
Communications in
Commun. Math. Phys. 70, 1-27 (1979) MathβΓΠdtίCdl

Physics
©by Springer-Verlag 1979

Scattering Theory and Dispersion Relations for
a Class of Long-Range Oscillating Potentials*
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Abstract. If a spherically symmetric potential is such that j V(r')dr' =
r

O(exp — μr), and if an additional regularity condition is imposed [a sufficient
one being that rV(r) is L1], the partial wave amplitudes are meromorphic
in a strip of width μ in the complex momentum plane, and the full scattering
amplitude is analytic inside an ellipse at fixed energy and satisfies fixed mo-
mentum transfer (•>/ — t) dispersion relations for 11 \ < μ2.

Such a class of potentials includes not only exponentially decreasing poten-
tials but also long-range oscillating potentials such as (1 + r2)'2 sin(expμr).
In fact the results can partly be extended to a still broader class of potentials
with increasing amplitude at infinity. It is argued that these results might lead
to a revision of conventional ideas on what is the potential between physical
hadrons.

Appendices may be of interest to special functions addicts.

I. Introduction

In this paper we propose to study non-relativistic scattering theory and dispersion
relations for a class of spherically symmetric, long-range potentials which are
very rapidly oscillating at large distances. As an example, consider the potential

71(r) = (l + rΓ3cos(exp(μr)) (LI)

This potential satisfies the condition

rV(r)eL\0,oo) (1.2)

and it is well-known that for such potentials all the machinery of usual scattering
theory, including the use of the Jost functions to define the S matrix and the bound

* Dedicated to Nick Khuri
** Laboratoire associe au C.N.R.S.
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states, in each partial wave, applies [1-3]. However, V^r) having only a power-
like decrease at infinity, it seems at first that there is no reason why the partial-wave
amplitudes should be analytic in some domain in fe1, or that the full scattering
amplitude be analytic in the cos θ plane in some ellipse [2, 3], and satisfy dispersion
relations in the energy variable, except in the forward direction [4].

The striking fact which we shall show in this paper is that because of its very
rapid oscillations at large distances (due to the exponential factor), the above
potential behaves as a short-range potential having the asymptotic tail O(e~μr).
Oscillations at infinity, if they are very rapid, introduce a damping factor in the
tail of the potential, and could make it short-range even if the apparent tail is
only an inverse power law. Once this fact is shown, it will become clear that
there is no real distinction, as far as the analytic and asymptotic properties of the
partial wave amplitudes in the k plane are concerned, between the potential
(LI) and

V2(r)= O (exp-μr) (1.3)
r-> ao

In fact, it will become clear that the factor (1 + r ) " 3 in Vί can be replaced by
Qxp(arί~ε\a,ε>0, without modifying anything.

In general, it is known [5, 6] that any potential for which the primitive

R

gW(r)= -g lim \V{t)dt (1.4)
R^oo r

satisfies the conditions

/(0, oo) (I.5a)

,oo=° ( L 5 b )

is a regular potential for scattering theory, i.e., the Hamiltonian is self-adjoint
and unique, is bounded from below with a finite number of (only) negative energy
bound states, we have the completeness of the Mόller wave operators (asymptotic
completeness), and, moreover, the S matrix is an analytic function of the coupling
constant g at g = 0, within a circle of finite radius.

If, moreover, we assume that, for large values of r,

\eμrW(r)\^C (1.6)

then we shall see that we obtain analyticity of the partial wave amplitudes A£(k)
in the strip

\lmk\<μ/2 (1.7)

We also establish, using, however, the extra assumption (1.2), the analyticity of
the full amplitude in the variable z = cos θ in the small Lehmann ellipse with

1 We shall use throughout this paper the by-now standard units <fi = 2M = 1, so that the energy
becomes E= k2,k being the wave number.
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foci ± 1 and semi-major axis

*= /l+^f (1.8)
V k

Likewise, it will be shown that the imaginary part of the full amplitude is analytic
in the large Lehmann ellipse, with a semi-major axis

X = 1 + % ( L 9 )

Concerning the analyticity of the full amplitude F in the energy variable E
for fixed momentum transfer ί, we shall find the usual cut-plane. In fact, it turns
out that F is analytic in both variables E and t in the domain

{E,t\EeC,EφR+ ;\t\ < μ2} (1.10)

Using this, together with the asymptotic behaviour of the amplitude for large
£, which turns out to be as usual, and analyticity in t, we finally show that the
scattering amplitude satisfies the Khuri dispersion relations [4] with exactly
the same restriction on t:

\t\<μ2. (1.11)

We believe that while condition (1.6) is essential to derive these results, condition
(1.2) is probably purely technical.

As an example, we may consider the potential

V3(r)=eμrcose2μr (1.12)

It is easily seen, by integration by parts, that we have

W3(r)=0(e-μr), (1.13)

and so all the properties of the amplitudes we have just described are true for
the above potential. There seems therefore to be no difference between (1.12),
or in general (1.6), and (1.3). One may, of course, give many more striking examples.
In resume, no matter how fast the increase of the potential at infinity is, it becomes
effectively a short-range potential provided it is multiplied by an oscillating factor
whose oscillations at infinity are sufficiently fast.

