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Abstract. We study the quasi-classical limit of the quantum mechanical
scattering operator for non-relativistic simple scattering system. The con-
nection between the quantum mechanical and classical mechanical scattering
theories is obtained by considering the asymptotic behavior as h -> 0 of the
quantum mechanical scattering operator on the state exρ(— ip a/h)f(p) in
the momentum representation.

Introduction

Let us consider the Schrδdinger operator

h2 d2 δ2

H h A V(l A2m
(° ι)

\

h2 h
in the Hubert space #> = L2(Un) and let Hh

0 = - —-A. Here h = — and h is the
2m 2π

small positive parameter called Planck's constant. We assume the potential V(x)
to satisfy the following condition.

Assumption (A). (1) V(x) is a real valued infinitely differentiable function on Un.
(2) For any multi-index α, there exist constants m(α) > | α | + 1 and Cα > 0 such that

< C (1

Under this condition Hh

0 and fl* are self-adjoint operators with the domain
@{Hh

0) = ^(H/ J) = H2{Un) = the Sobolev space of order 2. Furthermore it is well
known that the wave operators W+ defined as

exist and are complete:
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*)= the spectrally absolutely continuous subspace of tf
w.r.t. Hh.

(See Agmon [1] and Kuroda [10] for more general results.) The scattering operator
Sh for the system is defined as

and is therefore a unitary operator on tf. We shall study the asymptotic behavior
of the operator Sh as h -> 0 and its relation to the corresponding classical mechanical
scattering theory for the Hamiltonian

H(x,ξ) = ξ2βm + V(χ). (0.2)

In the classical mechanical scattering theory, the following results are well-
known under the Assumption (A): i) For any (a,η)eUn x Un(η^ 0) there exists a
unique solution {x_(t,a,η\ξ_(t,a,η)) of the equation of motion

dx ξ dξ
8 ^ m ( f t 3 )

such that

lim \x_(t,a,η)— tη/m — a\ = 0,
t~* — CO ,~ .-.

lim \ξ_(t,a,η)-η\ = O;
ί-+ — oc

ii) there exists a closed null set (i.e., Lebesgue measure zero) e a M" x Un such that
for any {a,η)£e, there exists (α + (α,f/), ^ + (α,^))e[Rπ x Un such that

\_(t> ^ n) - tη+{ \

iii) the classical scattering operator Scl defined on Un x Un\e as Scl(a,η) =
(α + (α,^), η + {a^)) ^s a Cι-canonical mapping.

We define as e(a) = {>y e R" (a, η)ee) u {0}. Obviously φ ) is a null set for almost
all aeM", i.e., e(a) has Lebesgue measure zero in Un. (See Herbst [6], Simon [12]

and Huniziker [9]). We write as x(t) = —- and ξ(t) = -—.
at dt

It will be proved that for any a e Un, η + (a, η) and α + (α,^) are smooth functions
oiηeUn\e(a). We define as

e(a)ex= {ηenn\e(a):det[dηAa,η)/dη~] = 0}ue(α). (0.6)

For any/Gjf, let us write as/fl

h(ι/) = e~i{a'ηlh)f{η). Our main theorem can be stated
as follows.

Theorem. Let Assumption (A) be satisfied. Let aeUn and let e(a)ex be defined as
(0.6). Then for anyfej^ with supp/α compact subset ofUn\e{a)ex
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lim
HO

(Shfa

h)(η)- Σ Hndγ(η,ηj)πf2 + ί{S{η,ηj) - ψa +

= 0, (0.7)

where the summation is taken over all η s satisfying η = η + (a,ηj).
Here Sh is the scattering operator in momentum representation: Sh = 3FhS\tFhY \

&hf{ή) = / r w / 2 f e ~ ίxη/flf{x)dx (0.8)

lndγ{η,ηj) is so-called Keller-Maslov-index of the orbit {x_(t,a,ηj\ξ_(t,a,ηj)};

S(^5 Y\J) is defined as

S{η,η)= lim UL(x(u,a,ηj\x(u,a,ηj))du +^ηj - ^ η 2 h (0.9)

where L(x, x) = -^-x2 — V(x) is the Lagrangian of the system.

The connection between the quantum mechanics (0.1) and the classical mecha-
nics (0.2) has been discussed since the advent of the quantum mechanics and there
are several mathematically rigorous arguments. The refined form of WKBJ-
method by Maslov [11] and the rigorous form of Ehrenfest's theorem by Hepp [4]
seem to be outstanding, among others. However, unfortunately, these works are
mostly concerned with the dynamics in finite time and the connection of the
scattering theories has not been discussed (see, however, Hepp's unpublished
note [5]). In this paper we study the connection of these scattering theories using
the WKBJ-method which seems to be fit best for the purpose. The main tools
for proving the theorem are the approximate fundamental solution constructed
by Fujiwara [3] and the L2-boundedness theorem for certain kind of oscillatory
integral operators by Asada-Fujiwara [2].

Before proceeding to the text we want to discuss here about a meaning of the
theorem. For a smooth real function S(η\ we can consider the wave function
e~ιS{η)/flf(η) to represent, asymptotically as h —• 0, the ensemble of classical particles

-r-{η\η ) with momentum distribution \f{η)\2dη. Hence by taking e~ιa'η/hf(η)

as an initial state, we prepare it as to represent the ensemble of particles concentrat-
ed at the configuration x = a with momentum distribution f(η)\2dη. Thus the
incoming particles are prepared as x(t) ~ a + tη/m, ξ(ή ̂  η at remote past. What
the theorem says is that the final state Sh(e~ιaηlhf)is asymptotically represented as
the incoherent superposition of the wave functions

-1/2
ί Ind y(η,ηj)π/2 + i(S(η,ηj) ~η a +

which represents the particles

d
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with the momentum distribution

Moreover, since a + (a,ηk)Φ a + {a,ηj) for j φ k, by the canonical property of Sc\
this incoherent superposition turns to the coherent one, as h —• 0. Thus we may say
that the classical mechanical scattering can be represented as a limit of h —> 0
of the quantum scattering theory.

The plan of the paper is as follows. In Sect. 1 we shall study the asymptotic
behavior as h -» 0 of the wave packet

e-itH%ihjh^ jh^ = ft- «/2 J eixηιhfh

a{η)dη.

In Sects. 2 and 3, we shall prepare the materials from the classical mechanics which
are necessary in the following sections. In Sect. 4 we shall study the asymptotic
behavior of Wh_f*. In Sects. 5 and 6, we shall study Shf*. In the last section, 7,
some remarks will be given. Especially a result which is related to Dollard's cone
scattering theory [13] will be obtained.

We list here the notation and the conventions used in the paper.
For domains Q1 and Ω 2 , Ω 1 c c Ω 2 means that Ωx is a precompact subset of

Ω2 and Ωι, the closure of Ωx, is contained in Ω2. L2(Ω) is the Hubert space of all
square integrable functions on Ω equipped with the inner product and the norm as

1/2

α| =

If Ω = Un, we simply write as L2{Un) = tf. For x = (x,,... ,xn)eUn, \

is the Euclidean norm. For the multi-index (α 1 ? . . . ,αw) = α,α .̂e

xa = x\x ...xa

n

n and {d/dxf = {d/dxj11 ... (d/dxjn .dx = dxι... dxn. #S(Un) is the

space of all C00-bounded functions with their derivatives. For vector-valued

function f(x\— stands for the matrix —^ I . For matrix A = (aft), A\ =d* \ d x J J

S U P) Σαfj f For h>0,^h is the Fourier transform defined by (0.8) and if

h=l, we omit the index h. For the Fourier transform we write a s / h = # Ύ ,
Jh = ^Λ*y = ^hy Y fh(η) = e-frΦffa) and fa

h = βϊh*f*.

πλ and π 2 are the projections from IR" x Un to Un: π^x.p) = x and π2(x,p) = p.
For αeίR" we define as π\ a(p) = (a, p) and π*(x) = (χ,0). For an operator T in
a Hubert space $£, 3>{T\ 01{T) stand for the domain and the range of the operator.
The constants appearing in the formulas are distinguished in one context but in
the other they are not distinguished and may be written by the same symbol if
it is clear that which constants are meant. We sometimes omit the indices and
suffices or other parameters if no confusions are feared.
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1. Uniform Estimate for the Free Propagator

In Sect. 4 we shall study the asymptotic behavior of the wave operator Wh_ on
the coherent state /j1. As a starting point we study here the asymptotic behavior
of exp( — itHh

0/h)f^ as h -• 0. Actually we prove the following theorem, the essential
feature of which is that the estimate is uniform with respect to time t outside t = 0.

