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Abstract. Holder continuity of sample paths of the stochastic process
ζtif)

==(P(^tf) ( / G ^ ( ^ d 1 ) ) m Euclidean field theory is proved under some
assumptions on correlation functions. These assumptions are fulfilled in P(φ)2

and in theories in which the GHS inequality holds. The continuity index α is
determined by the condition jdσ(p)|p0 |2 α<oo, where dσ(p) is the Fourier
transform of the two-point function.

Introduction

Euclidean field theory is assumed to be defined by a Euclidean invariant measure
dμ{φ) on £f\Rd). However, the support of the measure μ is usually concentrated on
a much smaller subspace of 6f'(Rd). It is important to determine this support in
order to know which operations are we allowed to perform on the generalized
functions φe^\Rd). The support properties of the free Euclidean measure were
investigated in [1-3]. It has been shown that, if we smear out φ(t, x) with respect to
d — 1 variables then ξt(f) = φ(δtf) as a function of t is Holder continuous with
continuity index α < ^ for φ from the support of the free Euclidean measure.
Cannon [2] has given also some arguments that the continuity of paths being a
local property should hold for P(φ)2 measures which are absolutely continuous
with respect to the free measure when restricted to bounded regions from R2 [4].
A continuity of paths in P(φ)2 has been shown by Albeverio and Hoegh-Krohn
[5] to result from a theory of stochastic processes with values in infinite
dimensional spaces.

In this paper we prove Holder continuity of the sample paths ξt(f ω) under
some assumptions on the correlation functions. Estimates on the correlation
functions lead then to bounds on \ζt(f) — ζt>(f)\. Applying Frohlich estimates in
P{φ)i [6] we get Holder continuity of sample paths with continuity index
arbitrarily close to 1/2. The GHS inequality [7] estimates the generating
functional in terms of the two-point function. This inequality applies to φ 4 and
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some other models [8] in any dimension (cp. [9]). We show that even if such
models are non-canonical (assuming that fixed time fields make sense) the sample
functions are still Holder continuous, but with continuity index smaller than in the
canonical field theory.

Holder Continuity of Sample Functions

We usually begin with a random field φ(g) over the Schwartz space £f(Rd) in order
to define a probability measure on ^'(Rά). This random field can be then extended
to a larger test-function space 8Γif only gn->g in ^Γ implies φ(gn)-*φ(g) in measure
[10]. We assume that a norm || || on Sexists such that

(a) |£[e"φ ( ί ? )]| <^eu2k^2k for u sufficiently large (here k is chosen to be an integer)

is an entire analytic function of finite order.

(1)

In field theory the Kallen-Lehmann spectral representation holds

S2(x -y) = E[_φ{x)φ{y)-] = $dσ(p)eι'**-»
i

o P
We assume that

(b) there exist positive numbers ε<j and a<\ such that for

$dσ(p)\f(p)\2\Po\2q<^

(c) | | / | | α Ξ | | | p 0 | f | | < o o

(d) there exists an integer r > —- such that for certain C
2ε

Remarks

1. Due to the Euclidean invariance the norm || || can be chosen Euclidean
invariant, then \\ga\\ = \\g\\ where ga(x) = g(x-a).

2. jdσ(p)|/(p)|2 should be finite if the fixed time fields [10,11] are to exist. If
m^mp>0 in the Kallen-Lehmann representation (1) then §dσ(p)\f(p)\2\p0\~2ε is
finite for any ε<^. If jdρ(ra)< oo then α can be arbitrarily close to 1/2.

3. From (a) it follows that for r sufficiently large E[φ2r(g)~]^Cr\\g\\2r.
However, || || need not be continuous with respect to the S2 norm.
In Appendix we put together some known results in order to show that

conditions (a)-(d) are fulfilled in P(φ)2 (see [6,12]) with α arbitrarily close to 1/2
and 2k being the degree of the polynomial P(φ). If the GHS inequality holds (see
[7-9]) then the condition (a) is fulfilled with k=l and \\g\\2 = S2(\gl\g\). In such a
case (d) is true for any r and the Holder continuity is determined by the two-point
function.

Under the assumptions on the two-point function we can define (see [10,11])
ξt{f) = φ(δtf) where δtf(x) = δ(t-xo)f(x) with fe^R*'1). Further on we shall
also use Fourier transforms. Then δtf(p) = eipotf(^) and ξt(f) = φ(eιpotf). We are
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interested now whether (almost all) sample functions of the process ξt(J) are
continuous. In the language of Euclidean field theory this means that φ(δtf) is
continuous in t for almost all φ from the support of the Euclidean measure. We
will prove

Theorem 1. If conditions (a)-(d) are fulfilled, then there exists a constant A and a
random variable BT^.2Tfinite almost certainly (moreover integrable) such that the
inequality

B T
- l/2fc

(2)

holds for almost every sample function ξ^(f;ω) if\t\, \t'\^T.