Section II is devoted to the study of the radial Schrόdinger equation, and the
proof of the properties of partial-wave amplitudes described above. In Sect. Ill,
we study the large / behaviour of partial wave amplitudes Ae, and show that (1.6)
implies an exponential decrease in t for large /, as expected from a real short-range
potential. This in turn implies analyticity in the Lehmann ellipses. Section IV is
devoted to the proof of the analyticity domain (1.10) of the total amplitude, and
the proof of Khuri dispersion relations. There are three appendices dealing with
bounds and properties of Bessel functions and related kernels.

II. The Radial Schrodinger Equation

To begin with, and in accordance with what was said in the Introduction, we
assume that the potential satisfies (1.2). We are therefore on the safe side as far
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as axiomatic time-dependent scattering theory is concerned, and may consider
each partial wave separately [1,3]. We assume also (1.6) for the integral of the
potential. The above conditions are clearly satisfied by potentials similar to
(1.1). Indeed

W(r) =-μ~1](l + t)- 3e~μtd(sm(eμt))

+ μ-1 ί sin(e"')4ίΓ'"(l + ί)" 3]
r

= 0 (e-n, (111)
r-*oo

The reduced radial Schrδdinger equation reads

(k2 - W^)ujlc,r) = V(r)u,(k,r). (112)

Because of (LI), we know that this equation has a unique solution—up to a
multiplicative factor—which vanishes at the origin (for complete detail, see
Ref. [2], Chapter 3, and Ref. [3], Chapter 12). We shall call it φ^, and normalize
it according to

[ I)\ΐ]r-ι-1φ,(k,r)= 1 (II
r->0

As shown in the above references, it satisfies the Volterra integral equation

φjίk r) = k-<- %kr) + } G,(fc, r, r')V{/)φJk, r')drf

o

where [7]

GJJc rS) = k- ιίUkr')n,(kr) -Ukήn^kr')], (II.7)

Notice that Gt is an entire function of k for r, r' Φ 0.
By iterating the above integral equation, and using the bounds (Appendix A)

(II.9)

(11.10)
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d

valid for r' < r, one can easily show that φ{ is the unique regular solution of the
Schrόdinger equation, and one obtains the bounds [2,3] (see also Ref. [5] in
which only W is used)

(11.12)

where A{ is an appropriate constant. From these, one obtains that for fixed £ and
r, cpf and φ'€ are even entire functions of k of exponential type. Moreover, they
satisfy the following asymptotic estimates [2, 3]

1 \ ί o ίrΊ \ I y I

/creal

ellmklro(l) (11.15)

where b€ is the phase shift, and Q(/c) an appropriate constant which turns out to
be related to the modulus of the Jost function (see below). Note that, so far, only
(1.2) has been used.

We come now to the Jost solution/^, defined by its asymptotic behaviour

lim e-ikrei£πj2flk,r) = 1 (11.16)

It satisfies the Volterra equation (Ref. [2], Chapt. 4; [3], Chapt. 12)

flK r) = hf \kr) - f G^k r, r') V(r%(k, r')dr (II. 17)

r

where G£ is the same as before, with the modification that now r < r\ and [5]

v l / 2

(11.18)

Again, assuming only (1.2), it is shown in the above references that the Jost solution
exists, and that it is unique, fj also exists and is continuous in r away from the
origin. Moreover, for fixed r ψ 0,/^ and β are holomorphic in k in Im k> 0,
continuous in Im k ^ 0, k Φ 0, and satisfy the estimates

1 - * ] (Π.19)

I m f c r] (11.20)
k^ao \IK
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We come now to the crucial point which is to show that if W is exponentially
decreasing at infinity, condition (1.6), fe becomes holomorphic in Im k > — μ/2,
except for a pole of order £ at k = 0. This is well-known for potentials having the
exponential decrease (1.3) at infinity (Ref. [2], Chapt. 4; [3], Chapt. 12). The method
of proof is quite similar to the method used in a previous paper devoted to the
study of the potentials which are singular and oscillating at the origin [5]. It
consists in using V= W in the integral equation (11.17) and then integrating by
parts to obtain formally the following two coupled integral equations for/^ and//:

= h,(kr)

d
(11.21)

and

; r9r')dr'

Notice that here r ^ r. We have assumed that

lim W{r')GJtk\ rj%{kj') = 0

(11.22)

(11.23)

and we shall justify it a posteriori. In order to show the existence and uniqueness
of the solution of the above integral equations, we need the bounds (Appendix A)

(11.24)

(11.25)

(11.26)

(11.27)

(11.28)

' - r )

'Vl + | * | r 7 \l+kr

Ιmfcl(ι '-ι-) (11.29)

Using all these bounds in the coupled integral equations (II.21)-(IL22) and
putting

ι% γ f . . | A I
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and

we obtain the integral inequalities

00

l(r) < C + C J I W{r')\(fe{r') + ^ (
r

r I W(r) I - °°
gjr) <C + -γ-TTfUr) + C J I W

i + \κ\r r

Notice that the dimensionality of these inequalities is satisfactory since C and rW
are dimensionless. Now

Using this and solving the above inequalities (one has to solve the first order
differential inequality for/+ g\ we obtain

o

00

7t (iΛ <T 7, ίC\\ A i Ώ Γ Λ(|Imfe|-Imfc)ι | τ τ / / v \ | Άv λ
Q^\T) ^ g^yJ) — J\f -f- JDj J e KK \r) UV — L ^