Theorem 1.1. For any aeUn and t>Olet us define the operator T^Jt) on 2tf as

O 2 a)/t). (1.1)

Then
1) T^Jt) is a unitary operator in ffl and is strongly continuous int>0;
2) for any δ>0,

lim sup || e-itHho'hlh - Th

oβ)f || = 0. (1.2)

Proof Since exp( - itHh

0/h)fh

a(x) = exp(itHhJh)fh

0(x - a) and Th

Oa(t)f(x) =
ToO(t)f(x — a\ it is sufficient to prove 1) and 2) for the case a = 0. In what follows
we omit the index a = 0. Since the first statement is clear, we prove 2) only. Since
To(ί) and exp(— itH\lh)$Fh* are unitary, the standard limiting procedure shows
that it suffices to prove (1.2) ϊovfeC^{Un). By the PlanchereΓs theorem

e ~ ιtH°/hfh{x) = h ~n'2 j e{χ p ~ p2t/2m)/ hf{p)dp

= n-"i2eimχ2l2tn \e~it{p~mxlί)2'2mhf{p)dp

= h-nl2eimχ2l2t\rnh/it)nl2leimhy2l2t~ίmχ-yltf(y)dy

= Th

0{t)f + eimχ2/2t\m/ίt)n/2(2π)-nl2

1

• j f (imh/2t)e~imxy/teimfιsy2/2ty2f(y)dyds.

Hence by Minkowski's inequality and the Parseval relation we get

|| e-im,Hfh _ Tk{ήf || ^ {mh/2ή || y2f(y)\\^(rnh/2t)\\f\\2,

which implies the relation (1.2). (Q.E.D.)

2. Properties of Classical Orbit

In this section we study several properties of the motion of classical particle which
will be needed in the following sections. We write the canonical transformations
in the phase space Un x Un associated with the Hamiltonians H(x, ξ) =
ξ2βm+ V(x) and H0(ξ) = ξ2/2m as U(t) and t/0(ί), that is,

U0(t)(x09ξ0) = (x0 + tξo/m9ξo) (2.1)

and

U(t){xO9ξo) = (xt9ξt), (2.2)
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where (xt,ξt) is the solution of the Hamilton equation

x(t) = ξ(t)/m, ξ(t) = - gradx V(x(t))9

•ξ0. (2.3)

In the followings we always assume Assumption (A). For (a9η)eUn x Un we
write as U(t)U0{s){a, η) = (xs(ί,α, f?), ξs(ί, α,η)\

Lemma 2.1. Let Kac=.Un\{§}. Then there exists a constant R > 0 depending
only on K such that for s<0 with sufficiently large \s\ and any multi-index α, there
exists a constant Ca such that for any ηεK and 0 :§ t ^ 15 4- R |

δ V δαw βc

~drf

δα^
- l - ε

(2.4)

(2.5)

Here ε = min(m(/) — / — 1: / ̂  | α |) and m(l) = max(m(α): | α | = /).

Proof Since the case a ψ 0 can be treated in a similar way, we prove the case
a = 0 and we omit the variable α in the following expressions. For simplicity we

/ e\a

also assume m = 1. Since F(x) satisfies the Assumption (A), — xs{t9η) and
\dηj

d\*
I ξs(ί, ff) satisfy the integral equations

d Y_ J
and

J - gradΛ

(2.6)

Let us write F(x) = — gradx F(x). By an elementary calculus we see that

-r- I F(x.(ί,w)) is the sum of —-•( — I xit,/ί) and the terms of the form
oηj dx \dη I s

dβF

where

dOίx

and = l α u s

take as β = min(m(0)- l , m ( l ) - 2) and K = sup{(max{C 1 ?f n C 2 } ) 1 / ( 1 + ε ) ε " 1 / ( 1 + ε )

where C, = max Γ and C ' s are the constants appeared in Assumption (A). We
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first prove (2.4) for the cases α = 0 and | α | = 1 then prove the general cases by
induction.
(a) The case α = 0. Put

^ ί ^ - s:\xs(u,η) -- (s + utyl^l'^s + u\\η\ΐor 0 <u < ή.

It suffices to prove ί* ^ — s — R. By Assumption (A) and the definition of ί* we get

xs{t*,η) - (s + t*)η\ ^ d J(ί* - w)
0

Hence if ί* < — s — R, the right hand side is strictly smaller than 2"
which leads to a contradiction because x(t, η) is continuous in t.

s-t"

dx
(b) The case jα = 1. By (2.6) we have the equation for gs{t,η) = ~z-(t,η) — (sΛ- t)e,

(M,?y))(s -f MWM + J(ί - M)
dF

0 U Λ 0

For 0 fg t ^ — s — K, we get by the result for the case α = 0 that

<3F
J (ί - M)—(XS(M, η)){s + u)edu
o ^ x

Let us define as
for O^w

Again it suffices to prove ί** 2: — s — R. By (2.7) we have

-3-ε

+ (1/2) I (ί** - M)( - s - u)~ 3 " ε ( - s -

(

(2.7)

(2.8)

Hence if £** < — s — R, the right hand side of (2.8) is strictly smaller than
2~1 \s + ί**|, which again leads to a contradiction.
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(c) The general case. Let us assume that the statement is true for all α' < α, 2 ^ I α I.

— I xs(t,η) satisfies the equation

— xs(t,ί?) = J(ί-M)-Γ{x s(u,η))( — xs{u,η)du
oη j 0 ox \o>1/ΰx

r)F
j F(xs(u,η))-— ( xs{u,η)}du.

(2.9)
By the assumption of the induction and the remark preceding part (a), we can
easily see that

ύC\s

Hence using

δF / δ > α

1 XS(M,'?)

" 2 ~ ε for 0 ig u g - s - Λ, ίjεX.

other constants M x and M 2 , we get

s ( ί , 77)

s + ί

^ M x 5 + ί ~ε + M 2 J
0

- + M J I S + U - 1 -
0

( ί - M ) | s + M -2-£

du.

(d\
du

Therefore by Gronwall's inequality we get

f δ \ a

\δη) Xsit'η)

< M
__ iVi j

< Λ/f

_| >
5 -f- I

O "I t

- ε , Λjf

— ε

•>

t

r

2 Λ<f 1 J | ί
0

„ i /-I ~ 2 ε

which proves the general case.
The second relation (2.5) is obvious by virtue of the estimate

<M s + t\ for 0 < ί < - s - K. (Q.E.D.)

Corollary 2.2. For sufficiently large — s,

πjU(t)U0{s)π*taJ = 1,2 and 0 ^ t ^ - 5 - R,

is C00-diffeomorphism from K to its image.
This is a well-known consequence of (2.4) and (2.5) (see also Hormander [8]).
The following lemma is concerned with the existence of the wave operator in

the classical mechanics.

Lemma 2.3. i) For any aeUn andηeK <

lim
s-> - oo

d V
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exists for any multi-index a. Furthermore the convergence is uniform on K. Hence
WC_!R= lim U{-s-R)U0(s)

s-> — oo

is a C^-canonical transformation from π%MK to its image.
ii) KjW0! Rπ*a = Ω*'"(j= 1, 2) is a C^-diffeomorphism from K to its image.

Proof, i) is known for |α | g 1, see Simon [12] and Herbst [6]. For general |α | ^ 2,
we can mimic their proof, ii) is an immediate consequence of i) and Collorary 2.2.

(Q.E.D.)

Remark 2.4. Lemma 2.3 and its proof show that for any {a,η)eUn x (iR"\{0})
there exists a solution of (2.3) such that

lim I x{t) -a- tη/m \ = 0, lim | ξ{t) -η\ = 0. (2.10)
t-+- oo ί-» - oc

We write this solution as (x_(t,a,η),ξ_(t,a,η)).
The important theorem in the scattering theory of the classical mechanics

is the one by Hunziker and Siegel on the completeness of the scattering states.
In our context it may be stated as follows (see Hunziker [9] for the details and the
proof).

Theorem 2.5. (Hunziker-Siegel) Let Assumption {A) be satisfied. Then there exists
a closed null set e aUn x Un such that the following statements hold: i) For any
(a,η)eU2n\e there exists (a + (a,η\η + (a,η))eU2n such that the solution (x(t),ξ{t)) =
(x __ (ί, a, η\ ξ _ (ί, α, η)) satisfies

l i m | x ( ί ) - α + -η + t/m\ = 0, lim\ξ{t)-η+\ = O. (2.11)
t-> oo ί-> oo

ii) The mapping Scl defined as Scί (a, η) = {a + (a,η), η + (a,η)) is a C 1 -canonical mapping.
Hence by Fubini's theorem, we get the following result:

Corollary 2.6. For any aeUn, let us define e(a)={ηeUn: (a,η)ee\ u{0}. Then
the statement of Theorem 2.5 holds for any {a,η) with ηeUn\e(a) and e(a) is null
set for almost all aeUn.

