic orbits nor sensitivity to initial conditions. If/e# has no
stable periodic orbit and is not sensitive to initial conditions, then there is a Cantor
set A such that almost all points xel have orbits which are asymptotic to A and

n

f\A is a homeomorphism. The set A has partitions A= (J Ai such that / permutes
i = l

the sets At and A{ have diameter as small as one pleases. A well studied example of
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such maps are / with topological entropy 0 and infinitely many periodic orbits
[18].

The final section studies the relationship between sensitivity to initial con-
ditions, topological entropy, and conjugacy to piecewise-linear maps of constant
slope. The maps gμ(x) = μ/2 — μ\x —1/2| have the properties that g(ty = g(l) = Q and
\g'(x)\ = μ for μφ 1/2. These maps are said to have constant slope. Piecewise linear
maps with constant slope larger than 1 have a special property in terms of ergodic
theory, namely, they have invariant measures of maximal entropy which are
absolutely continuous with respect to Lebesgue measure. Not all maps /e# are
topologically equivalent to a piecewise linear map gμ. We determine those which
are.

The topological entropy and growth numbers of the maps we study are
equivalent [19]. The growth number λ of /e^7 is lim sup(Nk)

1/k where Nk is the
number of fixed points of fk. If h(f) is the topological entropy of / then
h(f) = log λ. So we can work with growth numbers as easily as topological entropy.

If 1 < μ ̂  2, the growth number of gμ is μ. If J/2 < μ ̂  2, then gμ has no restrictive

central points in the interior of/. Thus if / has growth number larger than j/2 and
it does have restrictive central points, then / is not topologically equivalent to any
gμ. We prove a converse of this statement. If feΉ has no restrictive central points

then the growth number of / is larger than J/2 and / is topologically equivalent to
gμ with μ the growth number of /

The next piece of this story has to do with the topological entropy of / and

restrictive central points. We prove that if / has growth number larger than J/2
and a restrictive central point p which is not stable from just one side, then the

n-l

measure of maximal entropy for / is supported in / — (J fl(J) where J = (p, p') and
i = 0

p has period n. This implies that if g e ̂  is close to /, then g and / have the same
topological entropy and the same growth numbers. Thus, most of the maps feΉ

for which the function λ(f) is not locally constant and λ(f) > J/2 are topologically
equivalent to piecewise linear gμ. These / have sensitivity to initial conditions.
Indeed, if / has sensitivity to initial conditions, then there is an n>0 and a
subintervalJ = [p,p']9 p the closest restrictive central point to c, such that fn(J)CJ
and fn\J is topologically equivalent to a piecewise linear gμ. Thus sensitivity to
initial conditions for fe%> is related to both topological entropy and topological
equivalence to piecewise linear maps with constant slope.

Consider a one parameter family fae^ in which the growth number varies, say
from 1 to 2. We are interested in studying the set S of a for which fa has sensitivity

00

to initial conditions. We can write S = (J Sn where Sn is the set of a for which the
n = 0

closest restrictive central point pa of fa has period n. Then for aeSn, f2\(pa,p'a) is
topologically equivalent to a piecewise linear gμ of constant slope. If the kneading
sequence oϊ f^\(pa,p'a) does not remain constant for aeSn, then the growth number
°f fa\(PvP'a) is not locally constant at a. This suggests that the measure of the set S
will be positive for all families fa if and only if the measure of the set S = (a\λ(fa) not
locally constant at a} is always positive.
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2. The Topological Classification

In this section we give a topological classification of one dimensional maps with
negative Schwarzian derivative and one critical point. There are two aspects to this
classification, one topological and one analytic. The topological part of the theory
can be applied to all continuous maps with one critical point while the analytical
part relies strongly upon the Schwarzian condition to prove statements about the
size of certain derivatives of / While much of this theory can be generalized to a
class of maps with more than one critical point, we focus here on the one critical
point case.

The language we use in constructing our topological classification is that of the
kneading sequences of Milnor and Thurston [17]. This terminology has been
introduced in the previous section. Given two maps / and #, we want to determine
whether / and g are topologically equivalent. A topological equivalence h with
hf = gh must map the critical point of/ to the critical point of g. Therefore, h maps
the orbit of the critical point of / to the orbit of the critical point of g in an order
preserving way. This implies immediately that / and g have the same kneading
sequences if they are topologically equivalent. The first part of our classification
will determine the set of kneading sequences which do occur for maps /e#.

The strategy of our proof will be to try to determine the extent to which the
kneading sequence of /e# determines its topological equivalence class. We find
that this sometimes occurs, but sometimes the kneading sequence does not quite
determine the topological equivalence class of a map. The dichotomy here is
roughly between maps which have stable periodic orbits and those which do not.
A nonsingular "periodic" kneading sequence occurs for two topological equival-
ence classes, while all the maps feΉ with a given "aperiodic" kneading sequence
are topologically equivalent to one another. The proofs of both these statements
rely upon a determination of the itineraries which occur for a given map from its
kneading sequence. This is done simultaneously with the determination of the
possible kneading sequences in the topological part of the argument. In the
periodic case, the points whose orbits tend to the stable period orbit form an open
and dense set whose complement is topologically equivalent to a subshift of finite
type. This can be analyzed quite explicitly. In the aperiodic case, we prove that the
set {x\fn(x) = c for some n>0} is dense. Using the monotonicity of the invariant
coordinate, any topological equivalence defined on this set extends to a topologi-
cal equivalence on all of /.

Let us then begin our argument with an easy lemma.

Lemma 2.1. Let /:/->/ have the single critical point c and assume that /(O)
= /(l) = 0. Then xel implies that θ(x)£θ(f(c)). (Here θ(x) is the invariant
coordinate of x and the order is the lexicographic order of invariant coordinates as
explained in Sect. 1.)

Proof. The point f(c) is the maximum value of / Thus x^f(c) and the lemma
follows immediately from the monotonicity of the invariant coordinate.

Corollary 2.2. // a is the kneading sequence of a map f and σ is the shift map on
sequences, then θ(σl(a))^θ(σ(a)) for all z^O. // b is the itinerary of any point xel
for /, then θ(σi(b))^θ(σ(a)) for all ΐ>0.
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The topological part of our discussion centers on the extent to which converses
to this corollary are true. The first statement almost characterizes the /-itineraries
of points xel.

Proposition 2.3. Let /:/->/ satisfy /(0) = /(1) = 0, / is C1, and f has a single
turning point c. Denote the itinerary of f(c) by y. If a is a sequence of J0, 7\ with the
property that θ(σί(a))<θ(y) for all i>0, then there is a point xel such that a is the
itinerary A(x).

Proof. We deal separately with the cases in which c is periodic and c is not
periodic. Assume first that there is no n > 0 with fn(c) = c. Then the sequence y
consists entirely of the symbols 70, and I±. We shall examine the sets
L = [x\θ(x) < θ(a)} and U = {x\θ(x) > θ(a)}. We assert that each of these sets is non-
empty and open unless a is the itinerary of an endpoint. Then the connectedness of
/ implies that there is ye/ —{Lul/}. We must have A(y) = a. If a is one of the
sequences {/0,/0,...,/0,...} or { I 1 9 I Q 9 I Q 9 . . . 9 I Q 9 . . . } 9 then A(0) = a or A(ί) = a.
Otherwise OeL and le U.

Assume xeL. Then there is a smallest n>0 with An(x)ή=an since θ(x)<θ(a). If
an = /1? then An(x) = /0 or C while if an = /0, then An(x] = C or /^ If An(x) φ C, then
there is a neighborhood V of x with Aί(y) = Ai(x) for i^n and yeF This implies
that VcL and x is an interior point. Let m^O be the smallest integer with
σn + 1(α)mφym. If An(x) = C9 then fn(x) = c and m + n+l=7 is the smallest integer
larger than n with ^.(xJΦα,.. Since /m+1(c)φc, we have ^4 (x)ΦC. There is a
neighborhood V of x such that yeF implies Ai(y) = Aί(x) for all irgj except i = w.
We then have FcL. We conclude that L is open. A similar argument establishes
that U is open, proving the proposition when c is not periodic.

Assume now that c is periodic with period n. Since / is C1 and /'(c) = 0, the
orbit of c is stable. Therefore, there is a neighborhood F of c such that /"(F) C F If
F is small enough, then y e F implies that ^(y) = y t _ 1 for all i > 0 with i φ 0 (mod n).
One also has Ain(y) = An(y) for all i>0. Thus points yeV— {c} have one of two
itineraries α or β depending upon A0(y). It is easily checked that these two
itineraries α and ~β satisfy the hypotheses for a in the proposition. We also assert
that there are no itineraries a between α and β which satisfy the hypotheses of the
theorem. Indeed, the only itineraries between α and β begin with the symbol C.

