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Abstract. We calculate exactly the contribution of instanton fields to the
partition function of C P " " 1 models in two dimensions. For n = 2, the pure
instanton gas is infrared finite, infinitely dense and generates a mass dynamical-
ly. For n ̂  3, the gas corresponds to a system with complicated n-body inter-
actions, whose properties are yet to be explored.

1. Introduction

Previous work [1] based on the \/n expansion of CP"~1 models [2] in two dimen-
sions revealed that topologically non-trivial fields make a significant contribution
to the low energy dynamics of the fundamental particles in these theories. How
much of these effects is due to instantons was not clear, however, because their
contribution appeared to be infrared divergent. In fact, the single instanton contri-
bution is proportional to

00

J dλλn ~ 3 λ : scale size of the instanton, (1)
o

which diverges for large λ. Assuming the instanton gas is dilute does not help but
merely exponentiates the divergence. In other words, the thermodynamic limit
of the dilute instanton gas does not exist.

Equation (1) says that large instantons are more probable than small ones so
that the instanton gas may well be dense, i.e. the average thickness of an instanton
might be much larger than the mean separation between instantons. Once the
diluteness assumption is dropped, it may turn out that the exact instanton gas has
a thermodynamic limit. In particular, for the partition function Z of the instanton
gas in a volume V this would mean that

In Z = p.V (F->oo) (2)

where p is proportional to the pressure of the gas. To investigate the question of
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whether or not the instanton gas behaves thermodynamically, one has to compute
the contribution of dense multi-instanton configurations to the functional integral.

The main difficulty in the derivation of the exact instanton gas is the explicit
computation of the determinant of the fluctuation operator A in a multi-instanton
background field. In outline, our strategy to solve this problem looks simple.
Let P o be the projector onto the zero modes of A and

Γ = Trln(zl + P0). (3)

Varying Γ with respect to the parameters of the general multi-instanton solution,
we obtain

δΓ = Tr{(G + P0)(δA + δP0)} (4)

where G is the Green's function for A :

AG=l-P0; PoG = GPo = 0. (5)

G and Po can be computed explicitly so that Γ can be calculated from Eq. (4) up
to a number independent of the instanton parameters. Finally, this number is
determined by considering a special symmetric background field, where the
eigenvalues of ln(zl + Po) are known and can be summed by standard methods
(see e.g. [3]).

The computations sketched above are complicated by the fact that Γ as given
in Eq. (3) is ill defined and must be regularized. To cope with the ultraviolet diver-
gences we shall introduce Pauli-Villars regulator fields (details are given in Sect. 4).
To make the spectrum of A discrete, one could put the system in a finite box with
appropriate boundary conditions. However, a far more convenient way is to
formulate the theory in a spherical space-time with world radius R and to take
R -» oo at the end of all calculations. Due to conformal invariance, the classical
theory is independent of R, but after quantization, JR can no longer be scaled away.
This R dependence is governed by the conformal anomaly, see [4].

The one instanton contribution to the partition function of the CP1 model
has previously been calculated [5] following't Hooft's method [3]. While complet-
ing this paper, we received a preprint by Fateev, Frolov and Schwarz [6], where
they derive the exact instanton gas for the CP1 case. Their method is different
from ours, but the final formulae are the same.

Except for a few remarks in Sects. 7 and 8, we shall not elaborate on the physical
significance of our results, but discuss in great detail the derivation of the exact
instanton gas. We assume the reader is familiar with the definition and basic
properties of the classical CP"" 1 model [1,2]. In Sect. 2 we project these models
onto a spherical universe and discuss the instanton solutions in the new formula-
tion. Fluctuations around multi-instanton fields are considered in Sect. 3 and the
full regularized instanton gas is set up in Sect. 4. We then proceed to compute the
regularized determinant of the fluctuation operator A. We first do this for the
CP 1 case (Sect. 5), which is much simpler than the general case (Sect. 6). Our
results are summarized and discussed in Sect. 7, and conclusions are drawn in the
final Sect. 8.
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2. C P n l models in a Spherical Universe

