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Abstract. A mathematically precise treatment is given of the well-known Bose-
Einstein condensation of an ideal gas in the grand canonical ensemble at fixed
density. The method works equally well for any of the standard boundary
conditions and it is shown that the finite volume activity converges and that in
three dimensions condensation occurs for Dirichlet, Neumann, periodic, and
repulsive walls.

1. Introduction

The phenomenon of Bose-Einstein condensation of an ideal gas is an elementary
example of a phase transition. A rigorous discussion of this phenomenon within
the framework of algebraic statistical mechanics was given by Araki and Woods
[1] and has subsequently been developed by many authors [4-8]. It is our purpose
here to present an account of Bose-Einstein condensation with particular atten-
tion given to the infinite volume limit of the grand canonical ensemble at fixed
density with a careful proof of the convergence of the finite volume activities. The
method we present here estimates the contribution of a collection of low lying one-
particle energy eigenstates in contrast to the customary separation of the single
ground state (e.g. [7] for the case of periodic boundary conditions). As a
consequence, our method allows a unified and elementary treatment of a variety of
boundary conditions, although our analysis will not prove that the condensate is
asymptotically in a single eigenstate. We consider the same boundary conditions
as discussed by Robinson [5] and complete his analysis by allowing the finite
volume activity to vary. Indeed the condensation phenomenon cannot be entirely
understood in terms of grand canonical ensembles with fixed activity. (Robinson
[5] shows that Dirichlet boundary conditions do not lead to condensation if the
activity z is fixed equal to one, but we show that if z is varied with volume so as to
keep the average density fixed then condensation can occur at the limit value z = 1.
The Dirichlet case with variable z is also discussed in [8].) In three dimensions,
condensation occurs irrespective of whether Dirichlet, Neumann, periodic or

0010-3616/79/0070/0043/S01.80



44 L. J. Landau and I. F. Wilde

repulsive-wall boundary conditions are used. Moreover, they all lead to the same
values of the critical temperature, activity, internal energy, and pressure in the
infinite volume limit. In one or two dimensions, again they all lead to the same
values of the various infinite volume limits, but there is no condensation.

The attractive-wall boundary condition considered by Robinson [5] leads to a
condensation phenomenon in one, two, and three dimensions if one considers the
thermodynamic quantities. However, examination of the local density demon-
strates that no local condensation occurs. The thermodynamic limit of the density
is larger than the density of the thermodynamic limit state and the difference
between these densities is equal to the density of the condensate. Accordingly it
may be argued that the attractive-wall condensation is a surface effect rather than
the usual bulk phenomenon. A brief discussion of these points is given in Sect. 5.

2. Boundary Conditions

We consider a free Bose gas enclosed within a cubical box of side L. The energy
levels are determined by the eigenvalues of the one-dimensional Schrodinger
equation

- A ψ " = β Ψ . (2.1)

We consider the following boundary conditions:

Periodic: ψ( - L/2) = ψ(Lβ), ψ'( - L/2) = \p\Lβ)

Dirichlet: ψ(-Lβ) = 0, ψ(Lβ) = 0

Neumann: ψ\-Lβ) = 0, φ'(Lβ) = 0

σ-walls: ψ'( - L/2) = σψ( - L/2), t//(L/2) - - σψ(Lβ).

(These walls are repulsive if σ > 0, attractive if σ < 0.)
The solutions to (2.1) subject to these boundary conditions are listed in an

appendix.
In two or three dimensions, the wave functions are products of the various one-

dimensional ones, with energy eigenvalues given by the sum of the various one-
dimensional energies.

We shall label the various energy eigenstates by s, irrespective of the dimension
(v = 1,2,3) or the boundary conditions being used. (Of course, the values naturally
assigned to 5 will depend on v and the boundary conditions.)

The local particle number density in v-dimensions at temperature T, as given
by the grand canonical distribution is [4]
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for xeIRv, where β = ί/kT and z is the activity. The average density is [2,3]

ρ(L,β,z)=^-Jρ(L,β,z;x)dvx

= —7
Lv Z—i

s

(eβε{s)-z)'
(2.3)

We wish to consider the infinite volume limit, L->oo, holding the average density
ρ(L,β,z) = ρ* fixed. The attractive-wall boundary condition will not be considered
further until Sect. 5.