Suppose now that α is a sequence of /0 and / x such that θ(σl(a))<θ(y) for all
i>0. Once again denote by L = {x\θ(x)<θ(a)} and U = {x\θ(x)>θ(a)}. Let xeL,
and let n be the smallest integer such that An(x) φ an. If An(x) Φ C, then x has a
neighborhood F such that ye V implies Ai(y) = Ai(x) for all ί^n. The set F is in L.
If An(x) = C, then it may happen that σn(a) is one of the itineraries α or /?. In this
case, x is an endpoint of L, but there is an interval F with left endpoint x such that
yeF implies Ai(y) = Ai(x) = ai for i<n, and fn(x) has itinerary α or β:A(fn(x))
= σn(a). Then points of F have α as itinerary and the proposition is proved. If σn(a)
is not one of the itineraries α or /?, then x has a neighborhood F such that yeV
implies Ai(y) = Ai(x) for i<n, and fn(y) has itinerary α or β or fn(y) = c. Since
θ(σ"(α)) cannot lie between ^(α) and θ(β), all points of F must belong to L. A similar
argument implies that either U is open or immediately to the left of U there are
points whose itinerary is a. Thus we have one of three possibilities, but in each we
find a ye I whose itinerary is α. This finishes the proof of the proposition.
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Example. The hypothesis that / is C1 is not used in the case when the critical point
does not lie in a periodic orbit. If c is periodic, then some hypothesis is necessary.

Consider the function gμ(x) = μ/2 — μ\x — ̂ \. If we take μ = (l + ]/5)/2, then gμ(^)

= (1 + ]/5)/4, g((ί + ]/5)/4) = (-1 + |/5)/4, and g((-1 + J/5)/4) = £. Thus \ is per-
iodic with period 3. If x is near \ then #3(x)g:f. For any n, the points immediately
to the right of \ have itineraries with Ai(x) = I0 or / j as i = 2 (mod 3) or

/I + l/5\"
i = 0,1 (mod 3) and i ̂  n. Since the slope of gn is + —-*-— except at the turning

points, any two distinct points eventually lie in different laps. In particular, for any
x φ |, there will be an n such that gn has a turning point between \ and x. Thus x
will not have the itinerary a = lllvl^lllvl^....

The sequence a is an itinerary which Proposition 2.3 says should exist, as we
now show. The itinerary of | = c is C/j/oCJ^/Q.... A check of the hypothesis of
Proposition 2.3 shows that for i = 1,2,0 (mod 3) we do have θ(σl(a)) < θ(y) where
y = I1I0CIίI0C.... Thus Proposition 2.3 is not valid for the map g. It follows that
g is a map with the property that it is not topologically equivalent to any smooth
function /:/->/. In Sect. 4 we shall find smooth maps which are not topologically
equivalent to any of the piecewise linear maps gμ(x) = μ/2 — μ\x — ̂ j. This question
of topological equivalence to g is closely related to the question of sensitive
dependence to initial conditions.

Proposition 2.3 does not yet characterize all of the itineraries of a map feΉ.
There are two types of itineraries which must be described: those which contain
the symbol C, and those itineraries a for which there is an n with σn(a) = y. The
itineraries a containing C must have σn+1(a) = y if an = C. The hypotheses of
Proposition 2.3 give sufficient criteria for a to exist: if an = C, θ(σl(a)} < θ(y) for i < n,
and σn+1(a) = γ, then there is an xe/ with A(x) = a. The proof follows the argument
of Proposition 2.3. The question of whether there are itineraries for which σ(a)=y
but α0 φ C is more delicate. For functions /e^ we shall prove that such itineraries
exist if and only if / has a stable periodic orbit. Some analytic condition is
necessary to decide whether or not such orbits exist from the kneading sequence of
a map. Before turning to these analytic questions, we want to state a proposition
similar to 2.3 which determines the set of kneading sequences which do occur for

Theorem 2.4. Let y be a sequence with the properties that
1) θ(σ\y)}^θ(y) for all i>Q,
2) // y;=C, then yj+k+ί=yk for all fc^O.
Then there is a map /e^ such that y is the itinerary of f(c\

Proof. The proof of Theorem 2.4 is similar in spirit to that of Proposition 2.3.
Consider a continuous one parameter family /μe^, μe[0, 1], such that f0(c)<c
and fί(c) = ί . Denote by §μ the itinerary of / (c). We seek μ with βμ=y. For μ^O,
we have j8£ = 0, and for μ=l, we have /?g = l, /J? = 0 when ί>0. Denote by

L = (μ\θ(§μ) ^y}. The set L is non-empty. Let v = sup μ. We want to see if §v = y. If
μeL

§vή=y, there is a smallest n>Q such that /^Φ}V If β/φC for any z^n, there is a
neighborhood 7 of v e [0, 1] such that μe V implies that βf = β] for all i φ n. If θ(§v)
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>θ(y), then FnL = 0. If θ(βv)<θ(y\ then FcL. In either case, v is not in the
boundary of L contrary to assumption. Therefore, if /^Φyn, there is an j^n with

βj = C
Now §v is the itinerary of fv(c) for /v, so f j + 1 ( c ) = c. This implies that βv

k+j + 1

= βv

k for all fc^O. Comparison with hypothesis 2) of the theorem reveals that j<n
implies that y=βv, contrary to assumption. Therefore j = n. This allows us to
determine y. The itinerary βv is periodic with period n+l and β] = C whenever
i = n (mod n+l). Now /v is differentiable, so the orbit of c is a stable periodic orbit.
For μ sufficiently close to v, fμ has a stable periodic orbit of period n + 1 containing
a point pμ near c. For μ close enough to c, we have |/μ"

+1(c) — pμ\<\c — pμ\ and
|//(n + 1)(c) — pj<|c — pμ\. These inequalities imply that the itinerary βμ is still
periodic of period (n+l), and it satisfies β^ = βv

{ for z = n (modn + 1). Now one of
the itineraries βμ is larger than βv and one is smaller. Therefore, one of the βμ lies in
L and one does not. The βμι which lies in L satisfies θ(βμί) ^ θ(y) and the βμ2 which
does not lie in L satisfies θ(y) < θ(βμ2). Now βv is the only sequence δ which satisfies
1) and 2) and θ(β^) < θ(δ) < θ(βμ2). Therefore, we must have y = βμί since y Φ/Γ and
y satisfies 1) and 2). But then there is μ1 =μ with βμι =y as was to be proved.

With Lemma 2.1, the proof of Theorem 2.4 clearly implies the following result
which is stronger than the statement of 2.4:

Corollary 2.5. Let fμe^, μe[0,1] be a continuous one parameter family with
fQ(c)<c and f^c) = 1. // g\l~^l is a continuous map with a single turning point, and
g(0) = #(l):=0, then there is a μe[0,1] such that fμ and g have the same kneading
sequences. For every sequency y satisfying hypotheses i) and 2) of Theorem 2.4,
there is a μ such that fμ has kneading sequence δ and y = σ(δ).

Let us turn now to the analytic investigation of maps /e#. Our goal is to
prove that there at most two topological equivalence classes among the maps with
a given kneading sequence. If the kneading sequence is "periodic", then there are
two topological equivalence classes; otherwise, there is just one. The negative
Schwarzian condition plays a dual role in that it restricts / to have at most one
periodic orbit, and it prevents non-trivial intervals from existing on which /" is a
homeomorphism for all n. It is possible that a larger class of maps than # satisfies
this last property (for instance, the negative Schwarzian condition might be
replaced merely by /eC2).

Theorem 2.6. Let feΉ. If there is a non-trivial interval J such that fn\J is a
homeomorphism for all n, then f has a stable periodic orbit y.

The proof of this theorem is quite long, so we isolate several steps as lemmas.
Assume that J is a maximal interval such that fn\J is a homeomorphism and that
/ does not have a stable periodic orbit.

Lemma A. For all mΦn, /m(/)π/%/) has no interior.

Proof. If /%/)n/%7) has non-empty interior, then for each fc>0, fk is a strictly
monotone function on the interval /m(J)u/n(J) lϊm>n and .xe/m(J)n/"(J), then
fm-n(x)efm+(m-n\J}nfm(J). Inductively, /(m-") + "(J)n/(/~1)(w~n)+"(J) has non-

empty interior. Denote by K the set (J y^-^ + ̂ j). Then K is an interval since it
z ^ o

is connected. Moreover, fk\K is strictly monotone for each fc>0 and fm~n(K)cK.
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Therefore fm~n is a homeomorphism of K into itself, and fm~n must have a stable
fixed point in the closure of K. This proves Lemma A.

Now denote by Kn = LnvJuRn the largest interval containing J on which /" is
a homeomorphism. We denote the length of an interval K by l(K).

l(f\Ln))=l(Ln) l(fk(Rn)) = l(Rn)'

Proof. This is a direct consequence of the negative Schwarzian derivative of /; the
map fk is a homeomorphism of Kn with negative Schwarzian derivative. Therefore
\Dfk\ has no local minimum in the interior of Kn. If J = (α, b) and \Dfk(a)\ $ \Dfk(b)\,
then \Dfk(x)\ > \Dfk(y)\ for all xeJ and ye{J£. Integrating this inequality over J
and either Ln or #π gives the conclusion of Lemma B.