0

where A and B are appropriate constants. These bounds show clearly that when-
ever (1.6) is satisfied the iteration of the coupled integral equations (IL21)-(II.22)
leads to absolutely and uniformly convergent series for/, and// as long as Im k>
— μ/2, k^O, and also to the bounds

e~lmkr (11.30)

where Ce is the constant defined previously. Since all the terms of the series are
uniform in k (remember that Ĝ  is an entire function of k) it follows as usual that
fe and fj are analytic in k in Im k > - μ/2, except for a pole of order t at k = 0,
exactly as for the free solution hό. Also, using the above bounds in the integral
equations for/^ and//, it is easily seen that (11.19) and (11.20) hold. One also checks
easily that (11.23) holds in Im k> - μ/2.

Notice that the above analysis is quite similar to that of the case where the
potential itself is exponentially decreasing at infinity and the bounds (11.30) and
(11.31) are the same in both cases except for the constants C, which are given in the
usual case as integrals of V and now as integrals of W with the same exponential
factor exp[(|lm/c| — Imfc)r]. In short it makes no difference as far as the Jost
solution is concerned if we replace (1.3) by (1.6). This means that the notion of
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short-range potentials with exponential decrease at infinity can be generalized to
those for which only FKhas such a property.

In the case where V or W decrease at infinity faster than any exponential,
for instance like exp( - μrα), α > 1, one reaches the conclusion that/^ is well-defined
and holomorphic everywhere, and that all the bounds and asymptotic estimates
previously given hold in Im k > - K, no matter how large (finite) K may be.

We come now to the study of the Jost function, defined by [2,3]:

(_ hγ\
e

F€(k) = lim {2/_{)]lMk,r) = kfW[f,,φ,], (11.32)

where W is the Wronskian/'φ —fφ'. It follows that since φό and φ'^ are entire
functions of fc, and k% and its derivative are holomorphic in Im fc > — μ/2, the
Jost function is holomorphic in Im fc > — μ/2.

Using also the asymptotic estimates given for | fc | -> GO we find that

lim iv(fc) = 1 (11.33)

Im/c> -μ/2

which is known for exponential potentials [2,3].
So it turns out again that (1.3) can be replaced by the weaker condition (1.6)

without modifying the holomorphy domain of F€ or its asymptotic behaviour.
Having established the existence and the properties of the Jost solution and

the Jost function, everything else (bound states and their properties, the phase
shifts and the S matrix,...) can now be studied in the standard manner. We refer
the reader to the literature [2,3] and quote only the results.

Concerning the bound states, we know that they are given by the (simple)
zeros of Fe on the positive imaginary axis of the fc plane. That their number is
finite follows from the Bargmann bound [2, 3] or the bound [8]

ne^-^-]rWHr. (11.34)

As for the phase shift δβt) it is just minus the phase of the Jost function for real
values of fc, and is therefore real and continuous. Because of (11.33) we can choose
it such that <5̂ (oo) = 0. The Levinson theorem then reads

- <5,(oo) = (5,(0) = n,π (11.35)

Notice that all the properties given in this paragraph follow from (1.2) only [2, 3].
Also the constant Q(/c) in (11.14) turns out to be equal to k~s"11 F/k)|. We consider
now the S matrix. Its fh element is given, for k real, by

1 ^ - ^ (11.36)

and we have, quite generally, assuming only (1.2),

lim S,(fc) = 1 (11.37)

If we assume also (1.3) or (1.6), we know from what we learned above that S/fe)
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can be continued analytically in the domain (11.38)

|lmfc|<μ/2 (11.38)

where it becomes a meromorphic function with poles at the bound states and
resonances. Again it follows from (11.33) that (11.37) holds in the above strip.

The S matrix being analytic around the origin we obtain in the usual manner
(Ref. [2], p.40; [3], p. 308; [9]) the effective range

k2'+' cot δjlc) =-- + \r0k
2 + ... (IL39)

where a€ is the scattering length. All the coefficients of this expansion are always
finite, except α ,̂ which becomes infinite when there is a resonance (̂  = 0) or a
bound state (/ ^ 1) at zero energy since then F^(0) = 0.

Notice that, for long range potentials having a power-like decrease at infinity,
(11.39) breaks down after a few terms depending on the tail of the potential and
on i [9]. It is only for short-range potentials that the effective range expansion
is true for all /. Therefore, we see again that we do not lose anything in assuming
(1.6) instead of (1.3).