Before starting the proof let us define an auxiliary stochastic process [this can
be done due to the assumption (b)]

ηt{f) = φ(eipot\po\
af). (3)

The condition b) ensures continuity of ηt(f) in probability and Lebesgue in-
tegrability oϊ E[_\ηs(f)\] on a finite interval. Therefore, due to Doob's theorem [13,
p. 61, Theorems 2.6 and 2.7] we can choose a measurable and Lebesgue integrable
process, which is equivalent to ηt(f) in order to define the integral

ζt{f)=]ηs(f)dS (4)
0

as an integral over the sample functions of the process ηs{f). We will introduce still
another stochastic process as a sampoe integral over ηs(ot > 0)

£(/)= ^ ^ s i n ^ f I sΓ 1 *--* ! "V,ωds (5)

here 0<γ<δ<s and sin—-Is^"1 is the Fourier transform of |po |~α. So we
π 2

expect that as n-^coξn

t(f)->ξt(f) [cp. Eq. (3)]. Now our proof of Theorem 1 goes
through the following steps

(i) we show first that ζt(f) (4) has paths which are Holder continuous with
continuity index 1.

(ii) using (i) and integrating by parts in (5) we express ξn

t by ζt and show that ξ"
fulfills the estimate (2) with constants A, B independent of n

(iii) we prove that £"(/)->£,(/) almost certainly for every ί, where ξt(f) is a
stochastic process equivalent to ζt(f).
The step (iii) together with the estimate (2) for ξn

t ends the proof of Theorem 1. We
begin with

Lemma 2. Assuming (a)-(d) there exists a constant ro>0 such that the random
2k

function exp
2fc-l

^r^ro and the random variable (BT^

where β=w-Ί—r is Lebesgue integrable over s for

T

Bτ= J -ηsif) (6)
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is finite almost certainly. Moreover, lim — Bτ exists almost certainly and
Γ^oo T

E[BT~\ ^BT where B does not depend on f.

-
Proof. It is sufficient to show that j ds E\ exp •Uf) because then

Doob's Theorem 2.7 ([13]) implies that the integral (6) makes sense and E[BT~] is
finite. In order to show that the expectation value is finite let us notice that

Lemma 2a. There exist constants ak9 bk such that

2 * - 1 ^ j dyexp(-y2k)exp(akxy).
- 00

To prove (7) we use the identity

- y2k + Zy = - p(y - V ) 2 k + V

2k + V

2\p{\ - y/V)
2k - (y/V)

2k -

(7)

(8)

where υ= I—-I . It is then easy to show that there exists p such that the last
\2kJ

term in Eq. (8) is positive. Hence

j dy exp (— y2k + zy) ^\dy exp [ — p(y — v)2k~\ exp v2k.

Now, using Eq. (7) we get

£ exp -nlf) dyεxP(-y2k)E exp yakTTl~ηs(f) (9)

and from the assumptions (a) and (c)

r
e χ p ^exp[3/2/£(αfcr)2/c] as

Therefore for akr < 1 the integral in Eq. (9) is finite and bounded by a constant \B.
This result is at the same time sufficient for the Birkhoff-Khinchine ergodic

theorem [13] to hold, hence lim — Bτ exists almost certainly.
Γ^oo T

Remark. As defined by Eq. (6) Bτ depends on / and we are able to show only that
E[BT~\ is bounded by a constant independent of/, but not Bτ itself. This obscures
the /-dependence1 of the right side of Eq. (2) {A does not depend on /) . We could
prove that Bτ is bounded by a random variable independent of/if we could show
e.g. that e N is Lebesgue integrable, where |^J is the norm of the linear functional

ηsif).

Lemma 3. The (Holder) inequality (2) holds for the process ζt(f) [Eq. (4)7 with
α = l.

Ht+h \ γt+h

Proof. D u e t o t h e J e n s e n i n e q u a l i t y F\- j d s η s \ ^ - j F(ηs)ds f o r a n y c o n v e x
t+h V1 f I n t

function F and from Eq. (4) j dsηs(f) = ζt+h(f)-ζt(f). Using this we get from

1 For Gaussian processes a natural /-independent formulation is discussed in [17]
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Eq. (6) [withF(x) = exp|x|*]

Lemma 4. The process ξn

t [Eq. (5)7 fulfills the inequality (2) with A and Bτ

independent of n.