£pn-i m o ( j e i s j n f]at Euclidean space-time IR2 describe fields

za(x); α = l , . . . , n ; x = (xί9x2); \z\2=l (6)

of complex unit vectors. Not all degrees of freedom of zα are considered physical:
fields zα and ẑ  related by a gauge transformation

φ) = eu^za(x) (7)

should be identified. The gauge invariant action is

S = — \d2xDμzDμz\ Dμ = dμ-z-dμz. (8)

Fields za(x) approaching the classical vacuum as |x | -• oo,

za(x) = h(x)va I h \ = 1 va = constant (9)

fall into topological classes characterized by the winding number

Q = +- ί dxμh-\x)dμh{x). (10)

The action S is conformally invariant so that the whole theory can be projected
onto the conformal compactification S2 of space-time U2. Points of S 2 are labelled
by

ra; a= 1,2,3; rjra = R2. (11)

U2 is imbedded into S2 via the stereographic projection

Rr

xμ = -^r- 0*=1.2) (12)

2R2xμ

Correspondingly, the field zα(x) projects onto a field 3α(r) by

3α(r) = zα(x(r)).

From Eqs. (9) and (10) we see that for Q ψ 0, gα(r) is necessarily discontinuous
at infinity (r = (0,0, — R)). This discontinuity can be moved around on the sphere
by making gauge transformations, but it cannot be transformed away. It can
properly be handled by choosing patches on the sphere, setting up a principal
C/(l)-bundle and identifying 3α with a smooth cross section of this bundle. For
calculational purposes, this is not very practical and we therefore resort to another
method borrowed from the theory of induced representations (see e.g. [7, § 5.3.3]).
It is based on the observation that

S 2 ^ SU(2)/ί/(l) (13)

where (7(1) is the subgroup of SU(2) generated by σ3 (σa denote the three Pauli



60 B. Berg and M. Luscher

matrices). More explicitly, the isomorphism (13) identifies the coset g-U(l)e
SU(2)/l/(l) with the point raeS2 given by

-K (14)

When r Φ (0,0, — R\ g can be decomposed uniquely and differentiably into

g = u(x)'eί{τl2)σ3; xeU2; - 2 π ^ τ ^ 2 π

u(χ) = (R2 + χ2)- W(R + iχ2σ
ι - ix.σ2)

where x and r are related by the stereographic map (12).

Instead of fields 3α(r) we now consider homogeneous fields 3α(#) (geSU(2))

Iβp = i; Ugeίωσ3) = e-ίkωUg) (16)

where k is some integer. %a(g) projects onto the original field zα(x) by

*.(*)= 3.M*)). (17)

Provided 3α(g) is smooth, it follows from

u(x) = — ίσ2eιφσ\\ x I -> oo); x = | x |(cos φ, sin φ)

and the homogeneity property of 3α(#) that the topological charge of zα(x) is equal
to fe. Conversely, any smooth field zα(x) with charge k is gauge equivalent to a field
obtained via Eq. (17) from a smooth field %a(g) homogeneous of degree k. Thus,
homogeneous fields \(g) on the group SU(2) provide a complete and non-singular
description of C P n ~ 1 fields on the sphere.

We next proceed to formulate the action S in terms of 3α(gr). A convenient set
of differential operators acting on functions/(#), #eSU(2), is

(ij)(g) = -.ftf(g-e«l2n\t=o; β= 1,2,3. (18)

M o r e e x p l i c i t l y , w h e n g i s p a r a m e t r i z e d b y x a n d τ a s i n E q . ( 1 5 ) , I ± = I 1 ± i l 2

a n d I 3 t a k e t h e f o r m

(19)

Here, s denotes the complex variable xι — ix2. Note that the operators Ia are
self-adjoint with respect to the natural scalar product

) (20)

dg: Haar measure on SU(2); \dg = 1
and that they satisfy the angular momentum algebra
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(they are the generators of the right regular representation of SU(2)). The action
Eq. (8) can now be written in the symmetric form