Remark. If n = 1, we can easily prove that e(a) is closed null set for all aeUn. We
believe that this is true even for n ^ 2. However we could not prove it.

Now we study the asymptotic behavior as t -> oo of the solutions of (2.3) which
satisfy Theorem 2.5. The study has been intensively done by Hόrmander [8] and
others [6], [12] in other contexts, however, we need a slightly different estimates.

Lemma 2.7. Let aeU" and K c c Un\e(a). Then the following statements hold.
i) η + {a, η) and a + {a, η) are infinitely differentiable functions ofη e K.
ii) There exists sufficiently large t0 > 0 such that for any α > 0, there exists a
constant Ca independent ofηeK such that

for t > ί(

(2.12)

(2.13)
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Proof. We mimic the argument of Hunziker [9], We set m = 1. For ί > 0 ,
let us write as Ct = {ηe Un\e(a): x_(ί, a,η)-χ_(t, a, η) ^ (ί/2)\η\2 and
C 0 ( l + |x_(ί5α,f/) ) ~ m ( 0 ) + C x ( l + |x_(ί,α,f/) |)~ m ( 1 ) |x_(ί,α,?/) | ^ 2 - 1 |?y|2} (let us
remark | ιy+ | = \η by the conservation of energy). Since for x(t) = x_(t,a,η),

2~1(d/dt)x(ή2 = x(t)'x(t)

and

2-ι(d2/dt2)x(t)2 = \n\2 - {2V(x(ή) - F(x(t))'x(ή},

Ct is monotonically increasing in t > 0 and by Theorem 2.5 (J Ct = Un\e(a).
ί > 0

Since K is compact, there exists a constant ί0 > 0 such that Cto =3 K, which implies
the existence of (another) constant t0 such that

for and ί > t0. (2.14)

Now let us note that x_(t,a,η) and ξ_(t,a,η) satisfy the integral equations (see
Simon [12]):

x_(t,a,η) = a++η + t - j (ί - u)F(x_(u,a,η))du,
t

CO

ξ_(t,a,η) = η+- $F{x_(u,a,η))du
t

as well as the equations

x_(ί,a,η) = a + tη+ j (ί - w)F(x_(
— CO

t

ξ_(t,a,η) = η+ j F(x_(u,a9η))du.
— co

Hence

CO

a+(a,η) = a— j u F(x_(u,a,η))du,

,α,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

F{x_(u,a,η))du. (2.20)

Therefore Lemma 2.1 and 2.11 show the continuity of a+(a,η) and η+(a,η). Now
/ 3 V

differentiating (2.17) by I — I and using the GronwalΓs inequality, we can easily

see that for any 0 ^ α, is majorized by Cαί. This with Lemma 2.1

and with Lebesgue's dominated convergence theorem implies that

-x- I j uF(x_(u,a,η))du and I — ] j F(x_(u,a,η))du
' / — o o \ I / — co

exists. This completes the proof for i).
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For proving ii), it suffices to prove (2.13), since (2.12) can be obtained by integrat-
d V

ing (2.13). Differentiating (2.16) and noting

d V

ir; x-(t,a,η) S Cat, we have

Since
d V

yj F(x_(u,a,η)) ^ CI u I 2 ε by virtue of the remark given in the proof

of Lemma 2.1, inequality (2.13) follows obviously.
Let us define the scattering operator Sc

a

ι with index aeUn as
(Q.E.D.)

3. Properties of Action Integrals

In this section, we shall study several properties of the solutions of the Hamilton-
Jacobi equation

(ί, x) + (2m)-' (gradxS(ί,x))2 + V{x{t9 x)) = 0. (3.1)

We first discuss them in the region (— oo,ί) with — t sufficiently large, using the
estimates of Lemma 2.1.

Lemma 3.1. Let K c c [Rn\{0} and let R > 0 be the constant determined in Lemma
2.1. For —s>R let us define the function Ss(t,x) on the domain ΆsR(K,a) =

\J {ή x πx U(t)U0{s)πlaK c ^ x ^ a s

S

Ss(t>x) = w~nsiU a, x)2 + J L(XΛ(M, α, ηs(t, a, x)), xs(u, α, ηs(t, a, x))du, (3.2)
2m 0

where L(x, x) = mx2/2 — V(x) is the Lagrangian of the system and ηs(t9 α, x) =
(πίU{t)U0(s)π%ta)~ίx. Then the following statements hold:
i) Ss(t, x) is an infinitely differentiable function of(t, x) on &s R(K, a).
ii) Ss(t,x) satisfies the Hamilton-Jacobi Eq. (3.1) with the initial condition

Ss{09x) = m{x-a)2/2s.

iii) Let us define as
t

Ks(t,x)=- (2m)-ι J(AxSs)(u,xs(u,ηs(t,a,x)))du,
o

then there exists a constant C > 0 such that

d

dy

A2

3y

K(t,x) <c

lK(t,x) s + t
- l - ε

where y = sηs(t9 a, x) + a.

(3.3)

(3.4)

(3.5)

(3.6)
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iv) For any multi-index α, lim
s'* - o o

d V
I

formly on K, and lim
VX

Ss(— s — R,xs{ — s — R,a,η)) exists Urn-

- s - R , x ) exists on Ωf'a_(K) uniformly. We

write as

SRJx)= lim Ss{-s-R,x).

Proo/. Since the case a φ 0 can be treated similarly by changing the variable x
to x — a, we assume α = 0 in what follows and omit the variable a. We also assume
m = 1. Statement i) is obvious and ii) is well known (see Landau-Lifschitz [15]).
Let us prove iii) and iv).

Proof of Hi). Since as is well known, (dS/dx)(u,xs(u)) = ξ(u,ηs(t,x)), (ΛXS)
n n

(u,xs{u,ηs{t,x)))= Σδζj/dXj= Σ {dyk/δxJ)(eξj/dyk),v/heτey = sηs(t,x)andx =

xs(u) = xs(u,ηs(t,x)). Then by elementary calculations, we get

(d/dym)(ΔxS)(u,xs(u,ηs(t,x))

= Σ (dxjdyjid'yjdxjdx^dξj/dy,) + Σ(^k/^j)(52ξβykdyJ, (3.7)

(d2/dymdyn)(AxS)(u,xs(u,ηs(t,x))

= Σ (d'xjdyjy^yjdxβx^δξj/δy,)

+ Σ (δxi/δyjiδxjδy^yjδxfixjδx

+ Σ (δxjδyj^yjδx^φiξj/δy.δyj

Σ (d2yk/dxjdxι)(dxι/dyn){d2ξJ/dykdyJ

(3.ί

Since x = xs(u, y/s\ Lemma 2.1 and simple calculations show that for y = sη
and x = xs(u, η)

\(dy/dx)\^C\s\\s + u

(3.9)

Thus using (3.9) and Lemma 2.1, we get from (3.7) and (3.8) the estimates

and

s\-2\s\(d2/dyndyn)(ΔxS)(u,x(u))\ ύ C\

from which the desired results (3.5) and (3.6) follow by integration.
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Proof of iv). We prove only the case α = 0. Other cases can be proved similarly.
By the definition of Ss{t, x) and the law of conservation of energy, we have

Ss{t,x)=t{ηs(t,x)2/2m+V{sηs(t9x))}

t

- 2J V{xs{u, ηs{t, x)))du + (sηs(t, x))2/2sm
o

t

= (s+ t)ηs(t,x)2/2m + tV(sηs(t,x)) - 2 j V(xs(u,ηs(t,x)))du.
0

Therefore

Ss( - s - R, x) = - Rηs( -s-R, xfβm + (-s-R) V(sηs( -s-R, x))
-s-JR

- 2 J V(xs{u,ηs{-s-R,x))du.
o

TakeK, such that Ka czK^ c (R"\{0}. For xeΩ* _(K\ηs(- s- R,x)eKί for
sufficiently large — s. lim η( — s — R,x) exists and lim ( — s — R)Vx

s-* - oo
\ - 1(sJ7s( — 5 — R,x)) = 0 uniformly on K, since ( π ^ ί — s — K)ί/0(s)π*Λ) converges

uniformly on Ωf _(X) Now Lemma 2.1 and Lebesgue's dominated convergence
s-R

theorem imply the uniform convergence of the integral j V(xs(u, ηs( — s — R, x))du
o

as s -> — oo. This completes the proof.
(Q.E.D.)