The strategy of the remaining part of the proof will be to find bounds on the
lengths of some of the images of J. We shall find a constant α > 0 and a sequence
fc.-»oo with l(fki(J))>u. Since Lemma A implies that the fki(J) have disjoint
interiors, this contradicts the fact that I has finite length and suffices to prove the
theorem. We make one final reduction before proceeding further. If /"(J) has c as
an endpoint for some n^O, then we replace J by fn+m(J) for any w>0. Thus we
may assume that c is not an endpoint of any /"(J). With this reduction, we split the
remainder of the argument into two cases. In the first there is an rc^O, such that
/"(J) is closer to c than all other f\J). In the second, for each n, there is an i > n
such that /'(J) is closer to c than /"(J).

Lemma C. Suppose that n>Q has the property that ί=t=n and x e f l ( J ) implies
/"(J) C (x, x') Assume that c is not in the closure of fn(J). Then there is an α > 0 such
that l(f\J))>a for all i^Q.

Proof. We may assume that n = 0 by replacing J with /"(J). This may change α,
but if the lemma is true with /"(J) in place of J, then it is true for J. Now we have
assumed that c is not an endpoint of J, so there is a point ξ between J and c and
k>0 with fk(ξ) = c. Denote by J' the interval on the opposite side of c from J with
/(j) = /(j') and by M and M' the intervals joining J and J' to c. If /%£,„) or /"(£„)
has c as an endpoint, then it contains M or M' and hence ξ or ξ'. Therefore
CEfn+k(Ln) if /%Ln) has c as an endpoint, and similarly for Rn. There is an N such
that KN does not have 0 or 1 as an endpoint because the images of J are all distinct.
For n^.N, both endpoints of Kn+k+ί are in the interior of Kn. It follows that the
endpoints of fn(Ln), fn(Rn) must be one of the points fl(c\ l^i^k when n^N.
When n is chosen so that c is contained in fn(Ln) or fn(Rn) then this interval
contains M or M'. Therefore, when n ̂  N, fn(Ln) and fn(Rn) each contain one of the
intervals /(M), l^i^fc. Define j8 = min/(S) with S one of the intervals /'(M),
l^i^fc, /'(L ), i^AΓ, or /''(K.), i^JV. Then j8 is a lower bound for /(/"(LJ) and
ί(/W) Using Lemma B and noting that l(Ln+ί)^l(Ln\ l(Rn+ί)^l(Rnl we find a
positive lower bound α for /(/%/)).

Assume now that for each N, there is an n > N such that /"(J) is closer to c than
/(J) for / < n. We want to find a sequence kn such that the lengths of the fkn(J) are
bounded away from zero. As we noted above, this will finish the proof of the
theorem. We shall find the sequence kn inductively, starting with fe0 = 0. Suppose
that /c 1 , . . . , /c π _ 1 have been chosen so that fef is closer to c than fl(J) for /<fe f .
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Denote by 0<a= min '{. , and β= min l(fkl(J}\ Suppose further that if
J /<*) = /(?) |/' ()0| F O g i S n ^ V " FF

Km = LmvJvRm is the maximal interval containing J on which fm is monotone

and m>kn_ 1? then — ̂ - <a2 and — r̂ - <α2. With this notation, we have the final
ί(J) l(J)

lemma :

Lemma D. // kn is the smallest integer I such that fl(J) is closer to c than fkn~^(J\
then(fk»(J))>β.

The first assertion is that if kn+i is the smallest integer such that fkn + 1(J) is
closer to c than fkn(J\ then l(fkn+ί(J))>al(fkn(J)). To prove this assertion, denote
by S the set [x\fi(x)φ(x9x

r) for ί<kn+1-kn}. Then fkn(J)CS, but the ends of the
maximal interval containing fkn(J) on which fkn+ί~kn is monotone are not in S.
The component of S containing J has endpoints which each satisfy one of the
equations fkn+1~kn(x) = x or x'. At a solution of fkn+ί~kn(x) = x we have
\Dfkn + ί~kn(x)\>l and at a solution of fkn + 1~kn(x) = xf we have \Dfkn+^kn(x)\>a
since / has no stable periodic orbits. Now S contains no critical points of fkn+ 1 ~kn,
so the negative Schwarzian condition implies \Dfkn+ί~kn(x)\>a for all XE/kn(J).
Hence l(fk" + ί(J))>al(fk"(J}).

Denote m = kn and fm(Km) = (ξ,η). Our next assertion is that cefm(Km). If
cφfm(Kml then either fm(Rm) or /m(LJ is between fm(J) and c, say fm(RJ. There is
an z<m with fl(η) = c. Since fl(Rm) joins c to /%/)? and /'(J) is farther from c than
/%/), we have fm(Rm)Cfl(Rm) or /»• (R J C (/'(ΛJ)'- Now f^ftRJ is monotone,
so /m l has a stable fixed point in fl(Rm) or (/'(.RJ)'. This contradicts the
assumption that / has no stable periodic orbit, so cGfm(Rm) or ce/m(Lm).

]( fm( K \] ]( R }
Assume now that cGfm(Rm). Then we assert that ^ ™ > n\ ' Since

'IJ (rλ) H0'/
cefm(Rm\ fm(Rm) contains fkn+ί(J) or (fkn+ί(J))r where fen + 1 is the smallest
integer with fkn+ί(J) closer to c than fkn(J). The estimate of the first paragraph
gives l(fk» + ί(J))>al(fm(J)). Therefore l(fm(RJ)>a2l(fm(J)). Since we assumed

Still assuming that cefm(Rm\ the last paragraph and Lemma B imply thatkn ι(j) °r (/fcn"(j)y

assertion will prove the lemma, since l(fkn+1(J))H^r then implies that

l(fm(LJ)>ra. Together with -γjγ<a2, we obtain /(/m(J))>α"V^r, as was to
/(J)

be proved. So we finish the proof of Lemma D by showing that fm(Lm) contains
fkn - 1( J) or (fkn - l(J)γ. With ξ the left endpoint of Lw, there is an i < m with f\ξ) = c.
If M is the interval joining fkn~l(J) to c, then fl(Lm) contains M or M7 because /'(J)
is at least as far from c as fkn~l(J). Now /m~I|/I(Lw) is monotone and fm(J)cM or
M'. Therefore, if /m(ξ)eM, then fm~l has a stable fixed point. Moreover, if
/m(£)e/k"-1(J), then /m^ maps the interval /^^(JJuM monotonely into itself.

1 This step in the argument is essentially due to Misiurewicz.
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Similarly, fm(ξ)φ(fkn^(J))f. Thus fm(ξ) is farther from c than fkn-\J} and fm(LJ
contains either fkn~^(J) or (fkn~*(J))'. This completes the proof of Theorem 2.6.

With Theorem 2.6, we take up the question of topological equivalence of maps
in #. Assume that /e#. Denote by y the itinerary of /(c). If/ has a stable periodic
of period n, and p is the closest point in this stable periodic orbit to c, then f2n is
monotone on the interval (p, c) and /2"(p, c) C (p, c). It follows that the sequence y is
periodic with period n. Conversely, suppose that y is periodic of period n. Then fk

is monotone on the interval (fn+1(c\f(c)) for all /c>0 since the endpoints of this
interval have the same itineraries. If /"+ 1(c)Φ/(c), then Theorem 2.6 implies that /
has a stable periodic orbit. If fn+1(c) = f(c\ then c lies in a periodic orbit which is
stable, or f(c) lies in an unstable periodic and Singer's theorem implies that / has
no stable periodic orbit. We conclude that if y is periodic, then / has a stable
periodic orbit unless /(c) lies in an unstable periodic orbit. This last possibility
occurs if and only if there are itineraries allowed by Proposition 2.3 whose
invariant coordinates lie between those of c and/"(c). Thus, one can determine from
the kneading sequence of / whether or not /e# has a stable periodic orbit.

Proposition 2.7. Suppose that f,ge^ have the same kneading sequence and that f
does not have a stable periodic orbit. Then f and g are topologically equivalent.

Proof. The discussion preceding the proposition implies that g does not have a
stable periodic orbit. Theorem 2.6 implies that the sets {χ\fn(χ) = c for some n^O}
and {y\gn(y) = c for some rc^O} are each dense in /. Proposition 2.3 and the
discussion following its proof imply that the sets of /-itineraries and ^-itineraries
are the same. [Note that Theorem 2.6 implies that if xφc, then the /-itineraries of
/(x) and /(c) are different. So x Φ c implies that θ(x) < θ(c) in Lemma 2.1.] Theorem
2.6 also implies that each /-itinerary and each ^f-itinerary is assumed by just one
point. Thus we can define a bijection /z:/->/ by the requirement that the
/-itinerary of x is the same as the ^-itinerary of h(x). The monotonicity of invariant
coordinates implies that h is monotone. Since h is 1 — 1 and onto, it is a
homeomorphism of /.