Lemma 2.1. For given L, β and ρ*>0, there is a unique zLe(0,eβε°) satisfying
ρ* = ρ(L,β,zL), where ε0 is the lowest one-particle energy eigenvalue.

Proof. For any of the boundary conditions, it is easy to see that the sum in (2.3)
converges and is continuous in z for each fixed L and β. Moreover, each summand
is strictly increasing in z and so, therefore, is the sum. The result follows since
ρ(L,j8,O) = O and ρ(Lj,z)-*oo as z->eβε°.

We thus have a collection {zL} in (0, eβε°\ where, for each L, zL satisfies
ρ* = ρ(L, β, Zj). We will see that zL converges as L-> oo. By compactness, it follows
that {zL} has limit points, so we only have to establish uniqueness of the limit
point.

3. Convergence of the Activity and Condensation

In order to exhibit convergence of zL and explicitly illustrate the condensation
phenomenon, we introduce energetically-excited particle number densities.

Definition 3.1. For £>0, set

?^ΓTy
L φ)>ε \ e ~Z)

Theorem 3.2. Suppose z* is a limit point of {zL}, so that there is a sequence Lk-+co
with ZLk-*z*. Then ρε(Lk,β,zLk)^ρε(β,z*), where

n p2>2mε \ e ~ Z )

Proof. We first note that whatever the boundary condition, the lowest energy ε0 [0
as L-> oo, and so z* ̂  1. Hence ρε(β, z*) is well-defined for all ε > 0. By writing ε(s) in
terms of the allowed momenta, introducing the lattice spacing factors (h/Lk)

v, we
see that (3.1) is a Riemann-sum. Since zLk-+z* ^ 1, and (eβp2/2m — zLk) is continuous
in peIRv and bounded below by (eβε— 1— δ) for zLk close enough to z*, these
Riemann-sums converge to the Riemann-integral

f z*/(eβp2l2m-z*)dvp.
2
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The result follows since peIRv, p\->(eβp2/2m — z) is even.
Once we have established that z* is unique, we may interpret ρjβ, z*) as the

number density of particles with energy greater than ε.

Definition 3.3. Let ρex(β,z)= supρε(/?,z) and let ρo = ρ*-ρex. Then
0£ > 0

is the density of energetically excited particles, whereas ρ0 is the density of
energetically unexcited particles, i.e. the density of particles which have "con-
densed into the ground state".

Clearly, ρe(β,z*)^ρ* and so ρex(β,z*)^ρ*, and ρo(0,z*)^O.
Before exhibiting the condensation phenomenon in three dimensions, let us

show that in one and two dimensions there is no condensation. To see this, we note
that ρex(β,z*)g>ρ* implies, in particular, that ρejc(/?,z*) is finite, i.e. z*/{eβp2'2m-z*)
is integrable. Hence z * < l . But then the sum for ρ(Lk,β,zLk) (where zLk-+z*)
converges to a Riemann-integral giving

ρ* = ρ(Lk,β,zLk)->ρex(β,z*) as Lk-+co.

Thus z* is a solution to ρ* = ρejc(β,z*) which is unique since ρex(β, ) is strictly
increasing. It follows that zL->z* as L->oo. Moreover, ρo = ρ* — ρex = 0 for all β,
and so there is no condensation.

For the remainder of this section we will consider v = 3.

Lemma 3.4. ρex(β, ) is strictly increasing, and

with equality if and only if z= 1, where a is a constant.

Proof. Trivial, using a simple change of variable.

Definition 3.5. The critical temperature Tc is defined by ρ* = αTc

3 / 2, where a is the
constant of Lemma 3.4.

Theorem 3.6. // T>TC, then any limit point z* of {zL} satisfies z * < l , and
ρo{β, z*) = 0. Conversely, if there exists a limit point z * < l , then T>TC and so all
limit points lie in (0,1).

