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Abstract. The factorized S-matrix with internal symmetry Z 4 is constructed in
two space-time dimensions. The two-particle amplitudes are obtained by
means of solving the factorization, unitarity and analyticity equations. The
solution of factorization equations can be expressed in terms of elliptic
functions. The S-matrix contains the resonance poles naturally. The simple
formal relation between the general factorized S-matrices and the Baxter-type
lattice transfer matrices is found. In the sense of this relation the Z4-symmetric
S-matrix corresponds to the Baxter transfer matrix itself.

1. Introduction

During the last years a number of examples were found of nontrivial and exactly
calculable relativistic scattering theories in two space-time dimensions (see for the
review [1] and references therein). These examples, the so-called factorized S-
matrices, correspond to simplified scattering kinematics restricted by special
selection rules. These forbid a change in the number of particles and also preserve
the set of individual momenta. Therefore the scattering process reduces to the
redistribution of momenta between the different particles of the same mass.
Selection rules of this type are characteristic of the quantum dynamics of a
completely integrable field-theoretic system such as the sine-Gordon model.

The presence of these selection rules in the scattering theory forces the
remarkable property of the total S-matrix: it is factorized in the standard manner
into two-particle 5-matrices [1,2,8]. Any multiparticle S-matrix element can be
expressed in terms of the two-particle amplitudes, the unitarity and analyticity of
the total S-matrix being the consequence of the same properties of the two-particle
one. Furthermore, the factorized form of the S-matrix requires special functional
relations (the so-called factorization equations) for the two-particle amplitudes to
be satisfied. In a number of interesting cases one can work out the two-particle S-
matrix explicitly by solving the factorization equations together with the unitarity
and analyticity conditions. In this way the factorized S-matrices having O(N) [3],
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SU(N) [4] isotopic symmetries and some other examples [5,6] were obtained. The
0(2)-symmetric S-matrix corresponds to the quantum sine-Gordon model while
O(iV)-symmetric (with N ^ 3) ones correspond to the non-linear σ-model and the
Gross-Neveu model [1].

In this paper we construct by the same method the relativistic factorized S-
matrix with discrete internal symmetry Z 4 . The general solution of the corre-
sponding factorization equations can be expressed in terms of elliptic functions:
the ratios of different amplitudes are double-periodic functions of θ - the rapidly
difference of colliding particles. The two-particle S-matrix satisfying the unitarity
and analyticity conditions depends on two parameters of coupling constant type
[the 0(2) symmetric sine-Gordon S-matrix turns out to be a degenerate particular
case]. It possesses some unusual properties for purely elastic ^-matrices, in
particular, it includes the resonance poles naturally.

The other point we discuss in this paper is the remarkable formal connection
between two-dimensional factorized S-matrices and the exactly diagonalizable
transfer matrices of plane-lattice statistical systems. The most interesting known
example of them is the eight-vertex transfer matrix of Baxter [7]. If one considers
the square lattice of N columns labelled by J = 1,2, ...,N, the Baxter row-to-row
transfer matrix is of the form (see (3.3) of [7]).

v = ± 1 J =
ocN+ i = α i

where {i} = {z1?..., iN} is = ± 1 are the operator (vertical) indices of transfer-matrix
and Rajaj f 1 is 2 x 2 operator matrix of the special form, analytically dependent on
the "spectral" parameter v. The remarkable property of the parametric set of
transfer matrices (1.1) is their commutativity at different values of spectral
parameter:

T{υ)T{υ') = T(υ')T{υ). (1.2)

This is the important condition for the exact diagonalizability in fact it is the
consequence of some special properties of the matrix R(v) (see [7] for the details).

In principle, one can consider a more general case o f n x n matrices Ra* and of
n-dimensional space, labelled by the vertical indices ij. It will be shown that, in
general, the equations on a two-particle S-matrix necessary for the total S-matrix
factorization coincide formally with the conditions on matrix R, given by the
requirement of transfer matrix commutativity (1.2); while the rapidity difference θ
(which is the argument of the two-particle amplitudes) plays the role of spectral
parameter. This correspondence enables one to construct, given any factorized S-
matrix, the related set of Baxter-type transfer matrices with property (1.2). The Z 4 -
symmetric S-matrix described in this paper is connected to the Baxter transfer
matrix itself (in the formal sense explained above).