We end this section with a discussion of the topological equivalence classes of
/E^7 which do have stable periodic orbits. These results were discovered
independently by Singer and Wolfe. To begin, we shall state a proposition related
to Theorem 2.6 for the wider class of C2 maps.

Proposition 2.8. Suppose feC2(I) and that Ucl is a finite union of open intervals
which contains all the critical points of f. If f\I—U has no stable periodic orbits
then the set Ev = {xeI\fn(x)eI—U} is totally disconnected (i.e\, contains no non-
trivial intervals).

Remark. The proposition allows a stable periodic orbit in / — 17 provided all
nearby points asymptotic to the stable orbit have trajectories which contain points
of U. Such a periodic orbit is stable from only one side.

Proof. Let δ be the distance from / - U to the set of critical points. Then δ > 0 since
it is the distance between two disjoint compact sets. Suppose that JCEV is a non-
trivial interval which is a component of Ev. We shall denote Kn D J a maximal
interval with the properties that (1) /ί(KII)n//(J£π) has empty interior if iφj and
ij^tt, and (2) ftKJd-Ufoτ i<n. Write Kn = LnuJuRn and Kn = tξn,ηJ. The



146 J. Guckenheimer

points ξn,ηn each satisfy one of the equations fi(x) = fj(ξn), fi(x) = fί(n^ °r

fl(x)edU for some j<ί<n. Note that Lemma A of Theorem 2.6 implies that
J (J)r\fm(J) has no interior for mή=n.

We shall establish an estimate of the "non-linearity" of /" on the interval Kn

similar to that used in the proof of the Denjoy theorem about diffeomorphisms of
S1 with irrational rotation numbers. A similar estimate also appears in Sect. 3.
Denote by β the Lipschitz constant of log \Df(x)\ on the set I—U. For any x, j
we have

Df"(x) %

Dfn(y)

^/Σl/'M-

- log \Df(f\y)\log

since the intervals (f'(x), f'(y)) have disjoint interiors and are contained in / — U.
This estimate implies that there is a constant α > 0 such that

- <- - «•
We now want to prove that J and U can be chosen so that fi(Kn)r^Uή=0 for

some large n and z<n. First, observe that EV = EV if V={x there is ye £7 with
[x, 3;] nEy = 0}. If we enlarge 17 to K then all points of the boundary of V lie in Ev.
Now each component of V contains a component of [7, so F still has finitely many
components. It is open since Ev is closed. Thus we may replace U by V without
changing Eυ or invalidating any of the hypotheses for U. Since U has a finite
number of boundary points, there is an n ̂  0 such that ί ̂  n implies fl(J) has no
points in the boundary of U. Replacing J by /"(J) we may assume n = 0.

Let K be an open interval containing J. Then we assert that (K — J)n£t/φ0.
There is xeK — Ev since J is a component of E^. So there is an n such that
fn(x)e U. Assume that n is chosen as small as possible. Then there is yeK such that
fn(y) is in the boundary of £7, hence in Ev. Now fl(y) cannot be in U for i < n since
n was chosen to be minimal, so yeEυ. This argument shows that each component
of (K-J) intersects Eυ. It follows that /(Ln)-»0 and l(Rn)-+Q.

Consider now fn(Kn). Since fl(Kn)πU = 0 for i<n, and [7 contains the critical
points of /, /" is monotone on Kn. If fn(Ln)nUή=ΰ, then we assert that fn(Ln)
contains a component of U. Look at /"(ξj. If ξn is periodic of period m<n, then ξn

is in EΌ. If /'(^H/W with j</, then /»(£,) = /»-ί+^π)e/- 17. If /'(^ is in the
boundary of U for z<n, then ^n is in E^. In all cases, fn(ξn)eI—U. Since /" is
monotone on Ln, it must contain a whole component of [7. Now if n is sufficiently

large, the estimate KfV^^^Kf"^)- gives /(/"(J)) > 1 = l(D since i(Ln)^0
*wJ

as π-^oo and l(fn(Ln))>mml(Ui) = γ, Uί a component of U. This is absurd, so
fn(Ln)n U = 0 f o r n sufficiently large. Similarly /%Rn)n U = 0 for n sufficiently large.
Indeed, we may pick n large enough that /(/n+1(Ln))<y and l(fn+ί(Rn))<γ.

Choose N large enough that fN(KN)nU = ΰ, (fN+ί(LN))<γ, and
^(/JV+1(^jv))<7 when ^z^AΓ. If n is large enough, there are N<ί<j^n such that
fi(Kn)^fj(Kn)ή=0. Denote; -z by m. We assert that, for all fc^z, fm+k(J) and /fc(J)
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lie in the same component of I—U. If m + k^n and z^/c, then f(k~j(f\K^
π/J'(Kn))Φ0 implies that fm+k(J) and /%/) He in the same component of U.
Suppose that the assertion is true for all / < k with m + k>n. Then

fm+k-l(Km+k_1)nU=0 and /^H^^) and /k-1(^M+fc-ι) He in the same
component of U. There is l<m + k-l such that/"^'^^-^/^^-!^.
Therefore fm + \Km + k^)^fl^(Km+k^^. Since /(/m + fc(A» + *-ι))<y and
l(fm+k(Rm+k_ 1))<y, all points of /m+/£(^m+fc_1)n/- (7 lie in the same component
of 7—17. This must be the component of / — U which contains fl+1(Km+h_1),
which by the inductive assumption is the component of / — U which contains
fh(Km + h_ί). Therefore fm + k(J) and fk(J) lie in the same component of /- U.

Now K = {x\fk(x) lies in the same component of U as fi+k(J) for Oίg/c^m
=j — i} is an interval containing J since / is monotone on each component of
I—U. Moreover fm\K is monotone. In the last paragraph, we proved that
fί+km(J)CK for all fc>0. If fm\K is increasing, then fί+k™+™(j) lies to the right of
fί+km(J). If fm\K is decreasing, fi+km+™(j) lies to the left of fi+km(J). In either case,
there is a point xeK which is a limit point of fi+km(J) as fc->oo. Then /m(x) = ;x and
x is a stable fixed point of fm. Moreover fk(x)el — 17 for all /c^O, contradicting the
fact that / has no stable periodic orbits approached by points in / — [/. This proves
the proposition.

Let us reconsider feΉ with a stable periodic orbit. Singer's theorem implies
that there is an interval U containing c such that all xe U have orbits which tend to
the stable periodic orbit, and U contains a point in the periodic orbit. Note that if
the periodic orbit attracts from only one side, then we must take U closed, a
situation which we discuss in more detail below. Proposition 2.8 implies that if J is
a non-trivial interval on which /" is monotone for all n, then there is an n with
fn(J) C U. This implies that points of J tend to the stable periodic orbit of /. If
Ef = {x\fn(x) does not tend to the stable periodic orbit of/}, then Ef is totally
disconnected.

Let U C / be the maximal interval containing c and consisting of points whose
orbits tend to the stable periodic orbit of/. If this periodic orbit is stable from both
sides, then U is an open interval (a, a') and one of the end points of U is periodic.
Let n be the smallest integer with /"(L7)n(7φ0. Then fn(U)CU, fn(a) = a or α',
fn\ U is a map with one critical point [xe U implies fl(x) φ c for i < ri] and all orbits
of fn\U tend to a stable periodic orbit. Since /" has a fixed point p in 17, this must
be the stable periodic orbit. There are different kneading sequences in the cases
when Dfn(p) is positive, zero, and negative.

Lemma 2.9. Let / gety? have stable fixed points pf and pg. Assume that if x is in the
interior of /, then fn(x)-+pf and gn(x)-*pg Assume further that f ' ( p f ) and g'(pg) have
the same sign or are both zero and that pf = pg = 0 if pf or pg is in dl. Then f and g
are topologically equivalent.

Proof. We shall consider one case and leave the others to the reader. If /'(p/)>0,
then the interval [pf,cf~] has the property that f\_pf,cf~]C\_pf,cf~\. Define h to be
any strictly increasing function of [_f(cf\Cf] onto [g(cg\cg~]. Then h extends to a
homeomorphism of [pf,Cf] onto [pg,cg] by the formula h(fn(x)) = gn(h(x)) and
h(pf) = h(pg). Extend h to [pf9 p'f~\ by h(xf) = (h(x))'. To define h on [0, pf) and (p'f, 1],
pick points xe(Q,pf) and ye(0,pg) and define h to be any strictly increasing
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function of [x,/(x)] onto [_y,g(yj]. If ze(Q,pf\ there is a unique neTL with
/"(Z)E[X,/(X)). Define h(z) by h(f"(z)) = gn(h(z)). Since /|[0,P/] and 0|[0,p,] are
homeomorphisms, this formula is well defined. Finally set h(0) = 0 and h(x')
= (h(x))' for xe(pp 1]. One easily checks that /ι so defined is a topological
equivalence of / to g.