Remark 3.2. We remark here that for x = Ω^'^η),

SR^{x)= lim < j L(x (u,a,η\ x_{u,a,η))du + ~s\. (3.10)
^ - o o ( ; 2m J

Now we turn to the study of the solution of (3.1) in the region (t, oo) with ί > 0
sufficiently large. We take K c c Un\e(a)ex and take Kλ such that X c c X j C c
[R"\e(α)ex. Then obviously there exists a constant δKι > 0 such that

\det(dη + (a,η)/dη\^δKι, ηeK,. (3.11)

Therefore the mapping Sc

a

ιη = η + (a,η) is a locally uniform diffeomorphism
on Kt and for any η+eSc

a

ιK, there exists a small neighbourhood U + (η + ) <= S^XX

such that the inverse image (^ί)"1iL/ + (̂  + ) consists of a finite number of disjoint
components {Uk(η + )} on each of which Sc

a

ι is diffeomorphism. Thanks to the
property (2.12), the correspondence from η + {a,η) to x_(t,a,η) is diffeomorphism
for sufficiently large t> to,to is determined only by K. So that the mapping
x_(ί,α, ) for ί > ί0 is also diffeomorphic on Uk(η + ). Let us take such Uk(η + ) for
each η+eSc

a

ιK. Obviously {Uk(η + )9η + eSc

a

ιK} forms an open covering of K. Then
a simple compactness argument shows there exists a finite number of relatively
compact open covering {Uk} of K such that Uk c Xχ and on each Uk,S

c

a

ι and the
mapping x_(ί,α, )(ί > ί0) are diffeomorphisms. Let us take one of these Uks
and label it as U.
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Lemma 3. 3. Let Assumption (A) be satisfied. Let KaczK1c:c: U\e(a)ex. Let
us take U and t0 > 0 as in the preceding remark and define the function S(t, x) on the
domain Ά{t09U) - \J {ή x ^[/(f + R)Wί\Rπ*taU as

t

S(ί, x) = J L(x _ (M, α, τ?(ί, α, x)), x _ (w, α, η(t, α, x) )dw

- j R

+ SRJxA-R,a,η(t,a,x)). (3.12)

w/iere η(t,a,x)eU is determined by the relation x = x_(t,a,η(t,a,x)). Then the

following statements hold:
i) S(ί,x) is an infinitely differentiable function on Ά{t0, U).
ii) S(ί,x) satisfies the Hamilton-Jacobi equation (3.1) on the domain «^(ί0, C/).
iii) (as/3x) (ί, x) = ξ _ (ί, a, f?(ί, a, x)).
iv) Lei us de/ϊne the function Kt0(t, x) on the domain Ά(tQ, I/) as

X ( o(ί,x)= - ( 2 m ) " 1 J(dxS)(M,x_(M,a,ί/(ί,fl,x)))ίίu. (3.13)
ίo

Then for any multi-index a there exists a constant Ca > 0 such that

\(d/dyTKt0(t9x)\^CΛlogt9 (3.14)

where y = x_(to,η(t,a,x)).

Proof. Statements i), ii) and iii) can be easily checked. We prove iv) only. As in
the proof of Lemma 3.1, we can easily get the following estimates from Lemma 2.7
and (3.11):

(3.15)

l; (3.16)

\(d/dyf{ξ_(t9η(t0,a,y)))\^Ca9 ί ^ ί o , | α | ^ l ; (3.17)

Since (dS/δx)(t,x) = ζ_(t\ we can use the formulas (3.7) and (3.8), and after a simple
calculation we get

(d/dyy(AxS)(y,a,x_(u,aM,a,x)))\ £ CΆu~\ (3.18)

for any u ̂  ί0 and multi-index α, from which the desired estimates follow by
integration. (Q.E.D.)

4. The Asymptotic Behavior of the Wave Operator Wh_

In this section we study the asymptotic behavior of the wave operator Wh_ on the
coherent state/^. The crucial step of the study is the following theorem.

Theorem 4.1. Let Assumption (A) be satisfied. Let Kaa Un\{0} and R be the
constant determined in Lemma 2.1. Forfeit? with supp/c= K, let us define the func-
tion^ s(t,x)for t S — s ~ R as

faβ9x) - (m/isr2f(ηs(t,a,x))eκ^x\ (4.1)
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Then

lim sup sup || e ~itHh/"Tl lM-eίSs{t'x)%s(t,x)\\=O. (4.2)

Proof. For simplicity we assume a = 0 and m = 1. First of all we remark that by
the well known result exp(2K(ί,x))dx = dy, for y = sηs(t,a,x) (see for example
Maslov [11]), we easily see || fs(t, x) \\ = \\ f \\. Since exp( - ίtHh/h)T* is also unitary,
it suffices to prove (4.2) for/ e CQ(K). Since, as can be easily checked,/s(ί, x) satisfies
the transport equation

^.L(t,x)- 2-\AxS)(t,x)fs(t,x) = 0,

we get

d h2 \
ihj + ~Δ- V(x) j eiSΛt'x)t%(t, x) = 2 , x).

(4.3)

(4.4)

Since exp(iSs(0, x)/h)-fs(0, x) = ΓQ(S) /, we get by (4.4) and DuhameΓs principle that

II e~itHhlhTh

0(s)f - eiS°(' x)/t)fs(t, x) I

(4.5)^{hl2)\\\(ΔJs)(u,x)\\du.

In what follows we omit the index s. Let us write sηs(u, x) = y(u, x) and gi^/s) =
2s-"/2
f(y/s).

Then

Σ (3yk/3

s-1{(dg/dyk)(y/sy(dK/dyi)

(4.6)

Now remembering that \\exp(K(u,x))s~nl2h(y/s)\\ = \\h\\ for any heL2(K) by the
preceding remark, we get by Lemma 3.1 and (3.9) that

- 3 - ε Γ s + u\\ΔJ(u,x)\\SC\s\\s-

Therefore for 0 ̂  ί

(h/2)\\\Δf(u,x)\\duSCh\\ f\\2\\s + u\~2du
0 0

I)
- 2 I

(4.7)
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which proves the desired result. (Q.E.D.)
Now we can state and prove the main theorem in this section.

Theorem 4.2. Let Assumption (A) be satisfied. Let K a cz Un\{0} andfeJt? have
supp/ c= K. Let us define as

Then

lim || e
iRHh/nWh_ fa

h-Wa_Rf\\=0
h 0

Proof. From (4.2) we get

0 = lim
hϊO

{- s- R,x)

(4.8)

(4.9)

The first summand in the right of (4.9) converges to exp(iRHh/h)Wh_f^ and the
second to Wa_ # / a s s-> — oo by virtue of Lemma 2.3, Lemma 3.1 iv) and the
relation exp(2K(ί, x))dx = dy\ y = sηs(t,a, x). This proves the theorem. (Q.E.D.)

5. Approximate Fundamental Solution and the Stationary Phase Method

Continuing the approximation scheme, we study here the asymptotic behavior
of the solution e~itHh/hW^f* as h -> 0 for sufficiently large t > 0. The fundamental
tools in this section and the next section are the approximate fundamental solution
of the Schrodinger operator due to Fujiwara [3], the L2-boundedness theorem
for some oscillatory integral operators by Asada-Fujiwara [2] and the stationary
phase method. We first review results of Fujiwara [3] and Asada-Fujiwara [2].

Theorem 5.1. (Fujiwara). Let V(x) be a real valued infinitely differentiable function
on Un satisfying the condition

d
(C)

ox
V(x)

Then there exists a constant δ>0 such that the following statements hold:
i) For any te\_ — δ,δ~] and x,yeMn, there exists a unique solution of the equation
of the classical motion (2.3) such that x(0) = y, x(t) = x.

t

ii) Let S{t,x,y) = JL(x(u,y\x(u,y))du be the action integral along the classical

o
orbit and let φ(t,x,y) = tS(t,x,y). Then

I(d/dx)*{d/dyfφ(ux,y)\ύCaβ if IαI + 101 ̂  2.

I (d/δxγ(d/dy)β(Δxφ - nm) \ <> CaβU

where (d2φ/dxdy) in(5.3) is the matrix {d2φ/dxjdyk}Jλ.