The paper is organized as follows. In Sect. 2 the definition and the general
properties of the Z 4 symmetric factorized S-matrix are presented. The solution of
factorization, unitarity and analyticity conditions is found in Sect. 3. The dis-
cussion of some physical properties of this solution is the matter of Sect. 4. In
Sect. 5 we treat the connection between facorized S-matrices and a Baxter-type
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transfer-matrices this section is relatively independent of the others. In Sect. 6 we
discuss the results and point out some unsolved problems.

2. Z4-Symmetric Factorized S-Matrix

Consider the factorized scattering theory including in the asymptotic states the
degenerate doublet of the particles A and A which can be treated as particle and
antiparticle. All the properties of the factorized S-matrix are determined com-
pletely by the structure of the two-particle one. As for the latter, we suppose it to
be symmetric under exchange A+-+A (C-invariance) and contain the following non-
vanishing elements only

ϊ (2. la)

) , (lib)

0Ut<A(θ1)Άφ2)\Ά(θι)A(θ2)yin=sr(θ12)i (lie)

out<Mθ1)Λ(θ2)\A(θ1)Ά{θ2)yin=saφ12)9 ( l id)

where Θ12 = θ1 — O2, θv and θ2 are the rapidities of the colliding particles, i.e.

p°=mchθ k ; pj[=msh0k, (2.2)

where p£ is two-momentum of fc-th particle and m is its mass. The dependence of
two-particle amplitudes (2.1) on the rapidity difference β 1 2 is the consequence of
relativistic invariance.

The presence of non-vanishing amplitude (2. Id) distinguishes our case from the
known 0(2)-symmetric S-matrix of quantum sine-Gordon solitons [1,2]. Due to
the open channel AA-+AA the charge of a state is conserved only modulo 4, so the
S-matrix (2.1) exhibits internal symmetry Z 4

X .
In order to describe the total S-matrix it is convenient to use the algebraic

representation of factorized S-matrix. Here we include a brief definition for our
case; the general and more detailed consideration can be found in [1] (see also
Sect. 5 of this paper).

Let us consider some non-commutative algebra with generators A(θ) and A(θ)
and identify the asymptotic scattering states with the ordered products of these
generators, and generator A(θk) (A(θk)) in the product being in correspondence
with the particle A(A) of rapidity θk in the state asymptotic in-(out-)states would
be identified with the products in which the generators are arranged in the order of
decreasing (increasing) values of rapidities θk. The two-particle S-matrix (2.1)
corresponds to the following commutation relations for the generators

= S(Θ12)A(Θ2)A(Θ1) + Sa{θι2)Ά{θ2)Άφx), (2.3a)

) = Sr(0,2)A(θ2)A(θι) + Sr(θl2)A(θ2)Ά(θι), (2.3b)

)=sβ12)A(θ2)Ά{θ1)+sr(θ1 2)Ά(Θ2)A{Θ1) , (2.3c)

Άφx)Άφ2) = S(Θ12)Ά(Θ2)Ά(Θ1) + Sa{θl2)A{θ2)A{θ,). (2.3d)

1 Realization of the symmetry transformation on the particle wave functions can be chosen in the

form: A-*e ^Λ; A-*e ^A
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These commutation relations are self-consistent provided the unitarity con-
dition for the two-particle S-matrix (2.1) is satisfied:

S,(θ)St( - 0) + Sr(θ)Sr( - 0) = 1, (2.4a)

S t(0)S r(- 0) + S r(0)S t(- 0) = O, (2.4b)

S(0)S(-0) + S β ( 0 ) S β ( - 0 ) = l , (2.4c)

S(0)Sβ(-0) + Sβ(-0)S(0) = O. (2.4d)