The other cases are similar. If pf = cf, then one defines h first from an interval
[x, /(x)] onto an interval [y, 0(j;)] for arbitrary choices of xe(0, c f ) and ye(0, cff). If
/'(p/)<0, then one begins by defining h from the interval [c/,/2^)] onto
[c0,0

2(C0)]. The extensions of h to topological equivalences are then uniquely
determined. We leave the details to the reader.

Return now to consideration of /e# with a stable periodic orbit, U the
maximal interval containing c consisting of points tending to the stable periodic
orbit, and n the least integer with fn(U)cU. We next ask the extent to which the
kneading sequence of / determines the integer n. There are two different
possibilities if n is even. The itinerary of f(c) could be periodic with period n/2.
This case occurs if fn/2(U) and U share a common endpoint. If / has kneading
sequence 7, and yι — I0 for ι>0, then / has a stable fixed point since / maps the
interval [0,c] into itself in an orientation preserving way. If / has kneading
sequence j> and γ. = /1 for i> 1, then / maps the interval (c,/(c)) into itself in an
orientation reversing way. Either there is a stable fixed point or there is a stable
periodic orbit of period 2. Thus if / has a kneading sequence y such that σ(y) is
periodic of period n, then / has a stable periodic orbit of period n or 2n. Period 2n
can occur only if the number of //s among γί9...,ynis odd.

With these observations, we can determine the topological equivalence classes
associated to a "periodic" kneading sequence. Suppose that y is a periodic
sequence of period n and that y is the itinerary of /(c). We shall say y is of positive
or negative type if the number of 7/s among yo' ' V n - i *s even or °dd and of
critical type if yn_ί = C. If j; is of positive type, then there is a closed interval 17
containing c such that fn(U)cU, fn(dU)CdU and /" has a stable fixed point peU
with Dfn(p) > 0. There are two possibilities: the stable fixed point is an interior
point of U or it is an endpoint of U. Each of these possibilities represents a
different topological equivalence class, but if / and g have kneading sequence y
and the same possibility occurs for / and g, then we assert that they are
topologically equivalent. This follows easily from 2.3, 2.8, and 2.9.

Define a topological equivalence in stages. Proposition 2.3 implies that the set of
/-itineraries and ^-itineraries are the same. Proposition 2.8 implies that if xel
satisfies fn(x)eI—U for all rc>0; i.e. xeEf, then there are no other points of / with
the same itinerary. But /"(x)e U if and only if σn+1(A(x)) = y, so we can determine
whether fn(x}εEf from its itinerary. The same considerations apply to g and we
can define a homeomorphism h:Ef->E&by the property that the /-itinerary of x

and the ^-itinerary of h(x) are the same. We extend h to the set (J f ~ l ( U f ) by first
i ^ O

defining h to be a topological equivalence from fn\Uf to gn\Ug using Lemma 2.9.
For each component of f ~ l ( U ) other than 17, there is a j^i with fj mapping
f~l(U) homeomorphically onto 17. We can then define h on this component of
f~\V) by h(fj(x)) = gj(h(x)) and the requirement that the /-itinerary of x and the
g-itinerary of h(x) are the same. We leave it to the reader to check that h so defined
is indeed a topological equivalence from / to g.
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ABC D EC DEC DEC
^

Fig. 1. A: y positive type, one sided stable orbit B: % positive type, two sided stable orbit C: y critical
type D: 2 negative type, period y_ = period stable orbit E: y negative type, period y = \ (period stable
orbit). Intervals D are closed on the right, intervals E are open

Ify is of critical type, then the period of its stable periodic orbit is n and the fixed
point of/n | U is the critical point of/, an interior point of U. The construction of the
preceding paragraph can be applied to give a topological equivalence from/to g if g
has the same kneading sequence as / Finally, if y has negative type, there are two
possibilities. Either the stable periodic point of y ίϊas period n or period 2n. In either
case, the stable fixed point of/" or/2" is an interior point of U, and the construction of
topological equivalences can be applied. If g has the same kneading sequence as/ and
if the stable periodic orbits / and g have the same period, then / and g are
topologically equivalent. This discussion is summarized by the following theorem.

Theorem 2.10. Let f,ge%? have the same kneading sequence y. Either both / and g
have stable periodic orbits or neither does. If / and g do not have stable periodic
orbits they are topologically equivalent. If f and g do have stable periodic orbits,
then σ(y) is periodic with period n. If y has positive type, then the stable orbits of f
and g have period n. Then f and g are topologically equivalent if their stable orbits

are both stable from one side or both stable from both sides. If y is of critical type,

then f and g are topologically equivalent. If y is of negative type, then the stable
periodic orbits of f and g have period n or 2n. The maps f and g are topologically
equivalent if and only if these periods are the same.

Remark. This theorem can be best understood in terms of the bifurcation diagram
of periodic orbits in a one parameter family (see [6]). This diagram is illustrated
above for the points in the stable periodic orbits of period 2". The curves show the
locus of periodic points in a one parameter family fμ.

3. On Sensitive Dependence

In this section we want to establish conditions as to when a particular map has
sensitivity to initial conditions.
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Definition. A map f:X—>X of a compact metric space with measure μ has
sensitivity to initial conditions if there is a set KcX and an ε>0 such that (1)
μ(K)>0, and (2) if xeX and U is a neighborhood of x, then there is ye U and rc>0

withd(Πx),/"GO)>ε.
In all of our considerations, we will have X = I with the usual metric and

Lebesque measure. Maps in # which give stable periodic orbits will not have
sensitivity to initial conditions. This is a corollary of the following theorem:
Theorem 3.1. Let ft<6 and let U be a neighborhood of c. If Ev = {x\fn(x)el-U
for all n ̂  0} contains no non-trivial intervals, then the Lebesque measure of Eυ is 0.

Reduction. We shall first reduce to the case in which one of the endpoints of U is
periodic. Note that (73 V implies that EVCEV. Therefore, if the theorem is true for
Ev, VC U, then it is true for Ev. We seek now (α, b) = VcU such that (1) f(a) = f(b\
(2) a or b is periodic, and (3) Ev contains no intervals.

We obtain V in stages. First, assume U — (x,y) with f ( x ) ^ f ( y ) . Then pick
ze[y,c) with /(z) = /(x) and replace U by (x,z). Then the first hypothesis for V is
satisfied. Now assume that ξ and ξ' are the points of Eυ closest to c. Then
f(ξ) = f(ξf) since ξεEv and f(ξ) = f(ξf) imply fn(ξf)e!-U for all π>0 and since U
satisfies (1). Assume that there is no stable fixed point in U. Then there is an n such
that fn fails to be a homeomorphism on the interval (ξ, c). There is an ηe(ξ, c) and
an n > 0 such that fn(η) = c and /" is a homeomorphism on the interval (ξ, η) = K. If
fn(ξ) and ξ fall on the same side of c, then the interval fn(K) = (fn(ξ),c) contains K
in its image because fn(ξ) is as far from c as ξ. Thus /" has a fixed point a in (ξ, η). If
/"(ξ) and ξ lie on opposite sides of c, then f"(ξr) and ξ' lie on the same side of c and
/" has a fixed point a in the interval (£', 77'). Provided / has no stable periodic orbit,
we take V = (a,a') as the set we seek.

If there is a stable periodic orbit of /, then at least one of its points p must lie in
U since Ev has no intervals. If/? is in the boundary of U and U is symmetric with p'
its other endpoint, then (l)-(3) are satisfied. So assume pe U is of period n and that
no other points in the orbit of p lie in the interval (p,p') Denote by V the
component of p in {x|/fcfl(x)-»p as fc-» oo}. Then Singer's theorem implies that ce K
This implies that if xeK then x'eK If xeK then fkn(x)eU for some fc>0, so
1% C Ev and we may replace U by K One of the endpoints of V is easily seen to be a
fixed point of fn since /" must map the boundary of V to itself. If / has a periodic
point p of period n such that /" is monotone on (p,c), D/"(p)= 1, and p is stable
from one side, then p is the limit of periodic points qm. lϊ S = {x\fl(x) = p for some

'}, Um = (qm,qm) and E/ = (p,p'), then Ev= (J E^uS.
m ^ O

Proof of Theorem. We assume now that the neighborhood ί/ of c in the theorem
satisfies the following properties: U is an interval (a,b) with (1) f(a) = f(b\ (2) α is
periodic with /w(α) = α and D/"(α)>l, (3) E^ has no intervals. The proof of the
theorem has two further steps. The first proves that / is "uniformly expanding" on
Eυ in the sense that there is a k such that \Dfk(x)\ > 1 for all XEEV. The second part
of the argument then estimates the "thickness" of the Cantor set Ev. This is seen to
be finite, and the theorem is an easy consequence of this fact.