Finally, the physical solution of the radial equation, \f/€, which satisfies the
boundary conditions

- β i δ ( s i n ( k r ~

is given by (Ref. [2], Appendix C; [3], pp. 341 and 374)

(11.41)

and Uj satisfies the Fredholm integral equation (see the references just given)

uλί r) =l(kή + j] K,(kr, kr*)V(r')uJk> r')dr' (11.42)
K 0

where

\ ^ 2{kr>) (11.43)

From (11.41) the bounds (II.8), (11.10), (11.12) and (11.13), and the definition
of the S matrix (Ref. [3], p. 303)

2ί °°~
l $ J λ k ) V ( ) ( h ) d

0

ί= i + T ί w ^ Ufa +h'Λdr ( π 4 4 )
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we easily find, for k real,

This inequality shows that, for short range W% we indeed have, for k -> 0, and
in the absence of a bound state at zero energy,

Se - 1 = 2ιV*' sin be = 2ί sin (5, = 0 ( ^ + x) (11.46)

This is in agreement with (11.39).
When F,(0) = 0, we find [2, 3]

(Π.47a)

δjk) = Oik2''1). (IL47b)

We consider now briefly the case of potentials for which the primitive

R

W(r) = - lim J V(t)dt (11.48)

satisfies the conditions previously enumerated, namely (I.5a) and (1.5b). As pre-
viously mentioned this class of potentials is perfectly regular for scattering theory
[5,6]. To see that imposing (1.6) leads again to the analyticity of the partial wave
amplitudes, we introduce a cut-off at infinity into the potential so that it now
satisfies (1.2) and then let the cut-off disappear at the end. For instance, we use

VR{r)=V{r)θ{R-r) (11.49)

and let R-* GO at the end. Or, with the potential (1.12), we consider the limit
ε Oof

Vε(r) = e~εr2eμr cos(e2μr) (II.50a)

for which

Wε(ή = O(e-zr\-μr) (IL50b)
r->oo

etc.
In the presence of the cut-off, the partial wave amplitudes are holomorphic

in the entire k plane. Now, since when the cut-off disappears we still have a regular
potential whose primitive W satisfies (1.6) all the way, we end up with partial
wave amplitudes which are analytic in the strip |lm/c| < μ/2.

III. Exponential Decrease of Partial Wave Amplitudes with
Angular Momentum and "Lehmann" Ellipse

It is well-known that if V = O(e~μr) for r -• oo, the partial wave amplitude decreases
exponentially with *f, the angular momentum. We shall prove that in fact it is
sufficient to have W = O(e~μ) [condition (1.6)], together with the possibly techni-
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cal condition (1.2), to get this exponential decrease. Once this is established, we
shall reconstruct the full scattering amplitude by summing over angular momenta
and show that it is analytic inside an ellipse in the cos θ complex plane.

We use now the "Fredholm" form of the Schrόdinger equation (11.42)

u,(r) =Mkή + T]κ,{krM')V{r')u,{r')dr' (III.l)

from which one can get the partial wave amplitude:

eiδ< sin δ, = ]- ]l(kr)V(r)u,(r)dr, (IIL2)

K 0

If we want to study the behaviour of this quantity for large i for the class of poten-
tials satisfying (1.6), we have to integrate (III.2) by parts:

e»<sin δ€ =
 l- J W(r) j r ll(kήu,(r)]dr (III.3)

and we need bounds or estimates on u^r) and ue{r\ Bounds on u^r) can be easily
obtained by a method which has been used previously [10] and will be summarized
and extended here.

It is possible to find a bound on the kernel of the integral equation (III.l).
An improved bound is derived in the Appendix, it is

jL ^ 1 . 0 8 .

It is also clear, by choosing x > x and using l^^x')! > 1 that

(this can be improved!).
Inserting in (III.l) we get

I u/r)I < krCtf + i ) " 2/3 Γl + j[ (IIL6)

with / = f I V(ή 11 ue(r) \ dr. Notice that here k is always real.
o

At this point, we make use of property (1.2), which allows us to multiply (III.6)
by I V(r) I and integrate. This gives

^C1/c(^ + ̂ ) " 2 / 3 \r\V{r)\dr
o

for t^t^ with
3/2
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The bracket is larger than \, and we get an upper bound on / and on u€:

Another bound can be obtained by using instead of (III.4) the bound on the
kernel

+ ±)1/3 (111.10)

Inserting (IIL9) and (III. 10) into (III.l) we get
with C2 ^1.2.

fo r^> / 0 . (III. 11)

The next step is to calculate a bound on u'e(r) by differentiating (III.l). We
need bounds on the derivative of K€. In Appendix B we find:

d
K (Ύ γ'λ < 1 -4- ςnn 11 (x)\ < C 1/4- -W 6 ΠΊT 1 7\

dx x

with C 3 ^ 2, and

< 1. (IIL13)
dx

Inserting (III.9), (III. 12) and (III. 13) into (III.l) after differentiation we get

Iu£{f)I ^D 3 k for t^£0. (III. 14)

We can now evaluate (III.3). We get

|^sin^|^J|J;(/cr)| |X(/cr)| |Py(r)|dr
o

Using now

d ~

and (III. 13) together with Schwarz inequality we get, for ( > sup {£0,1}

Γoo Ίl/2

| e w ' s inδ, |< \r\W{r)\2e2μ'rdr
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11/2

13

1/2 /oo

0

-2μ'r \1/2Π

- * ) J
(III. 16)

where μ' is any number less than μ, appearing in (1.6). Conditions (1.2) and (1.6)
guarantee the convergence of the integral appearing in the right-hand side of
(III. 16). Indeed

00 R ao

\r\ W(r)\2e2μ'rdr < e2μ>R J r| W(r)\2dr + J r\ W(r)\2e2μ'rdr
0 O R

If W= O(e~μr) the second integral is convergent. The first integral becomes, after
partial integration