The relations (2.3) allow us to recorder any in-state to out-states by performing
ths subsequent pair commutations of neighbouring A's. To guarantee this
procedure to give the unique result, independent of the order in which the pair
commutations are made, one should require the associativity of the algebra. This
requirement will be consistent with the commutation rules (2.3) provided the
following functional relations for the two-particle amplitudes S are valid:

SSaSr + SaStSt=SaSS +SSrSa, (2.5a)

SSaSt + SaStSr = StSaS + SrStSa, (2.5b)

SStSr + SaSaSt = SrSrSt + StSSr, (2.5c)

SSrS +SaSSa=StSrSt+SrSSr, (2.5d)

where the arguments of the first, the second and the third S in each term are
implied to be 0, 0 + 0', and 0', respectively. The relations (2.5) are just the
factorization equations; their physical meaning is discussed in [1].

If the Eqs. (2.4) and (2.5) are satisfied, the commutation rules enable us to
expand uniquely any in-state into out-states, i.e., to express any multiparticle S-
matrix element in terms of two-particle ones.

The relativistic scattering amplitudes (2.1) should possess certain analyticity
properties. These amplitudes are meromorphic functions of 0, real at the imag-
inary 0-axis [1]. Furthermore the crossing-symmetry requirement for the S-matrix
(2.1) provides the following equations

St{θ) = S{iπ-θ), (2.6a)

Sr(0) = SΓ(iπ-0), (2.6b)

Sa{θ) = Sa(iπ-θ). (2.6c)

Another equivalent description of the same S-matrix can be obtained by
introducing the real doublet of particles Λ1 and A2

]/2A = Aί+iA2; ]/2A = A1-iA2. (2.7)

It is easy to find, using (2.3), the following commutation relations for new
generators ^ ( 0 ) and A2(θ)

Aί{θ1)A1{θ2) = σ{θί2)A1(θ2)A1(θ1) + σaφi2)A2(θ2)A2(θ1), (2.8a)

^ 1(0 1)/t 2(0 2) = σ ί(0 1 2)^ 2(0 2)^ 1(0 1) + σ r(01 2)/l1(02)^1(02)/l2(01) (2.8b)
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[the relations for A2(θί)A2(θ2) and A2(θ1)Aί(θ2) differ from (2.8) only by the
exchange Aί<-*A2]. The new amplitudes σ are related to S as follows

2σ =St +

2σt=S + St-Sa-Sr

2σr = S + Sr-Sa-St. (2.9)

Since the commutation rules (2.8) coincide formally with (2.3), the unitarity
conditions and factorization equations in terms of σ's can be obtained from (2.4)
and (2.5) by the substitutions S->σ, Sa->σa, St->σt, Sr-+σr. The crossing symmetry
relations (2.6) become

σt(θ) = σt(iπ-θ), (2.10a)

σ(θ) = σ ( i π - 0 ) , (2.10b)

σΓ(0) = σ β (iπ-0). (2.10c)

In the next Section we use the Eqs. (2.4)-(2.6) to construct explicitly the two-
particle amplitudes (2.1).

3. The Solution of the Factorization, Unitarity, and Analyticity Equations

Obviously, the factorization Eqs. (2.5) provide restrictions on the ratios of the
amplitudes S(θ) only. It is shown in Appendix A that the general solution of these
equations has the form

Sβ(0) = -hn(μθj) sn(μθ + 2ξ,t)Sr{θ), (3.1c)

where / is the modulus of the elliptic functions, μ and ζ are arbitrary constants.
Here we concentrate on the real case /, |/| rg 1. In this case the elliptic sn has the

real period 4KZ and pure imaginary period 2iKJ, where Kz and KJ are complete
elliptic integrals of the first kind of moduli / and /' = (1 — / 2 ) 1 / 2 , respectively (see
§8.112 of [10]).

Note that the commutation relations (2.3) are preserved under the rotation

.π ,π

A-+e*A\ A->e~ι*A (3.2)

provided the simultaneous substitution Sa-> — Sa is made. Therefore without loss
of generality one can think of I as positive.