Proof. Let z* be a limit point of {zL}, and suppose T> Tc. Then

ρex(β, z*)^Q* = aT?2 <aT"2 = ρex(β, 1).

Hence, by Lemma 3.4, z * < l . It follows that

7
ZLk

/( βε(s)_ \ L - 3 f

for some sequence zLk-+z*. That is, ρ* = ρex(β,z*), and so ρo(/?,z*) = 0.
Conversely, if z* < 1 is a limit point, we can reverse this last argument to

conclude that ρ*=ρejc(/?,z*) and thus, using Lemma 3.4,

Hence Tc < T as required.
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Corollary 3.7. // T>TC, then zL^>z* as L—>oo, for some z*<l.

Proof. Suppose z* and z** are limit points of {zL}. Then, if T>TC, we conclude
that both z* < 1 and z** < 1. Moreover,

By Lemma 3.4, we deduce that z* = z**.
We see then, irrespective of the boundary conditions, that above Tc the infinite

volume activity z* is less than unity, and, in fact, is the unique solution to
ρ* = ρex(/?,z*). Moreover, ρo(β, z*) = 0 and so there is no Bose-Einstein
condensation.

Our next result shows that below Tc there is condensation (in 3 dimensions).

Theorem 3.8. // T^TC, then zL->l as L-^oo, and ρo(β,l) = ρ*(l-(T/Tc)
3/2).

Proof. Since T^TC, it follows from Theorem 3.6 that {zL} can have no limit points
smaller than 1. Hence zL->l as L-*oo, and we have

The result follows since α = ρ*Tc~
3/2.

We have thus exhibited the Bose-Einstein condensation, ρo>O, below Tc,
irrespective of the boundary conditions. The phase transition which occurs at
T=TC manifests itself in the non-analytic behaviour of the function z(ρ, T). This
gives rise to different analytic expressions for the thermodynamic functions as T
passes through Tc and to different phases.

4. The Internal Energy and Pressure

In this section, we wish to establish the existence of the specific internal energy and
the pressure in the thermodynamic limit.

The internal energy per unit volume and the pressure are given, respectively, by
[2,3]

u(LJ,zL) = L - Σ ^ ^ (4.D

and

p(L,β,zL)= Ξλ^logil-zLe-l"^) (4.2)

where zL is given by ρ* = ρ(L,β,zL).

Theorem 4.1.

Urn «(£>&zj-ft-f i ^ {eβP,ί_zη d*P



48 L. J. Landau and I. F. Wilde

Proof. Set

ε(s)>ε \e ZU

Then, as in Theorem 3.2,

hv p2>2mε 2m (e p m —

Now,

βε(s)

s e ZL

which goes to zero as ε-^0. It follows that

lim u(L,β,ZL)= Um»MS)= I f ^ ^

Theorem 4.2.

lim p(L,β,z)= -

z* = ΓimzL.

Proo/. Set

7

P ^ ε(s)>ε

Then, as in Theorem 3.2,

β, zη=-^- j log(l -
P ^ P

2>2mε

Now,

p(LJ,zL)-pε(LJ,zL)=~- X log
P^ i Z β

1 2
Using the inequality 0 ^ |/χ log— ^ - for O ^ x ^ 1, we obtain

C ^

2 f - y i Γ / 2 [ i y J 1 / 2

e)8lL-
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using Schwarz' inequality,

I „ o-βE{s) l̂ 1/2 f 1 11/22

< t y
= βεΫl2\U ^ (1

z e~
βε{s) 1 1 / 2 ί 1

-z e~βε(s))\ 1/7 ,,
Δiy )) l ^ ε(s)^ε

The expression in the first bracket is bounded by ρ*, and that in the second bracket
is simply a Riemann sum approximation which converges to h~v J dvp, which

tends to zero as ε[0. It follows that

\imp(LJ,zL)=limpε(β,z*)
L-> oo ε l O

We observe that the infinite volume limits are independent of the boundary
conditions, but that they involve z* i.e. they exhibit non-analytic behaviour as T
passes through Tc.