\r2VWdr

and

$r2VWdr <(sup\rW\) $r\V(ή\dr

and

rW <r Vdr' r')\dr' < \r\V{r)\dr.
o

In the second bracket of (III. 16) we recognize integrals defining Q^ functions
[1.1]. We use also the recursion relation

and get for £ > sup {/0,1}:

I eiδί sin b{ I < const 1 +
L

(IΠ.17)

This inequality is probably the main result of this Section. It shows that the full
scattering amplitude, defined through its partial wave expansion

F(k2, cos θ) = \ Σ(2S +
k

sin 0) (111.18)

is analytic inside an ellipse in the cos θ complex plane, with foci at cos θ = ± 1
and right extremity cos θ = cosh φ, with

cosh 2φ = 1 +
4/ι/2
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In fact, since μ! is arbitrarily close to μ

4μ2

cosh 20 = 1
2kr

The absorptive part

A b s F = 7 Σ W +/c Λ

s i n 2 ( c o s θ )

(III. 19)

(111.20)

is analytic inside an ellipse whose extremity is precisely cosh 2φ.
HY0 = 0, i.e., if Jr I V(r)\dr is sufficiently small, a simple bound can be obtained

on the full absorptive part, from the formula

1

z — x

valid for

It is, including the S wave contribution:

C\ 1
|AbsF| < const

1
ΐk'2 — COS I

and hence, changing variables to

ί = -2fc2(l-cos6>)

the square of the momentum transfer,

|AbsF| < const
4μ'2-t\

(111.21)

(111.22)

(111.23)

for I ί I < 4μ2. In (III. 21), (111.23), the constants are functions of μ! and can become
infinite as μ! -• μ.

At this point, we have, at fixed energy, an analyticity domain for the amplitude
and the absorptive part which is almost the same as the one obtained for a potential
decreasing like e~μr. The restriction "almost" is due to the fact that in the low
energy limit the analyticity domain of the amplitude shrinks to zero, in the t
variable. However, this is only provisional and due to the fact that in estimating
(III.3) very poor bounds on u and u have been used.

One can ask what happens if / 0 > 0. At any given energy the analyticity
domains are the same, but the bounds (111.21) and (111.23) must be modified.
If 0 < / 0 < 1 there is no real change, because the S wave has been replaced in (111.21)
by its upper bound anyway. If / 0 > 1, one cannot be contented by replacing the first
[fo\ partial wave amplitudes by their unitarity bounds because then, for any fixed
t, the bound on the absorptive part would be more singular than 1/fc2 as k2 -• 0
and would lead to a divergence in the dispersion integrals that will be considered
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in the following section. However, we have seen in Sect. II that any given partial
wave has the normal threshold behaviour, δ^~ k2*+1; if the corresponding Jost
function does not vanish at k = 0. Then the product

is not singular at k = 0 for fixed t. The only assumption we have to make is that
there are no zero energy bound states. Incidentally this assumption, never explicitly
stated, is implicit in all previous work on dispersion relations for exponentially
decreasing potentials.

IV. Fixed Momentum Transfer Dispersion Relations

One of the classical results for potentials of the order of exp( — μr) for r -• oo is
the validity of dispersion relations for fixed momentum transfer squared, t such
that 111 < μ2. If we use as variables E = k2 and t the dispersion relation can be
written as [4]

1 °? Abs F(E\ t)dE
F(E,t) = FB(ή + - J £/_y (IV.l)

where FB(t) represents the Born approximation :

with t=—q2.
An obvious question is to know whether these dispersion relations also hold

for 111 < μ2 for potentials satisfying only (1.2) and (1.6). We see already easily that
the Born term, which can be written as

1 °° d
-f τ[rύnqr]W(r)dr (IV.3)
q 0 dr

is analytic, under conditions (1.2) and (1.6) in

\mq\<μ (IV.4)

the image of which, in the t variable, is a parabola with focus t = 0 and summit
t = μ2 containing precisely the circle 111 < μ2.

We also see, from the results of Sect. Ill, that the integrand, in (IV.l), can be
continued for | ί | < μ2. However, there are two problems left. First of all, the bound
(111.23) is not good enough to guarantee the convergence of the dispersion integral
without subtraction. There is no evidence, however, that this bound is optimal.
Second, even if there was no problem of convergence, it would still be necessary
to prove that the right-hand side of (IV.l) coincides with the scattering amplitude.

To prove the validity of (IV.l) we shall use a regularisation procedure replacing
the potential V by

Vε{r)= F(r)exp(-εr) (IV.5)



16 K. Chadan and A. Martin

For Vε the conditions of Refs. [4] are satisfied at least for \t\< ε2, but we
also have

and therefore the scattering amplitude at the energy E — k2 is analytic inside an

ellipse in the cos θ plane with right extremity ^/l + (2(μ + ε)2)/2k2, containing the

circle, defined, using the t variable as

For k2 large enough, this circle is as close as one wishes to | ί | < (μ -f- ε)2.
The procedure we shall use now is inspired by the method by which dispersion

relations in elementary particle scattering for complex t were derived [12] and
more precisely the version by Sommer [13] in which the size of the complex t
domain is explicitly found.