We seek a value of k such that \Dfk(x)\>l for all xeEv. Consider the sets
k oo

Ek — I— (J f~\U\ Each Ek is a finite union of closed intervals, Ev= P) Efc, and fk
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is a local homeomorphism on Ek. The negative Schwarzian derivative of / implies
that inf \Df\x)\ is assumed at a point of the boundary of Ek. Thus we seek k for

XeEk

which \Dfk(x)\ > 1 for all x in the boundary of Ek.
Let α gmin {/(/*([/)), Q<i^n;\a — c\, \b — c\}. If there is a stable periodic point

peU, take α<|α —p|. Since there are non non-trivial intervals in Ev, there is a K
such that each component of Eκ has length smaller than α. Now all points of the
boundary of Eκ have orbits which eventually lie in the unstable periodic orbit
containing a. Therefore, there is k^K such that xedEK implies |D/fc(x)|>l. We
assert that also \Dfk(x)\> 1 for all xedEk. Suppose that xedEk — dEK and that J is
the component of Ek containing x. Assume that LuJuK is the maximal interval
containing x on which fk(x) is a homeomorphism. We assert that either LcEκoτ
Lr\EK = 0 since fl maps each component El — E(l_l^ onto U. Suppose LcEK and
consider fk(L). This set has the form f\U) for some i>0. If / has a stable periodic
orbit containing pe U, then l(fl(U}) > \a — p\ ̂ α for all i. If / has no stable periodic
orbit, then there is a ξe(α, c) such that /"(£) = c since /"(α) = α and /" does not map
the interval (α, c) into itself. It follows that in this case that fk(L) has the form fl(U)
with i ̂  n. Thus, we have the estimate l(f\L}} ^ α in this case as well. Since l(f\L}}
^α>/(L), there is a point yeL with |D/fc(};)|>l. If Lr\EK = $, then we have
assumed that if y is the common endpoint of L and J, then \Dfk(y)\ > 1. The same
argument we have used for L applies also to R. There are points yeL, zeR with
\Dfk(y)\>l and |D/fc(z)|>l. Therefore, the negative Schwarzian condition implies
\Dfk(x)\>l iϊxeJ. Thus \Dfk(x)\>l for all xeEv.

We now come to the final part of the proof that Ev has Lebesque measure zero.
We have found an integer k such that \Dfk(x)\ > 1 for all xeEk = {y\f(x)el~ U for
0 rg i ̂  k}. Since Ek is compact, there is λ > 1 with \Dfk(x)\ > λ for all xeEk. We want
to estimate the sizes of the "gaps" in El — El +1 which appear in the construction of

00

Ev as P) Et. Suppose that J is a component of Et — El+1, and that K is the
ι = o

component of El containg J. We assert that there is a constant y > 0 (depending
only on /) such that l(J)/l(K)>γ.

The constant y is obtained from "nonlinearity" estimates of the sort used in
Proposition 2.8. If J and K are as above, then fl+1 is a homeomorphism on K and
fl+ί(j}=U. For any x,yeK, we have

log
Dfl+ί(x)
D f l + ί ( y )

I I

= Σ log|W(x))|-
i = 0

ί = 0

where yl is a Lipschitz constant for the function log \Df(x)\ on / — U. We use here
the assumption that f\K)Cl-U for i^l Since \Dfk(z)\ > λ > 1 for all zeEk and

ί(/l(X))<l for all i£l, we have X l/^)-/^)^ — î - - -A-. This gives the
— —

-̂ -
I— Λ Λ —

final estimate that

log
Dfl+1(x)

Dfl+\y)
-Ί — r
Λ — 1

for all
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This produces the estimate for l(J)/l(K) :

1(1) = l(fl

Thus, if y-exp ( - -^-J 1(17), we have l(J)/l(K)>γ.

The theorem now follows quite easily: If m>l is chosen such that every
component of El contains points which are not in Ew, then l(Em)^(l— y)l(Ej).
Iterating this estimate and noting that (1 — y)'->0 as i-> oo, we find that /(Em)-»0 as
m— »oo. Thus Ev has Lebesque measure zero.

Theorem 3.1 implies that the sensitivity of /e# to initial conditions is deter-
mined by the properties of the set P) (J f\U\ which we shall denote by A. We

Unbhdofci^O

remark that A contains the support of any invariant measure which is absolutely
continuous with respect to Lebesque measure. In particular, if feW has a
(strongly) stable periodic orbit, then / does not have sensitivity to initial
conditions. We want to examine / without stable periodic orbits and give
topological criteria for sensitivity to initial conditions.

Definition. The fixed point p of /", n > 1, is central if (1) Dfn(p) > 1, and (2) /" is a
homeomorphism on the interval J = (p,c). The central point p is restrictive if
/"( J) c (p, p'}. As usual, the point p' is determined by f(p) = /(//)• The point 0 is not
considered a central point.

We say a few words about the motivation for these definitions before
proceeding further. If p is a restrictive central point of period n and if U — (p, p'\ the

n-l

fn(U)CU. This implies that the set (J fl(U) is forward invariant for / and that a
i = 0

point x which maps into this set cannot escape. This is the basis of the "spectral
decomposition" of non-wandering sets given by Jonker and Rand [15]. Here we
shall interpret the restrictive central points as establishing barriers which prevent
separation of points in orbits with nearby initial conditions.

Theorem 3.2. Suppose feΉ has no stable periodic orbit. Then f has sensitivity to
initial conditions if and only if there is an integer N such that n^N implies fn does
not have a restrictive central point.

The conditions for p to be a central point and a restrictive central point can be
determined directly from invariant coordinates. Thus this theorem does yield
strictly topological criteria for determining whether /e^ has sensitivity to initial
conditions. Before embarking upon the proof of this theorem, we shall discuss
briefly the existence of central points.

Let /e# have no stable periodic orbit. Then the theory of Sect. 2 implies that
[x\fn(x) = c for some rc^O} is dense in /. Therefore given JV>0, we can find n>N
such that the critical point xή=c of /n+1 closest to c satisfies fn(x) = c. Then /" has
a fixed point q in one of the intervals (x, c) or (x', c) because fn(x) — x and fn(x') — x'
have opposite signs. We do not expect, however, that Dfn(q) > 0. Let S be the set of
points in the lap K of x for fn such that fn(y)ε(y, y'\ but fl(y)φ(y9 y') for ί ̂  n. Then
the ends of the lap K are not in S, so points of the boundary of S satisfy one of the
equations fn(y) = y or fn(y) = y'. The points at opposite ends of interval in S do not
both satisfy the same equation since / has no stable periodic orbits. This implies
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that each of S and S' has one end fixed by /". At one of them, Dfn is positive and
this point is a central fixed point for /". The results of this discussion will be used
below. They are summarized in the following lemma:

Lemma 3.3. Let /e# have no stable periodic orbit. If U is a neighborhood of c,
there is an n such that fn has a central fixed point in U.

Proof of Theorem. Suppose that /e# has no stable periodic orbit, but does have
a sequence nk-*co such that /Mk has a restrictive central point pk. Set Uk = (pk,p

f

k).
nk-l

For almost all xe/, there is an N such that /"(x)e (J fl(Uk) for n^N.It follows,
i = 0

that there is a set K C / of full measure such that xe K implies that fn(x) has ω-limit
oo n k -l

set in P| (J fl(Uk), which we denote A. Now A contains no non-trivial intervals,
Λ = l ί=0

""U /'(ffc+iK'U fl(Uklsoμk= max /(/'(l/k)HO as fc->oo. If ε>0, choose fc
i = 0 i = 0 0 5Ξ i < nk

such that μk<ε. Then xeX implies that there is JV>0 such that fN(x)ε Uk. We can
find a neighbourhood V of x such that fN(V)e Uk and max (fl(V)) < ε. Then for all

0 g i < N

n, we have l(fn(V))<ε since l(fi(Uk))^μk<ε. This proves that / does not have
sensitivity to initial conditions.

Consider now /e# with the properties that (1) / has no stable periodic orbit,
and (2) there is an N > 0 such that /" has no restrictive central fixed point when
n>N. We shall prove that / does have sensitivity to initial conditions.

The actual statement which we prove is that there is an ε > 0 such that if J is
any non-trivial interval, then there is an n with /(/%/))> ε. This easily implies
sensitivity to initial conditions because xeJ; l(fn(J})>ε implies that there is ye J
with d(fn(x), fn(y) > ε/2. Moreover, since the set (y\fn(y) = c for some n ̂  0} is dense
in /, we may assume that the interval J contains c. The lemma above implies then
that J contains an interval (pk, p'k) with pk a central point for some iterate of /.