(5.1)

(5.2)

(5.3)

(5.4)
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iii) Define as

exp( - - J ( m ΛΔxS(u9x(u)9y)-n/m)c
^ o

Then the function ί — I α(ί, x, y) is an infinitely differentiable function on ( — δ, δ) x

IR" x 1RW satisfying the following conditions:

I(δ/δxnδ/δyfait,x,y)\£ Caβ\t\n'2, (5.6)

I (d/δxY(δ/dy)βΔxa(t, x,y)\SCjt\"i2 + 1. (5.7)

iv) Let E(t, h) be the integral operator (ί e [ — <5, <5]) defined as

E(t,h)f(x) - h~nl2 j eiS{Ux'ma(t9x,y)f{y)dy9 ϊorfeC^(Un). (5.8)

Then the operator E(t, h) can be extended to a bounded operator on ffi and statίfies

\E{t9h)\\£C, -δ^t^δ; (5.9)

s — lim E(t, h) = IJ is the identity operator. (5.10)

v) Let T > 0 and 0 = to<tί<...<tN=T be an arbitrary subdivision of [0, T]
such that δ(Δ) = max\tj+1 - tj\ <δ. Then for 0 < ft ^ 1,

| | ( ί i V -ί J V _ 1 ,ft). . .£(ί 1 -ί o ,ft)-e- f t H h /*| |^C Γ ί / ,ft (5.11)

moreover

lim | |£( ί J V -ί N _ 1 , f t ) . . .£(ί 1 -ί o )-e-" H l > /* | |=0. (5.12)
5(^1)->0

For the proof and the details, see Fujiwara [3].
The following theorem on the boundedness of certain integral operators due

to Asada-Fujiwara [2] also turns out to be quite useful.

Theorem 5.2. (Asada-Fujiwara) Let φ(x,θ,y) be a real-valued infinitely differen-
tiable function on Un x Um x Un (the case m = 0 is not excluded) such that

I (d/dxnd/dθf(d/dy)σφ(x9 θ,y)\^ Caβσ if I α I + I jS I + I <τ I ̂  2, (5.13)

there exists a constant δ > 0 such that

(d2φ/dxdy) {d2φ/dxdθ)l
(5.14)

_(d2φ/dθdy) (d2φ/dθdθ)] ~

and let a(x909y)e@(Un x Um x IR11). Lβί MS rfe/Ine ίft̂  integral operator Λ(y) as

Λ(y)f{x) - 7n/2 $eίyφ(xMa(x, 0, y)f{y)dydθ. (5.15)

Tfteπ there exists a constant C > 0 determined by a finite number of CaβJs and
δ>0 such that

\\Λ(y)f\\^C\\f\\ fory^l. (5.16)
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Furthermore ifa = 0 in a neighbourhood ofCφ :

Cφ={{x,θ,y)eUnx Um x Un :dφ/dθ = 0}, (5.17)

then for any M > 0, there exists a constant CM > 0 such that

\\A(γ)f\\^CMy-M\\f\\, I r l ^ l . (5.18)

See Asada-Fujiwara [2] for the proof, the rigorous definition of the integral
(5.15) and the details.

For aeUn, let us take the domain U c c Un\e{a)ex and t^U1 as in Lemma 3.3.
L e t / e j f have supp/ c U. We study the asymptotic behavior of exp(— i(tQ -f
R)Hh/h)Wh_fa- We write as Γ=£ 0 -f-K. Choose N sufficiently large such that
T/N = τ < δ, where (5 is the constant appeared in Theorem 5.1. By Theorem 5.1
and Theorem 4.2 we have

\ \ j j ||
ft 10

= lim II e-
itoHh/hWh_fa

h - E{τ,hfW* J || - 0. (5.19)
HO

We write as

WR J(x) = eiSR*{x)/hhR{x),

hR(x)=\άtt(ΩlAη)/δη)\x=ΩR^{η)\^ (5.20)

Then

N

Y[a(τ,xj,xj_ί)exp(ih-1SRJxo))hR(xo)dxo...dxN_1, (5.21)

where x 0 = y , x N = x. Let us write 0 = (xN_1,... , x t ) a n d ΦRit0(
χ^,y) =

N

X Sfox^Xy, J 4- iS^^^Q). We want to apply the stationary phase method to the

expression (5.21). For each xeMn, the point of stationary phase (0,y) is determined
by the equation

diθty)Φ(x,θ9y) = 0, (5.22)

which is equivalent to the system of equations

^τ, x29x1) + dS/dx^τ, x,, x0) = 0, (5.23)

dS/dxo(τ, x19x0) + dSR Jxo)/dxo = 0.

Lemma 5.3. For each xeπ^i^W^^π^^U), there exists a unique (θ,y) =
(xN_l9...,xl9y)eUNn such that (θ,y) satisfies the equation (5.22) and such that
yeπxW

c! >Λπ| j f l([/), and for xφπ^i^W0! tRn^a(U) there is no point of stationary
phase such that yeπ^ttRπ*,a(U)'
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Proof. Since (a) — dS/dy(τ, x, y) and δS/δx(τ, x, y) are the initial and final momenta
of the particle which starts at the point y at time zero and reaches the point x
at time τ; (b) δSR Jy)/dy = £__( - R,a,η(- R,a,y))\ (c) the mapping Usη-+
x(to,a,η) is diffeomorphism; (d) for any fixed yeUn the mapping (R"9x^>
dS/dy(τ,x,y)eMn is a global diffeomorphism by virtue of (5.2) and (5.3), we can
conclude that for any x0

Gπi^-sΛ
π2,α(kO> the solution of (5.23), considering

{x,xN-1, , *ι) as an unknown variable and x 0 = y as a parameter, is determined
uniquely as x1 = x_( — R + τ,a,η( — R,a,xo))9...,%_! = x_(~ R + (N — l)τ,
a,η( - R9a,x0)) and x = xN = x_(—R + Nτ, a, η{ — R, α, x0)) = x_(t0, α, η(t0,α,x)).
By virtue of Lemma 3.3 the mapping Ω^a_(U)3x_(— R,a,η)^> x_(to,a,η)e
π^i^W0! Rπ* a(U) is a diffeomorphism, this implies the lemma. (Q.E.D.)

Let us define Cφ(U) as

Cφ(U)={(x9θ9y)en»x R ^ " ^ x U" d(θ,y)φ(xΛy) = O,yeΩR

a(U)} (5.24)

and the mapping i: Cφ(U)->ί(Cφ(U)) = Λφ(U) as i{xAy) = (x,dφ/dx(x,θ,y)) =
(x,ξ_(to,a,η{to,a,x))). Then we have the following lemma.

Lemma 5.4. Cφ(U) is n-dimensional C00-manifold immersed inUiN + 1)n and is

precompact.

Proof Since Cφ(U) is determined by the equation d(θty)φ(x,θ,y) = 0, for proving
the first statement it suffices to prove that d{dφ/dθι)9...,d(dφ/dθ{N_ί)n),
d{dφ/dyx),... ,d{dφ/dyn) are linearly independent at each point (x,θ,y)eCφ(U)
as elements of T*Mn{N+ X), that is,

[d2φ/dxdy d2φ/δydy d2φ/dydθ~]
rank 2 ^ 2 ^ / ^ ^n Λ2I/Λ/IΛ/I = niV. (5.25)

[_d2φ/dxdθ d2φ/δyδθ δ2φ/δθδθj v ;

Since S(τ,x,y) and S(τ,x,j;) + ̂ ^ ( y ) satisfy the condition (5.3), the remark of
Asada-Fujiwara [2] (at the end of Sect. 2 of [2]) shows

d2φ/dxδy d2φ/dθdxΊ

U \Φ°> (5 26)

at each point (x, θ, y)eCφ(U), which obviously implies (5.25). The second statement
is obvious. (Q.E.D.)

Lemma 5.5. The mapping i: Cφ(U)-> Λφ(U) is Lagrangian immersion. The pro-
jection

is a diffeomorphism.

Proof. The first statement is proved by Hόrmander [7] (see also Asada-Fujiwara
[2]). The second is obvious by Lemma 3.3. (Q.E.D.)

Lemma 5,6. There exists a constant κ>0 such that on Cφ(U)9
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d2φ/dyδy d2φ/dθδyl

δ2φ/dθdθ\- ( 5 2 7 )

Proof. By virtue of Lemma 5.5, dxί,dx2, ...dxn are linearly independent on

Cφ(U). On the other hand on Cφ(Ό\d(mφ = 0 and d(dφ/dθ1)...,d(dφ/dθ{N_1)n)9

d(dφ/dyί)...,d(dφ/dyn) are linearly independent in τ*MN{n+1\ Therefore dxί9

dx2,... Jx^dtfφ/dθJ,... ,d(dφ/dyn) span the whole T*MUn{N+1). This implies
obviously that det Hess(θ y)(φ) ψ 0 on each (x,θ,y)eCφ(U). On the other hand the

function Hess(θy)(φ) is continuous on Cφ(U) and Cφ(U) is compact. Combining
these facts, we get easily the desired constant K which satisfies (5.27). (Q.E.D.)

Now we can state the main theorem of this section.