Proof We shall divide the integration in Eq. (5) into four parts ( —w, — 1), (—1,0),
(0,1) and (l,n) and show that each piece of ξn

t fulfills the inequality (2) with
constants independent of n. First, integrating by parts we get (with
\ηt_s,ds'=-ζt_s)

t s ] + δe-n~γsδζt_sds. (11)
1

Then from Eq. (10) we have

1/β

1/P n ί Ft \1/β

^ ^ ^ ψ j ds
l/β

ds. (12)

Here Bτ + S depends on the range of the time variable of the process ζt_s as follows

from the derivation of Eq. (10). Now, when π—>GQ τ + n is convergent almost

certainly due to Lemma 2. Hence there exists a random variable B (with

B
E[B~] < oo) such that rJ

+s ^B (because Bτ + S is an increasing function of s). Then

lg + l g ( Γ + S ) lg

and both integrals on the right sight of Eq. (12) are bounded by a constant.
Therefore we have

j (13)

where C can be chosen independent of n.
Consider now ξ{

t°
Λ\ We get by integrating by parts (we have here

. (14)
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The second term on the right side of Eq. (14) vanishes owing to Eq. (10). The first
term is Holder continuous with index 1 due to Lemma 3. In order to show that
ξ^0'1} is Holder continuous with index α it is sufficient to show this property for the
third term on the right sight of Eq. (14). Then the last term will be Holder
continuous with index α + <5. So let us consider

h 1 1

0 h h

h I D \l/β I r> \l/β 1

o \ s / \ h I h

ί/β

(15)

The integrals over ( — π, — 1) and ( — 1,0) correspond to the replacement ηt_s^ηt + s.
So we get the same bounds (13) (15) and finally the inequality (2).

Lemma 5. For each t there exists a linear functional ξt on 6^{Rd'1) such that

lim ξn

t(f) = ξt(f) almost certainly.

Proof It is sufficient to show that (a consequence of the Borel-Cantelli
00

Lemma [13]) there exists a sequence {an}, αn2:0 and £ αn<oo such that

Σ a;2rEl(ξ<;+ \f)-ξrt(f))2Ί<oo. (16)

From the definition (5) we have

— n

Clearly |£[»/Λ.]|g£[η§] hence

ύElnlΛi f sa~ίe-(n+1)~Ύsδds)

Next £WoJe

Eί(\ K(s)η,_s(f)ds)2-\ ^£[(J IKίsJI^.^I/Dds)2] (17)

because the two-point function (1) is positive and ηt (3) can be defined as a limit in
the mean of φ(utf) with — ut positive (the Fourier transform of — |po |α is positive).
Using the inequality

e~(n+ l)-
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We get from Eq. (17)

J ds J dsΊsr'-Vr

253

— n — n

where

( 1 8 )

We will show that the last integral in (18) is bounded by a constant. Because
< oo Fubini theorem allows to interchange p and 5 integration. Now

dse^s]"*3-1 I — α — δ
«|po|

j
| |
j dxx* cosx

for α + <S-l < 0 . Hence (18) is bounded by ^ 2 y 2 n " 2 " 2 y J<icr(p)||/|(p)|2|p0|"
2δ which

is finite if <S5=ε due to the assumption b). Therefore

-2-2\ (19)

(20)

Hence, choosing a=n~ι~yι,y<δ^c,r>—- with κ and 5 — y sufficiently small we
2ε

get the convergence of the series (16).

Lemma 6. ξt(x) and φ(t, x) are equivalent random fields, i.e. the random variables
§dtξt(gt) and φ(g) have the same probability distribution for gt(x) = g(t,x) with

d

Now, from the assumption d) through the same argument, which led us to Eq. (17)
[i.e. applying assumption d) to g = \ut_JK{s)ds, where ut_s-+δt_J we get

£[(J K(s)ηt _ lf)ds)2q g C(£[(ί |K(s) tot

and combining (19) and (20)

Proof. Because ξn

t are uniformly Holder continuous the convergence ξn

t(f) to ξt(f)
is uniform on any finite interval. Hence, for each sample function the integral

R R

j ^(g^dt exists and is equal to lim j ξn

t(gt)dt. Moreover one can show that the
-R n-^co -R

limit R-+CO exists almost certainly for g^^{Rd) (see [14] Sect. 5.4 for the proof).
So J ξt(gt)dt makes sense and we will show that its characteristic function coincides
with that of φ(g). In fact, we have

|£[exp (iφ(g))] - £[exp (i J ξt(gt)dtf\

— lim lim
R-* oo «->oo

E exp (iφ(g)) 1 - exp - iφ{g) + i j" ξ1(gt)dt

^ lim lim E
R-> oo n-> co \

R \2-|\l/2

φ(g)- lRξn

t(gt)dt\ II = o
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where in the last step we show first [similarly as in Eq. (19)] that E[(φ(g(t,-)
— £"(#ί))2]->0 a n d then apply Lebesgue dominated convergence theorem.
Lemma 6 concludes the proof of Theorem 1 as ζt(f) fulfills the inequality (2).