The next step in the proof is the following lemma:

Lemma 3.4. Suppose fk has no restrictive central point for k^n and that p is
central for fn. Then there is a central point q and a k such that q is closer to c than p,
but fk(q,q'}^(p,p'\

Before proving this lemma, let us see how it implies that the theorem is true.
Beginning with p = q0, we can find a sequence {qk} of central points and integers nk

such that fnk(qk,q'k)^(qk-1,q'k-ί) and qk is closer to c than qk_v Then
fnk+nk+... +»ι(gfcj qβ 3 (p9p') and {qk}->c. Given any neighborhood V of c, there is a
qk such that (qk, q'k) C V. Then we find n such that fn(V) 3 (p, p'). Using ε ̂  /(p, p'\ for
any interval J, there is a k with l(fk(J}} > ε. As we noted above, this suffices to prove
the theorem.

We now prove the lemma by the construction of a "return map". Assume that p
is a central fixed point of /". Define the discontinuous map g:(p,p')^>(p,pf) by
g(x) = fk(x) where k is the smallest integer such that /fc(x)e(p,p') Since p is non-
restrictive, /" does not map (p, p') into itself and g is discontinuous. Now g is
defined almost everywhere on (p,p') and it is monotone on each interval not
containing c on which it is continuous. At the two ends of such an interval, the
values of g must approach p and p'. Consider now the two cases in which g has
only two points of discontinuity, and the case in which g has more than two points
of discontinuity.
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Fig. 2

In the first case, there are points x and xf in (p, p') such that g is continuous on
the intervals (p, x\ (x, χ'\ and (x'9 p). On (p, x) and (p', x'), the value of g goes from p
to p'. On (x,x')> 9 has a single critical point at c and g(y)-+p as y->x or x'.
Consider now fnι°g on the interval (x,xf). For some i, this map has a fixed point
since fnί(g(x)) = f ( g ( x ' ) ) = fni(p) = p and for each ye(p,c), and there is an i with
cE(fnί(y\p). In particular, take z as small as possible with g(c) = y. Then we locate a
fixed point g oϊfnι°g which is a central fixed point of fk (see Fig. 2). By assumption
g is not restrictive, so fk(q, q') contains a neighborhood of q. It is then evident that,
for some /, fl(q,q') contains the interval (p,q) and /"(p, g) D (p, p') Therefore the
lemma holds in this case.

Now consider the case in which g has more than two points of discontinuity in
(p, p'). Then there is a fixed point q of g in (p, p') at which Dg(q) > 0. Choose q to be
the closest fixed point of g to c with Dg(q)>0. If g(x)=fk(x) in a neighborhood of q,
then we assert that q is a central fixed point of fk. If g is continuous on the interval
(q,c)9 this is clear. If g is not continuous on (q,c\ it has just one point of
discontinuity y, and g(x) = fk+n(x) on (y,c). On (q,y), fk gives the first return to
(p, p'), while on (y, c) fk has not yet returned to (p, p'). In neither case can there be
xe(q,c) which is a critical point of fk.

Now the argument proceeds as in the previous case. The point q is not
restrictive, so fk(q, q') contains a neighborhood of q. If U is a neighborhood of q,
then there is an i such that fίk(U) contains (p,q) because the domain of g contains
an interval with endpoint q on which g is increasing and takes the value p at the
other end. But /"(p, q) contains (p, p') since (p, q) contains a point of discontinuity
for g. Thus the lemma and the theorem are proved.

4. Topological Entropy and Piecewise Linear Maps

Having established a topological criterion for the sensitivity to initial conditions of
a map /e#, we want to explore further the relationship of this criterion with other
topological properties of a map. Here we shall focus upon two issues which are
seen to be closely connected with the sensitivity of a map. The first of these has to
do with topological entropy, which is equivalent to the growth numbers of maps in
the case we deal with.

Definition. Let f:X->X be a map of a set such that for each fc, fk has a finite
number, Nk, of fixed points. Then the growth number of / is lim sup(Nk)

1/h.
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The second issue we consider concerns those maps /e^ which are topologi-
cally equivalent to piecewise linear maps g with \g'\=μ constant. The interest in
these maps g rests with the facts that their growth numbers are easily computed
and that they posses invariant measures absolutely continuous with respect to
lebesgue measure which have the largest possible entropy [20].

The first result we prove is a theorem whose proof is largely a series of
computations.

Theorem 4.1. Suppose fe<β has a restrictive central point p fixed by fk, k odd. If
U = (p,p') and Ev = {x\fn(x)El-U for alln^Q}, then the growth number of f\Ev is

k-l

larger than the growth number of f (j fl(U).
i=0

Corollary 4.2. If feΉ has a restrictive central point p fixed by fk, k odd, then f has
a neighborhood % in <& such that all maps in % have the same growth number.

The proof of the theorem relies upon the characterization of the smallest
itineraries which correspond to periodic orbits of each odd period. These were
calculated in [6] and the entropy which we calculate here has also been calculated
by Misiurewicz and Jonker-Rand [14]. From each periodic orbit of odd period fc,
we pick the largest point and then seek the one among these having the smallest
invariant coordinate. The itinerary ak of this periodic orbit is a periodic repetition
of 7 1/ 0/ 1/ 1.../!. Any periodic orbit of period k contains a point whose invariant

V ^? 'coordinate is at least as large as θ(a). This is easily deduced from the fact that any
cyclic sequence of /0^ι of length k contains a block of//s of even length. For a
sequence which begins J1/0/1/1.../1/0, the larger /, the smaller the invariant
coordinate. 21 '

Using the above fact, we can explicitly describe a subshift of finite type which
must be contained in Ev. It is the subshift of finite type present when / has a stable
periodic orbit with the itinerary described above. Partitioning / along this orbit,
we obtain a Markov partition Aί,...,Ak_ί for Ev. If these sets are labelled in
increasing order along /, then

I)/2J =

The transition matrix of A has Γs in the indicated positions:

fe-l \

fe-1

fc-1
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If we renumber the A?s starting with A(k+-ί}/2 and then alternatively taking the
next set to the left and to the right, the transition matrix is A shown below

A =

Direct calculation shows that the characteristic polynomial of A is P(t) = t2l — t21 1

-t2l~2 + t2l-*-... + t-l where we write / = (fc-l)/2. Then P(t)(t+l) = t2l+ί

— 2t2l~ 1 — 1. The growth number of the corresponding subshift of finite type is the
largest root λ of P(ί). Evaluating P(t) at ί = 21/2, we find P(f)(ί + 1) = - 1.

Thus /l>21/2, which is the crucial estimate necessary to prove the theorem.
The map / cyclically permutes the sets fl(U\ 0 ̂  i < k, U = (p, p'). Therefore, all

periodic orbits in u/l'(C7) have periods which are divisible by fe. On each f\U\ fk

has exactly one critical point. Therefore, the number of fixed points of fmk n
fc-l

μx
μ(l-X) if i^x^

fl(U) is at most k-2m. This implies that the growth rate of f\vfl(U) is at most
i = 0

21/k. Comparing this estimate with the one for λ proves the theorem.
In the theory of rotation numbers of diffeomorphisms of the circle, the

rotations represent a distinguished set which one might regard as "normal forms".
Given a diffeomorphism, one would like to change coordinates so that it becomes
a rotation if possible. In the theory we are studying, perhaps the closest analog to a
rotation is a piecewise linear map g defined by

g»(X)-

Clearly, \g'μ(x)\=μ for all xή=^. It is known that gμ has an invariant measure v,
absolutely continuous with respect to Lebesgue measure, whose entropy is log μ.
Here log μ is the topological entropy of g and μ is the growth number of g.

Not every diffeomorphism of S1 is conjugate to a rotation, but within the class
of C2 diffeomorphisms, those with irrational rotation numbers are. An analogous
fact is true here - not every map /e# is topologically equivalent to a gμ.
Topological conditions can be used to specify which equivalence classes are
represented by a gμ. The fundamental observation is the next simple proposition.

Proposition. 4.3. // j/2<μ<2, then the map g(x) = μ/2 — μ\^ — x\ has no restrictive
central points.

Proof. Let p be a central fixed point of gk, k> 1 . Then pf = l—p and gk is monotone
Sinceon (p,i). But \Dgk\>2 by assumption, so \gk(^)-gk(p)\>2\^-p\ = \ί-

\p' — p\ = \l—2p\, this implies that p'e(p,0k(y)) and p is not restrictive.

Corollary 4.4. // feΉ has a restrictive central point and growth number larger than

1/2, then there is no μ such that f is topologically equivalent to gμ.
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We next want to establish a converse to these last statements which gives a
positive criterion for a map /e# to be topologically equivalent to one which is
piecewise linear of constant slope.

Theorem 4.5. Let f<Ξ%> have no restrictive central point. Then there is a μe(j/2,2)
such that f is topologically equivalent to the map g defined by gμ(x) — μ/2 + μ - |j — x\.