Theorem 5.7. Let Assumption {A) be satisfied. LetfeJtf be such that supp/ cz U.
Then

hlO

= Q

t

Here S(ί,x)= J L(x_(u,a,η(t,a9x)\ x_(u,a,η(t^,x)))duJrSR

Q0(x{-R,a9η(t,a,x)))

and lnάty(x) is the so-called Keller-Maslov index of the path yt = {(x_(uya,x),
ξ^(u,a,η(t,a,x))): — oo < u ̂  t] and is defined explicitly in the proof.

For proving the theorem we need the following lemmas:

Lemma 5.8. Let a(t,x,y) be the function defined in Theorem 5.1. Fix yeUn

dS
and consider a(t,x,y) = a(t,x(η,y\y) as a function oft and η = — — (ί,x,y). Then

dy
a(u x{t, η, y\ y)2dx(U Ά, y) = e~ίnπ/2dη for any 0<t<δ.

Proof We first prove that a{t, x(t, η\ y)2dx(t, η) is ί-independent n-form. To see
this we differentiate this n-form by t and get

ja(t,x(t,η9y),y)2dx(t,η) = 2Πda/dt) + £ (da/dxj)(dxj/dt))a(t,x,y)dx

n d
-fα(r,x,y) 2 ]Γ dxx Λ ... Λ - ( ώ j ) Λ ... Λ dxn.

n

Since d/dt{dx) = d(dxj/dt) - d{dS/dχ.(t,x,y)) = Σ {d2S/dXjdxk)dxk,the right hand
fc= 1

side is equal to a(t,x,y)dx multiplied by

lίda/dtΛ- Σ (da/dXj^δS/dxjj + l

which vanishes identically by the definition of a(t,x,y). Since lim t~ndx(t,η) =
ί->0

lim d((x(t,η,y) — y)/t) = dη and the construction of α(ί, x,y) shows that
ί->0

\imtn/2a(t,x,y)= e~inn'A, we get the desired result. (Q.E.D.)
ί->0
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Lemma 5.9. For (x, θ,y)eCφ(U\

det

= detHess( J

Proo/. Since ι,θ(y\y) = O,yeΩ*>a_(U\ we have for j = 0,... ,N - 1,

N

;\y))= Σ S2φ/dxjdxk-dxk/δy

= 0, where xN = x, x 0 = y.

Hence for 1 g j ,

(d2S/dxf)(τ, xj+ .(y), xj{y)ydxjdy

(d2S/dxj)(τ,xj(y),xj_1(y)ydxJ/dy

(d2S/dXjdXj_ iXτ, x/y), x;._ = 0

and

+ d2SRJδy2(τ,Xl(y),y) = 0.

By definition

det Hess(β>;v)(φ) =

Jd^ + d^/dy2 d2S/dydxι 0 0 ...0

^/dx^y d2S/δx2

ι(x1,y) + dS/dx2

ι(x2,x1) d2S/dx1dx2""0

0 d2S/dx2dx1 d2S/dx2

2(x2,x1) + d2S/dx2

2{x3,x2) .... 0

0 0 * * *

(5.29)

(5.30)

det

(5.31)

Multiplying the (/' 4- l)-th column by dxj/dy and adding those columns to the
first we get by (5.29) and (5.30) that the right hand side of (5.31) is equal to the
determinant of the following matrix:

0 d2S/dydx1

0 d2S/dXldx2

0 * *

0

0 0

--d2S/δxdxN_1 dx/δy

δ2S/δxN_1δxN_2

which is equal to the desired quantity. (Q.E.D.;
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Corollary 5.10

|det HessW))!'1 Π \Φ>φ),Xj-iiy))\2 = \dQt{dy/dx(y))\. (5.32)
7 = 1

Proof. Since d2S/dxj+ ιdxj = — dξj(y)/dxj+ x , (5.32) is the immediate consequence
of Lemma 5.8 and Lemma 5.9. (Q.E.D.)

Proof of Theorem 5.7. We first prove

lim || e x p ( - it0H
h/ti)Wh_fa

h ~ ^ (y)*/2 + is(i0,*)/*-inn/A
HO

• I det(5x(t0, α, ί/)/δ»ί) I" ' /2/(»/(t0, α, x)) || = 0 . (5.33)

By virtue of (5.19), it suffices to prove (5.33) replacing e x p ( - itHh/h)Wh_fa

h by
E(τ,h)NW* af. Let χ(x,θ,y) be an infinitely differentiable function on
W xU(N'1)n x U" with compact support such that χ{x,θ,y)= 1 on a small neigh-
bourhood of CΦ(U). Using the function γ\x,θ,y),E{τ,h)NWB:af is divided into
two parts:

E(τ,hfWRJ

= h~Nnl2 j e" ~ι<Hx θ'r)A(x,θ,y)χ(x,θ,y)hR(y)dydθ

\ l β - χ(x,θ,y))hR(y)dydθ, (5.34)

N

where Λ(x,θ,y)= Y[a(τ,xj,xj_1). We first treat I2{h)f. Since d{θy)φφ0 on the
7 = 1

support of 1 — χ(x, θ, y), the first order differential operator

L=(\dφ/dθ\2 + \dφ/δy\2)-1(dφ/dθ'd/dθ

has a meaning on the support of 1 — χ(x, 0, y), and

— ίh'L(eίφ{x'θ'y)/h)= e

iφ(x'θ'y)/h

Therefore

lei*-ιΦ(*MA(χ9θ9y){l - χ{x,O,y)hR(y)dydθ

= - $ih'Uein~lφ{xM)A{x9θ,y){l - χ(x,θ,y)hR(y)dydθ

= - h$ieih~l(Hx>Θ'y)L*(A(x,θ,y)(l - χ(x,θ,y))hR{y))dydθ (5.35)

Since hR(y) has a compact support and φ(t9 x,y) satisfies (5.3) we easily see that

L*(A{xAy){l-χ(χΛy))hR(y))

where B^x, θ, y) and B2{x, θ, y) are the functions in the space £g(Un x Un{N~1}

Therefore by using Theorem 5.1 we get the relation
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with suitable constant C. (For the rigorous justification of the step from the 2-nd
expression to the third in (5.35), the partial integration, we refer to Asada-Fuji-
wara [2]. Such a justification will be also necessary in calculations in Sect. 6,
though we shall not mention it there.) For I^fyf we use the stationary phase
method. First of all we remark that supp Iλ{h)f is contained in the fixed compact
set {xeUn:{χ,θ,y)esuppχ for some (e,y)eUin~1)N x Un}. There exists a constant
K > 0 such that |det Hess(θ y){φ)(x,θ,y)\ ^ K on Cφ{U). Then the stationary phase
method implies

- β

I n e r t ( H e s s {φ))πi/2 -ίnπ/4 'eiNnπ/4 Π Φ . Xjixl XJ- i W ) e ί φ ^ θ { x ) ^ x ) ) / h

J = l

|det HQss{θ;y)φ(x,θ(x),y(x))\~^2hR(y(x))\ £ CfK (5.36)

where Inert (Hess (</>)) is the inertia of the Hessian of φ and Cf is the constant
determined by a suitable Sobolev norm of hR, hence by the one of /. As
in the proof of Lemma 5.3, xJ (x) = x( — R + fl,a,η{t,a,x))J = 0,1, ...,JV — 1.

N

Corollary 5.10 shows f ] α(τ,x/x),x j_1(x)) |det(Hess(^)φ(x,θ(x),};(x))|-1/2 =

e~iNnπ/4\det(δy(x)/dx)\-ίl2. By the construction of S{τ,x,y), it is obvious that

φ{x,θ{xly(x)) = ΣS{τ,xj(xlxj_1{x)) + SRJy(x)) = S(to,x). Therefore writing as

Indt(y) - Inert (Hess φ(x, θ(x), y{x)\ we get for feC^{U)

limll^h)/ - eilnd^πl2 + iS{ux)lh 'inπl4\d^ (5.37)
hlO

(5.37) obviously implies (5.33) for/eCJίl/). Since the relevant operators in (5.33)
are isometries, we can get (5.33) for general/e.^f with supp/ cz U by the standard
argument.

Let us now prove the relation (5.28). Let Kt0(t, x) = K(t9 x) be the function
defined by (3.13). Then the definition of K(t, x) implies that we can write as

Zh

a(t)f(x) = I det (δx(ί, a, η)/dη) \ ~ 1/2e~ ««/Vndt(y)ϊ l/2 + i s ^ J (η(t9 a, x))

ί ( ), α, η)/dη)\~ 1'2e-
inπl4

~eiS{Ux)l eKiUx)g(y(t,x)l (5.38)

where y = x(t0, α, η{t, α, x)). Then the similar argument used in the proof of Theorem
4.1 shows that

Hjh _ zh

a(t)f \\£Ch) || Ax(eκ^g(y(u, x)))\\ du

hfa

h-Z%)f\\. (5.39)

By (3.14) through (3.17) and the similar formula as (4.6), the first summand of the
right hand side of (5.39) can be estimated as follows:

Ch ] || Δx{e*<u *g(y{u9x))\\du S Ch )u~2 log(κ) || g \\2du
to to

ύCMh\f\\2, (5.40)
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where C and M are the constants depending only on t0. From (5.39), (5.40) and
the result of the first part of the proof of this theorem, we can get the statement of
the theorem by the standard argument. (Q.E.D.)