In (IV. 1) we subtract the low energy part of the dispersion integral and the
Born term:

(IV,,

By construction φε is analytic in 1t \ < ε2 with a cut in the energy plane starting
at E = Eo. φε has no discontinuity on 0 < E < Eo and we can take the limit of
E r e a l < Eo in (IV.7) without problem. However, then we have a second piece of
information: φε(E, Eo, t) for £ r e a l < Eo is analytic in t in the intersection of

ΐ
and

Eo

Following the same lines as in [12], and noticing the positivity properties

d\"
< ( - ] AbsFε(£',0), -2E'gί^0, (IV.10)

it is possible to prove that the successive derivatives of φe(E, Eo, t) for — 2 £ 0 < ί ^ 0,
for E real, can be obtained by differentiation under the integral sign in (IV.9)
[the derivatives exist because of the existence of the analyticity domain (IV.8)]:

έ > * Eo

ί x Λ j t ) A*s Fε(E',ή
dE'

ί = 0

E'-E
(IV. 11)
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Clearly (IV. 11) can be continued for complex E. The positivity of the integrand for
real E< Eo guarantees the convergence of the integral for complex E.

We can then try to resum the series defining the scattering amplitude

ie(JE,Eo,ί = 0) (IV.12)

and noticing that

E'-E,
< sup

E, E'-E

for 0 < £ l r e a l < Eo, we see that the analyticity domain in t of the series (IV. 12) is
a circle with the same size as the circle defined by (IV.8) for E = Ex. We conclude
that φ(E, Eo, t) is analytic in the topological product

where η(E0, Et) goes to zero as Eo and Et go to infinity.
Therefore from (IV.7) Fε(E, t) is analytic in the topological product

and in fact, since, by choosing Eo and Ex large enough, η can be made arbitrarily
small

At the same time, it is possible to show that φε satisfies an unsubtracted dis-
persion relation.

We notice that (d/dt)n Abs Fε(E, 0) is a positive distribution in E, i.e., a measure.
If we consider a positive value of t, and choose Ereal < Eo we have

n. JL E Q EJ A

and because of positivity the summation and the integration can be interchanged,
thus defining a positive distribution in E:

Abs Fε(E', ί) = Σ £ ( I ) " Abs Fε(E', 0)

with

1 I Abs F^,t)dg

71 £ ϋ — ϋ

However, by construction

lAbsF.ί£',ί)l<AbsF.ί£Mίl)
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and therefore the representation holds in fact for any 1t1 < μ2, provided Eo is large
enough. We conclude that Fε(E, ί), for 11 \ < μ2, can be written as

Fε(E, t) = Ffit) + \ ϊ AbS

E

F^'ήdE'. (IV.16)

Now comes the final step, which is to let ε go to zero. Because of the condition
(1.2) the partial wave amplitudes for any finite energy will converge to the ε = 0
value as ε -• 0. We also know that the partial wave expansions are uniformly
convergent in ε inside the Lehmann ellipses for physical energies because Wε

converges to W. Also, clearly Fε (t) -• FB(t). From this it is possible to deduce that
φε(E, Ef, i) converges to φ(E, E\ t) using the definition (IV.7). However, a precaution
is necessary because φε contains in its definition an apparent principal value
integral. So what one has to do is to consider §w(E')φε(E'9EQ9t)dE',w is positive,
C^ with compact support in ]0,£ 0[. Such a quantity, for arbitrary w converges
toward $w(E')φ(E',E'0,t)dE' if | ί | < (μ - η)2, and we conclude that φB(E,E0,t) -»
φ(E, Eo, t) at least in a distribution sense. However, for positive t9E<EO9 φε(E9 Eo, t)
is a monotonous function of £ from (IV. 15) and its limit is necessarily an ordinary
monotonous function. We conclude that the representation (IV. 15) also holds in
the limit ε = 0, because the integral is uniformly bounded and because the inte-
grand, for any finite E' approaches the value corresponding to ε = 0. Of course,
φ(E,E0,t) can be uniquely continued to complex E. Therefore Fε(E,t), for E
outside the cut approaches F(E,t) which satisfies the dispersion relation (IV. 16)
with ε = 0. This dispersion relation implies that not only the absorptive part but
also the amplitude is analytic in 11| < μ2 at all energies. This means that by using
unitarity the analyticity domain of the absorptive part could be enlarged and that
the analyticity domain of the amplitude could be further improved by reinjecting
the absorptive part into the dispersion relation. For the most general potential
satisfying (1.2) and (1.6), the best one can hope is to prove dispersion relations for t
inside the parabola with focus t = 0 and extremity t = μ2. Even this is not at all
certain and, in any case, difficult to prove. It is very likely necessary to use other
variables in the dispersion relations.

V. Concluding Remarks

The results we have obtained give new support to the idea that what is really
important in scattering theory is the primitive of the potential rather than the
potential itself. We must admit that this fact seems to us difficult to understand
from a classical point of view. We are led to a revision of our ideas on short-range
potentials. Potentials with exponentially decreasing primitive produce scattering
amplitudes which possess essentially the same analytic properties as those due to
ordinary exponentially decreasing potentials. The next step would be to find the
full analyticity domain of the scattering amplitudes. One question is, for instance,
whether one can find in our new set of potentials a nontrivial subset for which the
Mandelstam representation is valid; for ordinary short-range potentials we know
that this is the case with superpositions of real exponentials. This investigation
might be difficult. For instance, a potential of the form V(r) = P(r) cos (expμr),
where P is a rational function, produces a Born approximation which is an entire
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function of ί, and therefore, it is likely that we cannot have a Mandelstam represen-
tation with a finite number of subtractions with this potential.