Proof. Since / has no stable periodic orbit, the set {x\fn(x) = c for some rc^O} is
dense and the theory of Sect. 2 can be applied. We need only prove that there is a μ
such that / and gμ have the same kneading sequence. Then / and g will be
topologically equivalent. What we shall prove is that there is a unique kneading
sequence with the growth number of / This argument depends on the following
lemma.

Lemma 4.6. // Z1 ^ Σ2 are topologically mixing sub shifts of finite type, then the
growth number of Σί is smaller than the growth number Σ2.

Proof. Consider a common Markov partition for Σ1 and Σ2 with transition
matrices A and B. Now Σ2 — Σ1 is open in Σ2 and periodic points of Σ2 are dense.
Therefore Σ2 — Σί contains periodic points, and there is an n such that Tr,4"
<Tr£". Now Σί CΣ2 implies (An)i. ^(Bn)i. for all n, ί j . The strict inclusion implies
that (An)i <(Bn)t for some ij and each n. We claim that there is an n for which
(An\ <(Bn)i. for all i,j. The number (J5n).. is the number of sequences
bίo,biίi2...bίn_ίin with fe .. + 1 = 1 for each Q^j^n and ί = ίQ, j = in. Topological
mixing and Σ1ή=Σ2 gurantees that for n large there will be a chain of this sort with
some aijίj+ί=0 for each ϊ = i0, j = in. (This can be used as the definition of
topological mixing in this case.) Now if v is any vector with positive components
and (An\ <(Bn\ for all ij, then each component of Anv is smaller than the
corresponding component of Bnv. Taking v to be the eigenvector of A correspond-
ing to its largest eigenvalue, we find that B has an eigenvalue larger than all
eigenvalues of A. But the growth rates of Σ{ and Σ2 are the largest eigenvalues of A
and B.

Using this lemma we now prove that there is only one kneading sequence with
the growth rate of/e#. Let a be the kneading sequence of / and let b be another
kneading sequence, say larger than a. Between a and b is a periodic kneading
sequence d. Let g be a map with kneading sequence d and let p be the restrictive
central point of g farthest from c. The map g has a stable periodic orbit and hence a
restrictive central point. Then the growth number of g is the growth number of
g\Eυ\ U = (p,pf), Ev = {x\gn(x)El—U for all n^O}. The invariant coordinate of p
must be larger than a because θ(c) lies between θ(p) and θ(pf) for g and θ(a) ̂  θ(d)
= θ(cg). If the invariant coordinate of a were larger than that of p, then f would
have a periodic orbit with the same itinerary as p, and this point would be a
restrictive central point. Now g\Eυ is topologically equivalent to a subshift of finite
type which is topologically mixing. We can find a proper subset of Ev which is also
a subshift of finite type, topologically transitive, and with growth rate at least as
large as / Then the Lemma implies that g has larger growth number than /
Therefore, any map with kneading sequence b has larger growth number than /

Assume now that b has a smaller invariant coordinate than a. Then an
argument similar to the one above implies that if g has kneading sequence fc, then g
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has growth number smaller than that of / There is no other kneading sequence
than the one of / with the same growth number. Let g be the piecewise linear map
gμ(x) = μ/2 — μ I i — xl where μ is the growth number of / The uniqueness argument
then implies that g has the same kneading sequence as / since μ is also its growth
number. Finally, the results of Sect. 2 imply that / and g are topologically
equivalent.

Thus far, we have considered piecewise-linear maps with growth numbers in

(|/2,2] and smooth maps with odd periodic orbits. Let us briefly describe the
general situation, starting with the piecewise linear maps. Suppose gμ(x) = + μ/2
— μ \% — x\ with μe(21/2m, 21/2™~1]. Then all of the periodic orbits of gμ except a
finite number (one for each 2\ i<m) will have periods which are divisible by 2m.
There is a subinterval J of /, with an endpoint at the closest restrictive central

point of g to 1/2 such that g2m\J is a piecewise linear map with slope in (1/2,2].
The preceding theorems then apply to g2™\ J. Similarly, if the map / has periodic
points of the form 2m /c, fc> 1 odd but not of the form 2m~1 fc, then the growth
number of / lies in the interval (21/2m + \ 21/2™]. The map / has a restrictive central
point p of period 2m, and if q is a restrictive central point closer to c than p, then /
is not topologically equivalent to a piecewise linear map gμ. If no such q exists,
then / is topologically equivalent to the gμ with μ the growth rate of / As a final
corollary of the theory we have developed thus far, we have the following :

Theorem 4.7. Let /e#. Then f has sensitivity to initial conditions if and only if
there is a subinterval Jcl and an n>Q such that fn(J)dJ and fn\J is topologically
equivalent to a piecewise linear map gμ(x) = μ/2 — μ |x — 1|. Here μ is the growth rate

of fn\J and μe(l/2,2].

We turn now to one parameter families /v of maps in ̂  for some final remarks.
An outstanding question about such families is the prevalence of parameter values
v for which /v is "chaotic". If one interprets "chaotic" as "having sensitive
dependence on ititial conditions", then the theory we have developed can be
applied to yield some new perspective on this problem. To cast the problem into
the terms we desire, we make a "genericity" hypothesis for the family /v :

Hypothesis. If J is a nontrivial interval in the parameter space of the family /v such
that v l 5 v 2E J imply that /Vι and /V2 have the same kneading sequence, then /Vι has
a stable periodic orbit.

While it is not known that any family satisfies this hypothesis, it seems likely
that the set of families in Ck(7, #) which satisfy the hypothesis is generic set i.e., a
countable intersection of open dense sets. In any case we shall assume that all
families we discuss do satisfy the hypothesis.

Let /v be such a family. If there is a set B of positive measure in the parameter
space such that veB implies that /v has sensitive dependence to initial conditions,
then there is a subset B and an n such that ve£ implies that /v

n restricted to a
suitable subinterval is topologically equivalent to a piecewise linear map of
constant slope. With this n, we rescale the maps so that their domain of definition
is /. We then have a family for which there is a set of positive measure in parameter
space for which the members of the family are topologically equivalent to
piecewise linear maps.
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Interpret this via Theorem 4.5 in terms of growth rates. Using the hypothesis,
the places where the growth rate function of a family /v is not constant are the
parameter values v at which fv is topologically equivalent to a piecewise linear
function gμ. This suggests that one should study the growth rate function
associated to a family: y(v) — growth rate of /v. An alternative question to the one
raised earlier is whether the function y is absolutely continuous. The discussion
above suggest that the typical family fv has a set of positive measure in parameter
space for which /v has sensitivity to initial conditions if and only if the growth rate

function g(v) has a distributional derivative — whose support has positive measure
CIV

in the parameter space. Since we prove nothing, we refrain from a formal
statement of this principle. It does motivate discussion of the growth rate function,
however.

One cannot expect a simple argument to prove that the growth rate function is
absolutely continuous. The following example gives an upper bound of 1/2 for the
Holder exponent of the growth rate function of the quadratic family /v(x)
= vx(l — x). When v = 4, then fv has growth number 2. All roots of the polynomial
/v

fc(x) —x of degree 2k are real. There is a sequence of values vn->4 such that when
v = vπ, 1/2 is periodic with period n and with 0</20</30< ...</"~1(|)
</"(2") = 2". These stable periodic orbits are the "largest of each period" in the sense
of invariant coordinates. Since the derivative of 4x(l — x) at 0 is 4, one can estimate
the way in which εn = 4 — vM->0 as n-^oo. For any c)>0, (4 — <5)"εn->0. For n large,
we must have /V

2

n+1(i)«i/v

2®.
We can also calculate the growth rate of fVn. Partitioning I along the orbit of \,

we find that the rest of the nonwandering set of fVm is topologically equivalent to a
subshift of finite type with (n — 1) x (n — ί) transition matrix An:

/O 1\

1 1

1 1

1

\ 1 ly

The growth rate of fn is the largest root of the characteristic polynomial Pn(t) oΐAn.

Now P(f) = tn~l — tn~2— ... — l = tn~1 —. The largest root of P(t) is ap-

proximately 2 — 2l~n. Thus for the vn's we have the rough estimate for the growth
rate function that y(4)-y(vn)~21~n while 4-vn~β4~n for some constant β. It
follows that y will not be in the Holder class Cα if α is larger than 1/2. In particular
the growth rate function is not Lipschitz. More careful estimates will be necessary

dy
to determine whether or not the support of — typically has positive measure.

dv
There are two other "measure theoretic" questions which we ask concerning

the theory developed in this paper. The first question is whether the set A for /e^
having an infinite number of restrictive central points always has Lebesgue
measure zero. A positive answer would imply that if/e^ is not sensitive to initial
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conditions, then / has no invariant measure absolutely continuous with respect to
Lebesgue measure. The second question is whether /e# sensitive to initial
conditions implies that / does have an invariant measure absolutely continuous
with respect to Lebesgue masure. Is sensitivity equivalent to absolutely continuous
invariant measure?
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