6. The Quasi-Classical Limit of the Scattering Operator

Using the materials studied in the previous sections, we study here the asymptotic
behavior of the scattering operator Sh = (W+)*VF* on the coherent state f*. We
study it in the momentum space representation, that is, we study the asymptotic
behavior of

S\e'ipalhf(p)) = #-hS^V ι > α /Y(p))

Under the Assumption (A), η+ =η+(η) is a smooth function of ηeUn\e(a).
We define as

e(a)ex = {ηe Un\e{a): det dη + (η)/dη = 0} u e{a) (6.1)

Obviously the set e(a)ex is a closed subset of U".

Theorem 6.1. Let Assumption (A) be satisfied. Let K c c Un\e(a)ex. Then the
following statements hold.
1) For any η+eSc

a

ι(K\ there exists at most finite number of ηj = ηj(η + )eK such
h ι()

j

2) Letfe.jT be such that supp/ c K. Then
l i m | | S Y > , J - ^ ^ ^ ^
hiO j

. ei(S{η + ,ηj)-ri + a + {ηj(fl + )))lhf(η (η + )) || = 0 , (6.2)

where Ind y(η+ , ^ ) is the Keller-Maslovs index of the orbit (x_(t,a,rjj), ξ^itja^ηj):
— oo < t < oo\

S{η+,ηj)= lim < \L{x_(u,a,η^x_{u,a,η))du + sη2

j/2m-tη2

Jrl2m>. (6.3)

s-» - oo

Proo/. We assume m = 1. Let us take K 1 a s K c = c : K 1 c : c z (R"\e(α)ex. Since X 1

is precompact there exists a constant δKί > 0 such that (3.11) holds for every
ηeKλ. Then by the remark following (3.11), the first statement of the theorem
is obvious. As in that remark, let us take finite precompact subsets {[/.} such that
{Uj} is a covering of K and Sc

a

ι is a diffeomorphism on each Uj. It is sufficient to
prove the relation (6.2) f o r / e J f with supp/c= Uj, for some I/.. Moreover, since
in this case the operators appearing in (6.2) are isometric, we may assume that
feC%(U). By virtue of Theorem 5.7 and by the unitarity of the propagator
exp{iHh

0/h) and the Fourier transform # " \ we get

l i m s u p || ^heιtH°/he~itHh/h\yh_ j £ _ ^ h

e

i t H o l h Z h

a ( t ) f 1 1 = 0 . (6.4)
hiO ί^ίo

Here we used the notation in the proof of Theorem 5.7 for Zh

a(t). The second term
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of the left hand side of (6.4) can be written as

To the right hand side of (6.5) we apply the stationary phase method. Using the
notation of Theorem 5.7 and its proof, let us write as

h{t9 x) = eandty{x)πl21 det (3x(ί, α, η)/dη) \ ~ x / V ίnπ/4/(>?(ί, α, x))

= eκ<t-x)g(y(x,t)). (6.6)

Then

&hZh

a{ty{η) = J Γ Λ / 2 J e i Λ ' 1 ( S ( ί ' x ) ' xη)h(U x)dx. (6.7)

Making the change of variable x to xt and writing v = ht~1,φ(t,x,η) =
(S(t, tx)Γι - x'ΐ\\ and ht(x) = tnl2h(t, tx\ we have

FhZh

a(t)f(η) = {2πvynl2$eiv~lφ{t>x>η)ht(x)dx. (6.8)

For each ηeUn, the point of stationary phase is determined by the equation
dxφ(t, x, η) = 0, that is,

dS/dx(t9 tx) = η.

Since 3S/dx(t,tx)= ξ_(t,a,η{t,a,tx)) and the mappings η -> ξ_(t,a,η) and
y\ -+ x_{t,a,η) are both diffeomorphisms on U by Lemma 2.7 and Lemma 3.3,
we can easily see that if ηeπ2U(t + R)WC1 jR(U\ there exists a unique point of
stationary phase x = χt(η) = x_(t,a,η)/t and otherwise there is no point of sta-
tionary phase. Let us write as

Ct(U)={(xt{η)9η):ηeπ2U{t + R)Wc2tR(U)} (6.9)

By Lemma 2.7 and Lemma 3.3, we can see that there is a precompact subset
VaUnxUn,WczKc:W1c:Kι such that V is a neighbourhood of the diagonal
set of Sc

a\W) x Sc

a\W) contained in S'JiWJ x S^W,) such that (J Q ί / ) c c V.

Let us take as infinitely differentiable function χ(x, ̂ ) on [Rπ x IR" with compact
support such that χ(x, η) = 1 on V. Using the function χ(χ, η) we divide ^hZh

a(i)f(η)
into two parts:

"/2 \eίv~lφ(t>x>η)χ(x,η)ht(x)dx

) - n / 2 J ^ v " l φ ( t x ' l ί )(l - χ(x,η))ht{x)dx

(6.10)

We should remark here that in each integral of (6.10), there exists a compact
subset of Un

χ such that the support of function ht(x) is contained in it for t ^ t0

by Lemma 2.7. We first study I2(t, v)f(η). Define the first order differential operator
Ltby

Lt = (
\J=1 / J=l
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which satisfies

- ivLt(eiv~ί(Kt'x'η)) = eiv~lφ{t>x>η) (6.11)

and

j ( Σ ) % Δφ

t (dφ/dxj)(dφ/dxlι)(d2φ/dxkdxJ)] (6.12)

j,k=l )

Hence writing the second term of the r.h.s of (6.12) as G(ί,x,p),

(2πγ'2I2(t,v)f(η)= - ivv^l2\Lt{r^iφ^^){\ - χ(x,η))ht(x)dx

+ ιVv-»/2Jeiv-1«ί * ' > { ^

= //1 + // 2 . (6.13)

By Lemma 2.7 and Lemma 3.3 we can easily see that

Lt(l-χ{x,η))+G(t,x,η)e@(nn x U%

uniformly in ί ^ ί 0 , and φ(t,x9η) obviously satisfies (5.13) uniformly in t ^ t0

(taking the number of variable θ = m = 0). Hence by Theorem 5.2, we get

I II2\\ ^Cv| |Λ f (x) | g C v |Λ(ί,x)|| ύCv \f\\. (6.14)

To estimate // 1 , we first note that, using the terminology (5.38),

d/δxβt(x)) = d/dx^WgWt, tx)))tn'2

= t{dK/dx)eK{utx)g{y{u tx))tn/2

+ eK(utx\dg/dy){y(u tx)yt(dy/dx)t"12.

S i n c e ( 1 - χ ( x , η ) ) ( [ 4 ( d φ / d x J ) 2 ) - ' 1 d φ / d x j e ό g ( n n x R n ) u n i f o r m l y i n ί ; | / |
ίIΣ(dK/dyk) {δyjdxj)\ g Cί ί"x log t = C log t and ί |δj /δx| ^ C by Lemma 2.7
and Lemma 3.3, we get again by Theorem 5.2 that

^ Cv(log 11 ht(x) || + II eκ^\dg/dy)(y(t, x)) \\)

^Cft/ί(logί 1/11 + 1/IK) (6.15)

Summing up the relations (6.14) and (6.15), we get

|| / 2(ί, y)f || ^ C h i " r log 11|/ II,. (6.16)

Now we turn to the study of I^t, v)f(η). Since Ct(U) converges to CJJJ\ we
may assume that for any t §: ί0 and ηeπ2V, there exists X ^ J G S ^ ^ ) such that
0 = dxφ(ί, xr(^), ̂ ). For (xt{η\ η) the function φ(t, x, η) can be written as

φ{t9x,η) = φ(Uxt{η\η) + (x - xt{η))-B(t9x9η){x - xt(η)). (6.17)
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where B(t,x,η) = J(l - u)d2φ/dx2(tyux + xt(η)(l - u\η)du. Since Hessxφ(t,x,η) =
o

ί(HessxS)(ί, ίx) = t(dξ_/dx)(t, α, fy(ί, α, ίx))