Alternatively, one could solve the factorization equations in terms of the
amplitudes σ(θ). Since these equations can be obtained from (2.3) by the
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substitution S-+σ, the general solution can be represented in the form

σa{θ) = k sn(Aβ, k) sn(AΘ + 2η\ k)σr(θ), (3.3c)

where the elliptic sn's are of some new modulus k. It can be shown from (2.9) that
the parameters A, η\ and fc are related to μ, ξ, and / as follows:

λ = - f ( l + ] / / ) 2 μ , (3.4b)

2η' = 2*/ + iK + 2K η = - z(l + |/T)2 ξ, (3.4c)

where K and K' are complete elliptic integrals of moduli k and fc' = (l —fc2)1/2,
respectively.

One can note the striking similarity between the formulae (3.3) [or (3.1)] and
the ratios of vertex weights in Baxter's model (see (5.7) of [7]). The reasons for this
similarity will be discussed in Sect. 5.

Consider now the crossing relations (2.6) or equivalently (2.10). They are
consistent with Eqs. (3.1) [equivalently, (3.3)] provided the parameters ξ and μ (η
and λ) are related as follows:

2ξ=—iπμ; 2η=—ίπλ. (3.5)

The scattering amplitudes should satisfy the real analyticity condition, in
particular, their ratios are to be real at pure imaginary θ. This implies the
parameter ξ to be either real or pure imaginary. Note in this connection that the
relations (3.3) can be represented in the form

σt(θ) = k sn(/l0, k) s n ( ^ + 2η, k) σ(θ). (3.6c)

Therefore we can concentrate on the case of real ξ (imaginary η). The solution
corresponding to the imaginary ξ can be obtained from this by the replacement

a * (3.7)
σ-+Sr; σ f->Sβ.

After the substitution of (3.6) into the unitarity conditions (2.4) two of them, (2.4b)
and (2.4d), are satisfied identically while the others, (2.4a) and (2.4b), lead to the
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equation

σ(Θ)σ(-Θ) =
?, k)

sn2(2η,k)-sn2(λθ,k)'
(3.8)

It is to be solved together with crossing-symmetry relation (2.10b), the solution
being found in the class of meromorphic functions which are real at the imaginary
0-axis.

The Eqs. (3.8) and (2.10b) determine the function σ(θ) up to the multiplication
by the arbitrary 2πί periodic function Φ(θ) (from the same class) satisfying the
relations

= Φ(iπ-θ).
(3.9)

This means it is possible to add some regular set of zeroes and poles. There is
the unique solution which is regular, bounded and nonzero in the physical strip
0 < I m θ < π 2 a t 0 ^ ^ < K / . This solution will be referred to as the "minimal" one. It
is carried out in Appendix B:

σ(θ) = exp

2πn(π — y)

y

• \ 2 π n a

sm ——-θ
y

nsh
4πny

y
ch

sm
2πn

-(iπ-0)

2π2n
(3.10)

where the following notations are used

πKz πK'

πκ; 2πK
(3.11)

' ξ η '

It is the minimal solution which will be discussed in the next section.

4. Some Properties of the 5-Matrix

It follows from (3.10) and (3.6) that

σt(θ)=σtφ + γ'/2)

σr(θ)=-σ,.(θ + y'/2)

σa(0)=-σa(θ + y'/2).

For the amplitudes S one obtains

s(θ) =s,(θ+y/2)

(4.1)

(4.2)

2 This strip corresponds to the physical sheet of the s-surface of the two-particle amplitudes
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Fig. 1

-ϋt\

X

Re(/Θ)

1 m ί/Θ)

Jt\ Re(/Θ)

Fig. 2

Figs. 1 and 2. The locations of poles (points) and zeroes (crosses) of the amplitudes Sr(Θ) (1) and St(Θ) (2).
Some of the points and crosses are slightly displaced from the axes Re 0 = 0 and Reθ = y'/2 for the sake
of transparency. The distance between the poles or zeroes in each row is γ. The picture should be
periodically (with period /) continued along the real 0-axis (in the vertical direction)