ψ \ 2 ; Ja = Ia-ΪIaz. (21)

S is invariant under smooth gauge transformations

Ug) = eiΛ^Ug)\ Λ(g-eiωσ3) = Λ(g). (22)

Instanton solutions are easily described within the new formulation. The
projected form of the most general instanton configuration is

2 = R (23)

where pα is a vector of polynomials of s — xx — ix2 with no common root. The
instanton number k is equal to the maximal degree of the pα's. It is not difficult to
show that the field wa(g\ #eSU(2), defined by

wa(g'ei™3) = e-ikωwa(g)

w > W ) = p α W(^ 2 + χ 2 ) - k / 2

is smooth and satisfies

/-wβ = θ. (25)

From Eqs. (16), (17), (23) and (24) we then conclude that

so that

i _ 3 α = 0. (27)

Of course, this is just the selfduality equation in the new language.

3. Fluctuations Around Multi-Instanton Fields

Let \(g) be a k instanton configuration as described in the preceding section.
An arbitrary field \{g) with topological charge k can always be written in the form

-^ = 0; ηx(g-eiω°3)=e-ikωηM ( 2 8 )

Noting

the action of 3 becomes

nπ 2nπ
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Because J _ 3α = 0, J _ 3 is of order η:

i.e. up to higher orders in η

z®l)J_η\\ (29)

It is helpful to introduce some more notation. Let J^l9 le Z, be the Hubert
space of complex wave functions ψa(g\geSΌ(2\ such that

(30)

34?k is simply the space of all normalizable fluctuations ηa around 3α. Next, define
an operator

The adjoint

(TV)α = (δaβ - iάβV+Ψβ (ψe^k+2) (32)

maps ^k+2 into J^Λ so that T fTis an operator acting in 2tfk.
The Gaussian approximation (29) to the action of 3α can now be written compactly:

nn 1 2nn,
5 fe + i

nπ Inn (33)
= ηrk + —{η,Δη)

where

Δ = T^T. (34)

The fluctuation operator A has zero modes. They arise from fluctuations η,
which are tangential to the k instanton manifold and can therefore be computed
explicitly. The general solution of the zero mode equation

Tη = 0

has the form

There are precisely n(k + 1) — 1 linearly independent normalizable zero modes
corresponding to the equal number of complex parameters of the general k
instanton solution. A convenient choice of parameters is (cf. Eqs. (23)-(26))1

1 Setting cn = 1 eliminates a complex overall factor, whose modulus drops out, when forming the

ratio (23) and whose phase corresponds to a constant gauge rotation. The parametrization (36) is valid

not for all but almost all k instanton fields
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k

P«(s)=c« Γ K * - ^ ) ; α = l , . . . , n ; cn = l. (36)

Label l ing t h e complex p a r a m e t e r s ca,a
j

β by i ,f = 1, . . . ,n(k+ 1 ) — 1, a basis of
zero m o d e s is

Correspondingly, the projector Po onto the null space of A can be represented by
the following integral operator

(38)

where

Ju = vl>rl)=: J ^ 7 T - ( 1 - 3®3) ^ r (39)

4. The Regularized Pure Instanton Gas

This section is devoted to the derivation of the pure instanton gas, the computation
of the regularized determinants being postponed to the subsequent sections. We
begin by writing down the functional integral for the expectation of a (gauge
invariant) observable Θ:

<^> = Z - 1 j ^ [ 3 ] ^ - s . (40)

The partition function Z normalizes the expectations: < 1 > = 1. The pure instanton
gas arises from integrating (40) by the saddle point method, the saddle points being
all the instanton solutions. The full semi-classical approximation to Eq. (40)
requires that all finite action solutions of the second order field equations (in
particular: anti-instantons) are taken into account, and possibly other "almost
exact" solutions such as dilute instanton anti-instanton configurations. Here,
we concentrate on the pure instanton gas (see, however, Sect. 8).