III. Some Additional Remarks

First, let us note that the result formulated in Theorem 1 cannot be essentially
improved under given model-dependent assumptions. The integrability of Bτ

implies integrability of expressions like exp \t — s\~ε\ξt(f) — ξs(f)\β and this needs an
assumptions on the growth of £[exp uφ(g)~] as u—>oo. Next integrability of Bτ

implies that the correlation functions of ξti — ξtί + ί are bounded by their co-
variances. This looks similar to the condition d) (although d) itself says nothing
about the short time behaviour because one cannot make sense of | ^ — <5J). Finally
it will be shown below (Proposition 7) that the continuity index α (if <{ή cannot be
larger than the value determined by b).

On the other hand if we restrict ourselves to a single path then the logarithmic
term can be included into a constant and only the continuity index characterizes
the path. In this sense paths in P(φ)2 and in the free theory are the same both
having continuity index α arbitrarily close to f. However, dealing with a set of
paths we should be able to distinguish (even when restricted to a bounded region
of space-time) between the paths of free and interacting theory on the basis of their
concentration on the (ξ, t) plane.

The finiteness of the integral Jdσ(p)|/(p)|2 |p0 |
2 α appearing in the assumption (b)

is related to the behaviour of E[_(ξt(f) — ξs{f))2~\ for t — s-*0. This can be seen from
the formula

\dtt~1- 2*£[(α/)-£o(/))2] =2 J dσ(p)\f(p)\2 \dtt~ι ~2\\ -e*") (21)
ε ε

as it can be shown that the limit ε->0 exists if and only if the integral
jdσ(p)|/(p)|2 |p0 |

2 α is finite. Moreover, if J<iσ(p)|/(p)|2 < oo and m > 0 in the Kallen-
Lehmann representation (1) then E[{ξt — ξ0)

2] is differentiate on [ε, 1] (because
S2~e~m^ for large m and ίφO) and the derivative is integrable on [0,1]. Hence
integrating by parts on the left side of Eq. (21) we get that for 2α < 1 the limit ε^O
of (21) exists if and only if the limit ε~2aE[(ξε — ζo)

2~\ exists. Therefore if this limit
does not exist then for δ sufficiently small

E[_(ξt(f)-ξ0(f))2^Aδt
2^ if O^t<δ. (22)

Next, one can show that a non-canonical short distance behaviour ~\x — y\2~d~η

of the two-point function is in agreement with Eq. (22) only if α < ^ — \r\. So in a
non-canonical field theory (if such exists at all) we have to take into account paths
with worse continuity properties. We formulate this obvious consequence of
Eq. (22) as

Proposition 7. If for a positive α 0

<i j^σ(p)l/(p)| 2l/ 7ol 2 α o ^ infinite then the set of
paths which are Holder continuous with index α0 has measure less than I 2 .

2 For Gaussian random fields one can show [1,14] that such paths have measure zero. Let us note
that integrability of the random variable Bτ appearing in the inequality (2) is not assumed here
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Appendix. Estimates on Correlation Functions

We put together here some results showing that our assumptions a)-d) are fulfilled
in a class of models. In P(φ)2 the folowing estimates on correlation functions have
been established ([6] see also [16])

Elφ(g1)...φ{gJl£K\n\)1~ΰ\\gj_\\gj (A.I)

with

1 ^ ^ (A.2)

where || | |p denotes Lp-norm and 2/c is the degree of the polynomial P(φ). From
Eq. (A.I) the condition a) follows and | | |p0Γ/|| < oo if α < ^ . Then Glimm and Jaffe
[12] proved that for every n

E^(gi)..^(gn^^Lnnl\\(-A+mlrl'2gJ2^.\\(~A+mlr1/2gn\\2. (A3)

This estimate shows that the assumptions b) and d) are fulfilled in P(φ)2. Next, one
can easily show [15] that if (GHS inequality [7])

μ ^ O (A.4)

in a theory with an interaction V(φ) — μφ(μ^.O) then when μ—•() (assuming

£[exp (uφ(g))-] ^ exp (u 2£[φ 2(|#|)]). (A.5)

Hence a)-d) are fulfilled with | |0 | | 2 = £[φ2(|g|)] if o n l y Λ e tow-point function
fulfills b). There is a class of lattice models (see [9]) including φ4' and exponential
interactions in which the GHS inequality holds. This inequality allows also to
show the existence of the continuum limit [9], but one does not know whether this
limit is non-trivial in d>3 dimensions.
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Note Added in Proof. Repeating the procedure of proving Theorem 1 to each component of the
vector xeRd of the random field φg(x)~φ(g( —x)) we could show

\φg(x)- φg(x')\ ^ C\x - x'\a + D\x- xf '
1 - 1/2/c

\x — x \

where C is a random variable and D is a constant, assuming

Sdσ(p)\g{p)\2\pμ\"<co and | | 0(p) |p/ | |<oc,