In particular, all the amplitudes are periodic functions of θ with the period y'.
The locations of zeroes and poles of the amplitudes Sr(θ) and St(θ) are shown in

Figs. 1 and 2. Note the series of poles

= 0 , + 1 , ± 2 , . . . . (4.3)

At y <π these poles come to the physical strip 0 < I m # < π . If / < oo this indicates
the existence of complex singularities on the physical s-sheet and, hence, con-
tradicts casuality. Therefore we restrict the values of y by

y ^ (4.4)

In this case all the poles (4.3) are on the unphysical sheet. Then the pole with L = 0
correspond to the virtual state while the others - to the resonance states in the
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channel AΛ->ΛA. The complex masses of these resonances are

MfΛ = 2m ch(ig - Ly') L = 1,2, ..., (4.5)

where g = y — π. There is a similar set of resonances with complex masses

MfA = 2m ch(ig - γ'β - Ly1) L = 1,2,...

in the channels AA^AA and AA^AA.
At γ = π one obtains

S(θ) =St(θ)=ί,

(4.6)

(4.7)

i.e., the total S-matrix is unity. Therefore the parameter g can be considered as the
characteristic of the coupling strength.

Finally we turn to the degenerate case 1 = 0, It corresponds to / = oo, Sa(θ) = 0
and the expressions (3.1) and (3.10) come to

S{θ)=-i

sh \~(ίπ-(
7

sin

S P (Θ);

sh

sin

S,ίθ)

= exp

7l
sin

It
-(ίπ-θ)
y

sh
t(γ-π)

y

Thus, at 1 = 0 the solution (3.1), (3.10) reduces to the sine-Gordon S-matrix
[1,2]. Obviously, the restriction (4.4) is not essential in this case.

5. The Factorized S-Matrices and the Baxter-Type Transfer Matrices

Consider the multiplet of particles Λi9 (z'=l,...,n) of equal mass m. The general
factorized S-matrix describing the scattering of ^ ' s can be represented by some
algebra with generators Λ^θ) satisfying the commutation relations (see [1] and
Sect. 2)

Λ(βi)Λ(fl2) = S?/(01 2)^(fl2)A/θ1), (5.1)

where the summing over repeated indices from 1 to n is implies S*f(θ) is the two-
particle S-matrix.

In this algebraic treatment the factorization equations for the two-particle 5-
matrix [1] arise as the requirement of associativity of production for the algebra of



174 A. B. Zamolodchikov

Άs. Consider any product of v4's of the form Aii(θ1)Ai2(θ2)...Air(θr). The com-
mutation rules (5.1) enable one to recorder it to the products of the type
AjJβpJAjJ^θpJ.. .Ajr(θPr) where P is some transmutation of numbers ί, 2,..., r. The
associativity requires the result of the recording to be independent on the way in
which the pair commutations are performed. This can be expressed as certain
functional equation on the matrix S*f(θ). One can obtain it by reordering the in-
product Ai(θ1)Aj(θ2)Ak(03) to the out-products Aι(θ3)Ap{θ2)Aq{θί) in two possible
successions of pair commutations and equalizing the results. This equation is

S%(θ)S%(θ')S%(θ' -θ) = SlΊW - θ)Sfkψ)Slfθ), (5.2)

where again we imply the summing over the repeated indices. The Eq. (5.2) should
be satisfied by the two-particle amplitudes of any factorized S-matrix.