We are also led to re-examine the inverse problem, in particular the inverse
problem at fixed energy. We know that if a scattering amplitude is analytic in a
cut plane in cos θ there is a unique superposition of Yukawa potentials which
reproduce the scattering amplitude as was shown first by G. Targonski and one of
us (A.M.) [14]. The problem is to know what happens now if we allow this new
class of potentials. In practice we only know from field theory that the scattering
amplitude of two elementary particles stable with respect to strong interactions
is analytic in some ellipse in the cos θ plane. It was believed that the only potentials
which would reproduce such an amplitude would be exponentially decreasing,
but this is not any more necessarily the case. As a matter of fact this new freedom
might be welcomed to avoid some conflicts between the axiomatic field theory
description in which the only fields one considers are associated with stable
particles and the description in terms of quarks, i.e., fields without asymptotic
fields. In the latter case, it is not at all obvious that the potential between two
nucleons will decrease exponentially. Of course, it is not at all obvious either that
the potential will belong to this new class.

Finally, let us notice that the assumptions we have made might not be yet
minimal. When obtaining the analyticity properties of the Jost function, for given
angular momentum, the condition Jr\V(r)\ dr < oo has never been used. However,
we need the convergence of this integral in the proof of the existence of a Lehmann
ellipse. Admittedly our proof is rather clumsy. In this proof we have just altered
in a minimal way the standard proof of convergence to the partial wave series for
ordinary potentials.

Appendix A. Bounds associated to the volterra form of
the Schrόdinger equation

In this Appendix, we establish the bounds (II.8) to (11.11) and (Π.24) to (11.29) on
spherical Bessel and Hankel functions which were used in Section II for the study
of partial wave amplitudes. Equations (II.8), (Π.9), (11.24) and (11.26) are well known
(Ref. [2], Appendix A; [3] p. 372). To establish the others we start with (11.10).
It can easily be seen that the recursion formulae for the Bessel functions lead to

{

_1{x) (A.I)

) _ Ze+ i ( x ) ( A - 2 )

where z is any of the functions j ^ , ^ or hr Now

(A.3)
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where
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Likewise, for proving (11.25), we start from (11.24), use the recursion formula
(A.2) and proceed as above:

\k\r

\k\r

\k\r
(A.4)

where

Now, in order to prove (11.11), we use the relation [2, 3]

(A.5)

Differentiating now this relation with respect to r, using (II.8), (II.9), (11.24) and
(11.25), and proceeding as above, we obtain, respectively, (11.11) for r' < r, and
(11.27) for r' > r.

The remaining bounds are obtained in a similar manner by differentiating
(A. 5), and using the bounds which have been established.

Notice that, for t integer, all the spherical Bessel functions are uniform with
respect to their arguments, and that G^ is an entire function of k for r, r' ψ 0

Appendix B. Bounds on Kr(x9 x) and its derivative
1. We recall the definition

with

)ϊor x<x'

}f(x)h(/Xx) for x> x
(B.I)

πx

πx

The function

(B.2)

is a decreasing function of x for £ > 0 [15]. Therefore

,x')| < |ίC,(x,x)| <xsup

\K,(x,x')\ < \Kf(x',x')\ < x' sup
y

, if x < x'

< x sup
y

if x > x (B.3)

The problem of finding a bound on K^(x, x') is therefore reduced to finding a
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bound on
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sup
y

Naturally, (B.3) also implies

I Kjx, x) I < I sup I x J,+ ll2(x)Hγl 1/2(x)

(B.4)

(B.5)

2. We now discuss the bounds on (d/dx)K/x,xf). Notice that this function is
discontinuous at x = x.

For x < x we have

d

from the previous remark on h(.
For x > x' the situation is different. We have

£κ/x,x') =\l(x)ψ(x)\.

From the differential equation

we get

and hence

Therefore

I h'€ I decreases for 0 < x < Jί(ί + 1),

I h!e I increases for yjt(t + 1) < x < GO .

We conclude

ΦΊh/

'dx'

d n

if x' < x < •

We notice also the Wronskian relation

(B.6)

(B.7)

(B.8)

(B.9)
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Combining (B.6), (B.7), (B.8) and (B.9), we get

sup \Z(xW\x)\

d
< sup- sup \Mχ)h?»(x)\.

We now calculate

sup = sup dx dx

We have the following properties in 0 < x <λ/V(/-|-
algebraically increasing, and hence, from (B.9),

but since | h€ \ decreases

Hence

\J/A<\JβJΆ\1/2

and, with

Similarly, with Y = \fβ^ \

j ^ > 0 increasing, ^ < 0

Finally, we get

d

dx '

3. After this we are left with three problems: find

sup Je + ί/2(x)H^ 1 / 2(x) I, sup I x J,+ lj2{x)Hfl 1 / 2(x) I, sup

We now proceed to the next step which is to show that

(B.10)

^ + i / 2W I

reaches its maximum for x > £ + ̂ , and has no relative maximum for x < ( H- \.
If this is true, it is also true for the other quantities considered.