5. Attractive-Wall Boundary Conditions and the Local Density

The attractive-wall boundary condition (σ<0) may be treated in a similar way. A
condensation phenomenon does occur in one, two, and three dimensions, but this
could be viewed as a surface effect as can be seen for example by considering the
local density.

As before, the finite volume activity zL is the unique solution to ρ* = ρ(L,β, z)
h2

satisfying 0^zL<eβε°. Since the ground state energy εo-> — —-vσ2 as L^oo, any
2m

limit point of {zL} lies in [0 ,6r^ 2 v σ 2 / 2 m ] .vσ2/2m-

We set

βh2vσ2/2m
-βh2vσ2

βh2vσ2l2m\_
) - — J ^ 2 / 2 m _ g _ p 2 V ( T 2 / 2 m f l p.

The critical temperature Tc is now defined by ρ* = φ(Tc,σ). Tc is well-defined since
φ{-,σ) is strictly increasing, and φ(T,σ)-+O as T-+0, and φ(T, σ)^oo as T^co. An
analysis similar to that of Sects. 3 and 4 leads to

Theorem 5.1. In v-dimensions, v = 1,2,3, the free Bose gas subject to attractive-wall
boundary conditions exhibits a condensation phenomenon (ρ0 Φ 0) in the thermody-
namic limit. The critical temperature is given by ρ* = φ(Tc,σ). For T>TC, the
activities zL converge, as L-+00, to z*, the unique solution to ρ* = ρex(β,z*) and
ρo(β,z*) = 0. If T^TC, zL converges to e~β^σ2l2m

 as L-^oo. In this case,

ρo(j8, e ~ β^2^)
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Theorem 5.2.

lim u(L,β,ZL)= '-y- jpgr- d'p ^

where z*: = lim zτ.

h2vσ2

Note that ρo(β,z*) is just the binding energy per particle due to the

states bound to the walls. The energy is actually "located at infinity".

Theorem 5.3.

lim p(L,β,Zl)=- -l-$log(l-z*e-e»2l2m)dvp
L->oo βft

where z*= lim zr.

If one uses the explicit formulae for the one-particle wave functions (see the
appendix) then the limit as L->oo of the local density (Eq. 2.2) may be computed.
The limit density is translation invariant and equals the global density in the case
of periodic, Dirichlet, Neumann and repulsive-wall boundary conditions, but for
attractive-wall boundary conditions the local density is equal to ρex.

Theorem 5.4. For periodic, Dirichlet, Neumann and repulsive-wall (σ > 0) boundary
conditions, the local density ρ(L,β,zL;x) converges as L->oo, to the global density
ρ*. For attractive-wall (σ<0) boundary conditions, ρ(L,β,zL;x) converges to

Appendix

The one-particle energy levels are determined by the eigenvalues of the one-
dimensional Schrodinger equation

with the appropriate boundary condition (Sect. 2).
The eigenvectors are either even (e) or odd (o) with respect t o x - ^ - x , and are

labeled by the integer n:

. 1 ,.,

Lj i/(i +£/°))' (In the case σ<0, n = 0 is also allowed.)
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where

Dίrίchlet p^)=z—n, b^ = 0, p^ = — (n + ^) , fcJ,e) = 0

ίθ
Neumann pS ——(n — j), bί — - , t n — .,, ~π - , . .

L L [I n = Ό

Periodic p{

n

0) = — n, Mo) = 0, p(

n

e)=—n, b{

n

e) = <!

σ > 0 PΓ=—d?\ b\0)=-

p?j<#\ bγ=-S-ψ^, n<40)<n + b a^K n
L

h

/
Furthermore in the case σ<0 there is an even and an odd bound state if L>

h2

with ε = — σ2 — α2, α(o) / 1, α(e)Ni 1, with wave functions
2 m L->oo L-^oo

/ 2 /sinhL|σμ ( 0 ) ) \ " 1 / 2

)=[ — ) cosh(σα ( e )x)
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