Further we shall refer to the upper (lower) indices of the matrix S"f as
horizontal (vertical) ones. The Eq. (5.2) means that two matrices S^(Θ)S^(θf) and
S^(Θ')Sv

k

qj(θ) are related by matrix conjugation in horizontal indices [the conjugat-
ing matrix being S{θ' — Θ)]. Actually, such a relation is just the condition for the
matrix R from (1.1) forcing the commutativity of transfer matrices (1.2). To see this,
consider the square lattice with N columns and put the matrix S^+ί(θ) into the
correspondence with J-th lattice vertex of a certain row. Then one can define the
matrix

fttf#££(0) . S%% > m. (5.3)
It follows from (5.2) that

S£?(0' - θ) Tff{V){ff) T^{j](θ) = 7^,(0) TfoϋΊφ')SZ(ff - 0). (5.4)

Consequently, for the transfer matrix

(5.5)

the relation (1.2) is valid, with the variable θ replacing the parameter v.
Thus, each factorized S-matrix in two dimensions is connected to some lattice

statistical model which is defined by the transfer matrix (5.5). The latter is of
Baxter type [i.e., satisfies (1.2)] and the model is apparently exactly soluble. The S-
matrix described in Sects. 2 and 3 corresponds to Baxter's transfer matrix [7] itself.
This explains the coincidence between the ratios of the two-particle amplitudes
(3.6) and the ratios of vertex weights in the Baxter model (see (5.7) of [7]):

a : b : c : d = σr: — σa: σ : σt (5.6)

if

(5.7)

The correspondence between the factorized S-matrices and transfer matrices
could be enlarged to include, for instance, the cases of different spaces labelled by
the horizontal and vertical indices of the vertex matrix S*f(θ), but this point is
beyond the scope of this paper.
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6. Discussion

The relativistic S-matrix described in Sects. 2-4 provides a self-consistent scatter-
ing theory in two space-time dimensions, satisfying all the requirements of
analyticity and unitarity. In principle, one can expect that there is some field-
theoretic description of this scattering theory. The corresponding quantum field
theory, if it exists, should possess the infinite number of conservation laws (to force
the ^-matrix factorization) and also Z 4 symmetry (explicit or dynamical).

The characteristic property of Z4-symmetric S-matrix of Sects. 2-4 is its
periodic (with real period) dependence on θ. At high energies (s^>m2) this implies
the periodic behaviour of all the amplitudes and cross-sections with In s. Such a
behaviour of some quantities (in fact, of effective charges) is just the property of the
renormalizable field theories with ultraviolet limiting cycle [9]. Although there is
no direct relation between the effective charges and the scattering amplitudes, we
suggest this very type of field theory to correspond to the S-matrix (3.6), (3.10).

At present a considerable number of factorized S-matrizes in two dimensions
have been explicitly constructed [3-6]. As it is shown in Sect. 5, each of them can
be used to produce some Baxter-type lattice statistical model. We would like to
note in this connection the following point. The factorization Eqs. (5.2) ensuring
the commutativity of transfer matrices (5.5) determine the matrix S"f(θ) up to an
arbitrary θ-dependent factor. If considered in the S-matrix context, this factor
should be chosen to satisfy the unitarity and crossing symmetry conditions for the
S-matrix. One can note, comparing Eq. (3.10) of this paper and Eq. (7.7) of [7], that
the inclusion of this "unitarizing" factor into the vertex weights of the Baxter
model renormalizes the infinite-volume partition function to become unity. In
other words, the partition function of Baxter model arises in solving the unitarity
and analyticity equations for corresponding factorized S-matrix. At present we do
not know any satisfactory explanation of this fact. It would be interesting to clarify
this point.

Acknowledgments. I thank A. A. Belavin, V. A. Fateyev, and A. A. Migdal for useful discussions. I also
indebted to L. V. Agibalova for her kind help in preparing the English text.

Appendix A

To examine the system of Eqs. (2.5) let us introduce the ratios

Then the equations take the form

h(θ)ha(θ + θ') + ha(θ)ht(θ + θ')h,(θ') = ha(θ)h(θ + θ')h(θ') + h(0)ha(θ'), (A.2a)

h(θ)ho(θ + θ')ht(θ') + ha(θ)h,(θ + 0') = ht(θ)ha(θ + θ')h(θ') + h,(θ + θ')ha(θ'), (A.2b)

h(θ)h,(θ + &) + ha(θ)ha(θ + θ')ht(θ') = h,{ff) + ht(θ)h(θ + θ'), (A.2c)

h(θ) h(θ') + ha(θ) h(θ + θ1) ha{&) = h,(θ) ht(&) + h(θ + θ'). (A.2d)
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Setting θ' = 0 in (A.2c) one obtains