= δξ _ (t, α, η)/dη \η=η(t^xt) t(dx_(t, a, η)/dη \ηssηiwx)~l,

Lemma 2.7 and Lemma 3.3 imply that the family {Hessxφ(ί,... ,)}ί>ί0 is equi-
continuous and are non-singular on V. Therefore by Morse's lemma, implicit
function theorem and a simple compactness argument, it follows that there
exists a finite number of subsets Vk of Un such that each Vk is precompact open
set, u F ^ F and on each Vk there exists a change of variable x to y = j/(x, t, η)
such that {y{x,t,η)}t>to is a bounded set of ^(Un x Un) with its inverse,
y(xt(ηlt,η) = 0, detdx/dy{xt{η)9t9η)=l and B(t,x9η) = I'^dβ^y2, where
dj(t,ηYs are the eigenvalues of the matrix Hessxφ(t,xt(η),η). Let {ώk(x,η)} a
C£(Un x Un) be the partition of unity on V subordinate to the covering
{F j , ωk(x, η) = ώk(x, /̂)χ(x, ?y). Using the function ω^x, η) we divide J^ί, v)/(^) as

- X(2πv)-n / 2 J β ί v ' '^^ '^ω^x, )̂Λ(ί, tx)tn/2dx

= Y(2πv ~"/2

• ίn/2ωk(x(y, f̂, ί), η)h{t9 tx(y, η, t))- det (dx/dy)dy

vn)'nj21 eiv' *2"' Σ d ^fe k (ί s (6.18)

where hk(t, y9 η) = f^ω^x&η, ί), ί?)/ι(ί, ̂ ? » / , ί))det(δ
Since (Hess^φ^x,^))" 1 is uniformly bounded in (ί,x,^)e{ί ^ ί0} x V,y(t9x,η)

forms a bounded set of έ%(Un x !R") for t ^ ί0 with its inverse function. Furthermore
there exists constants Cί and C 2 such that Cί S \dp9η)\ ^ C 2 on the support of
hR(t,y9η). Therefore by a similar argument used in the proof of Theorem 1.1 we get

wί»/2|drt(Hessx#,x,foX»f))|-
-nil

<Cv ]ds
0

1

I 0

ί, y, η)dy (6.19)

Here we used that det{Hessxφ(t9xt{η)9η)) > 0 which follows from Lemma 2.7.
After changing back variable y to x, the integral in the third of (6.19) can be

written in the form

Σ (vsΓ"/2 Jέ? i (MΓ l φ ( ί ' x ' y )αα(ί, x, η)(d/dxfh(t9 tx)fl2dx,
|α|^2

where the functions αα(ί, x, ^) are contained in a bounded set of ^((RM x Rw) for
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f > f0. Since {d/dxfh{t,tx)t"12 = tnl2{(d/dxf(eK{t tx)g{y{t, tx)))) and \(d/δxfK(t, tx)\ £
Clogί, we get \\(d/dxfg(y(t,tx)yexp{K{t,tx))\\£C\\g\\2£C\\f\\z and
I (d/δxfh{t, x)tn'2 j| <Ξ C log t. Therefore again by Theorem 5.2, we get that the
right hand side of (6.19) can be estimated by Cht'1 (log t). Combining these
estimates with the estimate for I2(t, v)f we finally get the following estimate:

lim sup || &heitH^he ~ixli^ Wh_ £"(>? + )

_ eίlndtγ(t,η + )eitη
2

+ /2fιei(S{t,xt(η ^ )t)-txt(η + )-η , )/fι

^ ^ ^ J ? f ? + ))||=O. (6.20)

Since txt(η + ) = x_(t,a,η{t,a9η+)\ txt{η+)η+ - tη\β - a+{a,η+)η+ =(x_(t,a,
η(t,a,η + ))- tη+ - a+{a,η+))η + converges to zero as £-> oo, we get the desired
relation, taking the limit ί -^ oo in (6.20). (Q.E.D.)

7. Concluding Remarks

Remark 1. We first want to explain here the technical reason why we took

e-ίη a/ hj-^j a s t k e jnj tj ai s t a t e instead of eίx'ξ/ hf(x) which, in the limit h -> 0, gives the
ensemble of the classical particles with the fixed momentum ξ and the configura-
tion distribution density | / ( x ) | 2 . Indeed the fixed momentum scattering would
be more suitable in the classical mechanics because of its popularity. However, in
spite of the fact that as h->0 the state eιxξ/hf(x) is propagated by the free motion
Qxp(ίtHh

0/h) as the ensemble of the classical particles with the fixed momentum ξ
infinite time region, it is not uniform in t > δ > 0. We can see it from the following
remarkable fact: for any/e.if,

lim || eitHof{x) - (m/it)n/2eimχ2l2tf(mx/t) || = 0. (7.1)
±t-> ±± co

The relation (7.1) implies that we cannot prepare the ensemble of the fixed momen-
tum incoming classical particles from the quantum mechanics, at least in
L2-theoretical framework.

Remark 2. In the theorem we have the finite sum over the incoming momentums
with the same outgoing one. These summands are asymptotically orthogonal
each other as h -> 0. This can be easily seen as follows. Since the classical mechanical
scattering operator is a canonical mapping on Rn x Mn\e we have a+(η^) =

8 *'~ ' d *'~' ,ηk)-a + (ηkyη + ) = a+(ηk) if

ηk ψ η.. Therefore by the stationary phase method we can see that they are asympto-
tically orthogonal each other as h -• 0. Hence if/e J ^ has its support supp/ c a
Un\e(a)e\

lim \D\Sh(e-iη-a/hf( mη)\2dη = f \f{η)\2dη9 (7.2)

and (7.2) is still true for/6 J T with supp/ c Un\e{a)ex (standard argument).
Thanks to this relation we may say that Y^ΰη + iη^/dη^1 gives the "differential

j

cross section" associated with this classical scattering process.
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Remark 3. lϊfeH2{Un) and supp/ c <= Rn\e{a)ex

9 the theorem can be improved
so that the norm before taking limit h -+ 0 is estimated by a constant times h \\ f \\ 2 .
This is an obvious consequence of our calculus.

Remark 4. A more general situation where the initial state is e~ιS{η)lhf(η) with
general S e C 0 0 ^ " ) and V(x) is a long range potential will be discussed in the forth-
coming paper [14].

Acknowledgements. Most part of this work was done while the author was on leave from the University

of Tokyo and visiting the ETΉ-Zϋrich. It is a pleasure to express his sincere thanks to Professors

B. Eckmann and W. Hunziker for giving him a chance to work in Zurich and the Department of

Mathematics of the University of Tokyo for permitting his visit.

He also thanks Mr. M. Loss for fruitful discussions and the members of the Institute of Theoretical

Physics for their interest in the work. Last, but not least, thanks to Prof. S.T. Kuroda for his unceasing

encouragement.

References
1. Agmon, S. : Spectral Properties of Schrόdinger operators and scattering theory. Ann. Scuola Nor.

Pisa, Ser IV, 2.2, 151-218 (1975)

2. Asada, K., Fujiwara, D. : On some oscillatory integral transformations in L 2 (Un). Jpn. J. Math.

4, 299-361 (1978)

3. Fujiwara, D. : A construction of the fundamental solution for Schrόdinger equation. J. d'Analyse

Math. (In press)

4. Hepp, K. : The classical limit for quantum mechanical correlation functions. Commun. Math.

Phys. 35, 265-277 (1974)

5. Hepp, K. : On the classical limit in Quantum mechanics. Unpublished note, ETH-Zurich (1974)

6. Herbst, W. : Classical scattering with long range forces. Commun. Math. Phys. 35, 193-214 (1974)

7. Hormander, L. : Fourier integral operators. Acta. Math. 127, 79-183 (1971)

8. Hormander, L. : The existence of wave operators in scattering theory. Math. Z. 146, 69-91 (1976)

9. Hunziker, W. : The S-matrix in classical mechanics. Commun. Math. Phys., 8, 283-299 (1968)

10. Kuroda, S. T. : Scattering theory for differential operators. J. Math. Soc. Japan 25, 75-104 (1973)
11. Maslov, V.P. : Theorie des perturbations et methodes asymptotiques (Translation from Russian)

Paris: Dunod 1972

12. Simon, B. : Wave operators for classical particle scattering. Commun. Math. Phys. 23, 37-48(1971)

13. Dollard, J. D. : Scattering into cones. I. Potential scattering. Commun. Math. Phys. 12, 193-203
(1969)

14. Yajima, K. : The quasi-classical limit of quantum scattering theory. II. Long range scattering.
Preprint, University of Virginia (1978)

15. Landau, L. D., Lifschitz, E. M. : Course of theoretical physics, Vol. 1, Mechanics (Translation
from Russian). New York: Pergamon Press 1969.

Communicated by B. Simon

Received January 25, 1979