Consider first the product P = — JVNV, where v = t + \. P satisfies the differen-
tial equation (17)

3 P - 4(v2 - x2)θP + 4x2P = 0 (B.ll)
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with θ = x(d/dx), which admits as first integral

PΘ2P - ^{θPf + 2(x2 - v2)P2 = - 2v2P2(0) (B.12)

From (B.ll) one deduces that P has at most one maximum in 0 < x < v .
Indeed if ΘP < 0, Θ3P < 0 and hence Θ2P remains negative to the right of the
maximum. From (B.I2) one gets that, at the maximum xM of P, if it exists,

With

and

P 2 > P2(v)
± max ^ L V)

and, using the properties which can be found in the book of Watson [16]:

v1/3Jv(v) increases with v
I Nv(v)/Jv(v) I decreases with v \

we get, taking v > 9

(for v < 9 we can use tables).
Hence

xM>v-^v1/3 forv>9. (B.15)

Now the maximum of J2\HV\
2, at x'M is necessary such that x'M > xM since

Jy (x) is increasing for 0 < x < v. This maximum is given by

N N'
( R 1 6 )

(B.14) gives us some control on N/J, but we need also to control N'/f. To do so
we consider a new quantity

which satisfies also (B.I2) and has therefore at most one maximum in 0 < x < v.
We adjust α in such a way that Q'(X = v) > 0, by using properties (B.14), together
with

JNf - Nf = 2/{πz)

and

v2/3j;(v) increasing (5.17)
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We have

K. Chadan and A. Martin

Q(x = v) = - 2J'N + IOLJJ'

πv

• 2 J / L / 3 + α] using (
nv \

-U J9(9)J'9(9)[yβ + α) - H for v > 9,

which is positive for α > 0.016. Therefore we have

- JfN-N'J + 0.032 Jf>0

for 0 < x < v and hence

^ < 0.032 4

The condition for the maximum of JYHV implies therefore

2 + 0.032 — < 0

(B.18)

(B.19)

However, in 0 < x < v, | N/j\ is a decreasing function of x. We shall now find a
bound on |N/J\ Άtx = xM<x'M: similarly, to

d

~dv
< 0

one can prove (Appendix C)

dv

Nv(v - ίv1/3)
< 0

This allows us to get, for v > 9

v1

4.6 > V — -

(B.20)

(B.21)

which is incompatible with (B.I9) and proves that for v > 91 J v i ί v | is monotonously
increasing in 0 < x < v.
4. Now we shall estimate a bound on | JVHV | by using the asymptotic formulae
near the turning point and the error bounds given by Olver [17]. These are,
after some majorizations, for v > 9, x jg v

.1/3

J v < 1.025[v4;(v
2/30 + 0.025M(v2/30]

where

1/3

0.032M(v2/3C) (B.22)
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Ai and Bi are the Airy functions, and

Maximizing with respect to ζ, we get

v2/31 J v H t υ | < 0.5066 for v > 9 (B.23)

It can be checked numerically that this is also true for v < 9.
From this we deduce

We also need an independent bound on Ke and on j ^ . We notice that the
absolute maximum of \]e | occurs between x = ί + \ and the first zero oi]e. Indeed

is a decreasing function of x for x > λ / V ( / + 1). Also the absolute maximum of
Kj(x, x) is for x < jj +1/2,1.

From the property

established in Appendix C, one deduces that the first zero of JVJV χ is such that

J v ; 1

1 / 3

 V decreases (B.25)

Therefore we deduce that

I K,(x, x') I < 0.796 (/ + \)^3 ψ for ί ^ 9

i.e.,

| ^ ( x , x ) | < 1.2(̂  + f) 1 / 3 (B.26)

Naturally one finds that the restriction ί ^ 9 can be removed. Similarly

IXWI < Jlm^(J^H2)JJ-γ^12

i.e.,

|X(x) I < 1.04(/ + \ ) 1 / 6 for / ^ 9

from which (III. 12) follows.
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Appendix C. A property of monotonicity on bessel functions

In the book of Watson [16] the following property is established:

We want to prove, by using a generalization of the method, that

Nv(v + ίv1'3)-^-Jv(v + ίv1/3) - Jv(v + ίv1/3)^ΛΓv(v + ίv1/3) < 0

We shall specify the argument of the Bessel functions later and use

(Cl)

(C.2)

Now we use the fact that K'0(z) < 0 and that sinh x > x

- V2

for /(v) > v

f

Arc cos
U(v)j for /(v) < v.

we want to show that for the choice /(v) = v + ίv1/3 the brackets corresponding
to ί > 0 or ί < 0 are positive.

/(v) 3/(v) + 3'

In the case/(v) < v, the problem is reduced to study the sign of

2x 1 sin
- 1 T

Φ(χ)
i, X> 1.

By successive differentiations of φ(x) it can be shown indeed that φ(x) is positive.
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Similarly one can also prove

Inequality (C.2) is therefore established both for t < 0 and t > 0. From (C.2),
one gets, by integration,

^
NJv-tv1'3) Bp'h) 3

when the denominators are positive for v0 ^ v < GO .
One also gets, by adjusting v + ίv1 / 3 to coincide withyv Λ

dv\ v1'3

and hence jyl>v + 1.85575v1/3. The same property can be shown to hold for
the higher zeros, by using the interlacing of the zeros of Jv and JVV, and also holds
for the zeros of Nv.
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