Leaving the trivial possibility h2 = 1 (which leads to S{θ) = St(θ\ Sr(θ)= ±Sa{θ)) we
find

ftf(0) = 0. (A.3)

At θ' = 0 the Eqs. (A.2b) and (A.2d) give

Λβ(0)[l-λ(O)]=λβ(O),

ha(θ)ha(O) = l-h(O)

and hence

l . (A.4)

Furthermore, differentiating the Eqs. (A.2) with respect to θ and then setting θ = 0,
one obtains

ft; = αβ |7i2-ftβ

2], (A.5a)

h'aht + ahaht + <xaht = h'tha + α ^ Λ , (A. 5b)

h't = ath — aht — %ahaht, (A. 5c)

hf = och- octht + (xahah, (A.5d)

where the prime means the derivative and we have denoted

From (A.5c) and (A.5d) it follows that

and one finds [using (A.3) and (A.4)]

θ). (A.6)

Substituting the derivatives from (A.5a) and (A.5c) to (A.5b) and taking into
account (A.6) one can obtain

at(h2 + h2-h2

a-l) = 2ochht. (A.7)

Now we can square Eq. (A.5c) and use (A.6) and (A.7) to exclude h(θ) and hjβ)
from the right-hand side. This leads to

(Λ;)2 = αf

2 + (α 2 -α t

2 -α β

2 )Λ 2 + α2Λt

4. (A.8)

Similarly, one can find

(A.9)
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The solution of (A.8) and (A.9) satisfying the conditions (A.3), (A.4) is given by
formulae3

where the parameters μ, ξ and modulus / of Jacobian elliptic function sn(w, ϊ) (see
8.14 of [10] for the definition) are related to α, αα and αr as follows

Finally, from (A.6), (A. 10), and (A.ll) we obtain

ha(θ)= ±hn(μθj)sn{μθ + 2ξ,l). (A. 12)

Appendix B

It is useful to introduce the function

f(θ) = lnσ(θ) (B.I)

which should satisfy the equations

f(θ)=f(iπ-θ)9 (B.2)

f(θ)+f(-θ) = \
sn2(2/?, fc)

sn2(2η,k)-sn2(λθ,k)
(B.3)

At first we note that the argument of In in the right-hand side of (B.3) can be
represented in terms of elliptic theta functions of modulus k (see §8.180 of [10]) as
follows

sn2(2η,k) Θ2(2η + ΪK')Θ2(λθ)

sn2(2^, fc) - sn2(Λβ, fc) Θ{2η + λθ + iK') Θ{2η -λθ + iK') Θ 2(0)'

Now one can use the Fourier expansion (see §§8.181, 8.192, 1.448 of [10])

O

where g = exp( — πK'/K), y = Y[ (1 — q2n), which is convergent in the strip
n= 1

|Imw|<K', to represent the right-hand side of (B.3) in the form

πn(2η + iK') . 9 \πnλθ
sin 2 I

2K [ 2K
(B.6)

3 The sign minus in (A. 10b) is chosen for the sake of the following convenience only. It is changed
under translation c-^c + K̂  which leaves (A. 10a) inaffected
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If η is pure imaginary and 2iη <K' this series is convergent in the strip | Im0 |<π
[we recall (3.5)].

Let us introduce the following infinite set of functions

(πnλθ\ . fπnλ(ίπ-θ)
s m b ϊΓ s m — m —

fM = ^ 2 K ; / m ' (B.7)
2cosW

(B.8)

(n = l,2,...) which satisfies, as one can easiely verify, the relations

\2κ y

Then the expression

πn(2η 4- ίKf)
sm

K - (B.9)
\ nsh[πnK'/K]

satisfies (B.2) and (B.3), being regular and bounded in the physical strip
at 2iη<K'.
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