The saddle point approximation to Eq. (40) in the k instanton sector goes as
follows. Let 3α(g,/l) be the general k instanton solution parametrized as in the
preceding section (Eqs. (23), (24), (26) and (36)). Denote by e\(g,λ\ ί = 1,2,..., a
complete set of orthonormal eigenvectors with eigenvalues £. φ 0 of the fluctuation
operator A. Any field %a(g) with topological charge fc, which is sufficiently close to
the instanton manifold can be parametrized by (cp. Eq. (28))

-\ξ\2V2UgΛ)+ Σ U M ) } (41)

the (complex) parameters being λt and ξ.. Briefly, 3α(#, λ) is the instanton solution
closest to 3α(#) and the parameters ξ measure the displacement of 3α away from
the instanton manifold.
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We next insert the parametrization (41) into Eq. (40) and make two approxima-
tions : firstly, the action S is replaced by the terms of zeroth and second order in
ξ (cp. Eq. (33))

S = ψk + ψΣE<\tt\>. (42)

Secondly, the observable Θ is replaced by its value &(λ) for the instanton field
, λ). The pure instanton gas expectation of Θ then becomes

k=0 j,i

\ n π Ί 2nπ « „ , „ , J (43)

The Jacobian J(A, ξ) comes from

^ [ 3 ] = Y[d2λjd
2ξiJ{λ, ξ). (44)

To compute it, we have to make precise what ^ [ 3 ] means. Let Mk be the manifold
of all gauge equivalence classes of fields la{g) with topological charge k. Mk carries

d
a natural metric: given a path 3α(#,ί) in Mfc, the length

d .
vector — is

dt

dt
of the tangential

dt

Note that this is independent of the gauge chosen along the path. The metric
described here naturally induces a measure ^ [ 3 ] on Mk. More explicitly, when a
portion of Mk is parametrized by a set of real coordinates ω x , ω2,..., we have

where G^ is the metric tensor in this coordinate system. In our case the coordinates
ω. are the real and imaginary parts of λ. and ξ.. A short calculation then yields

(45)

with Jtj being the zero mode matrix (39).
Since J is independent of ξt, the integrals over ξ in Eq. (43) are Gaussian so that

'•

(the zero modes of A should be omitted in the determinant). At this stage, we have
to regularize the theory, because det Δ is divergent. To this end, we introduce
complex, scalar Pauli-Villars regulator fields φι

a{g\ i = 1,..., v, with large masses
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M{ and alternating "metric" et to be chosen such that

Σ > < = - 1 ; Σ*iMϊP = Q ( P = l , . . . , v - 1 ) . (46)
i=ί i=ί

The regulator fields interact with the fundamental field 3α via the constraints
(in the k instanton sector)

3 - ^ = 0; Φi(geiωσ3) = e-ίkωφi(g)

and the action2

S r e g ^ Σ
J i = ί

Taking into account the contribution from the regulator fields we arrive at

GO ί In

<&>insι = z-1 Σ (*!Γ"JΠ τ
fc=0 j \J

(nπi r } (47)

' e x p l 7 re8J
where

Γ r e g = Tr | ln(J + P 0 ) + Σ β ί ln(J +(M jR)2)J. (48)

When v ^ 2, this expression is finite and will be computed in the subsequent
sections. Equation (47) is our final formula for the regularized pure instanton gas.
After computing Γ r e g we shall remove the UV cutoff while renormalizing the
coupling constant/ and also take the world radius R to infinity.

5. Computation of Γ r e g: the CP1 Case

For n = 2, the computation of Γ r e g can be reduced to the calculation of the deter-
minant of a Dirac operator in the presence of an Abelίan external gauge potential.
This problem has been solved long ago by Schwinger [8] in the case fc = 0. When
k 7̂  0, some complications arise from the zero modes, but the calculations are
still fairly simple.

The simplifications referred to root in the fact that any fluctuation rja(g)^^k

(cf. Sect. 3) can be written as

%(g) = £aβlβ(g)x(g) ε*β = - ε

βa> £u = 1 (4 9)

where χ is some unconstrained scalar amplitude. More technically speaking,
Eq. (49) identifies 3/fk with L2(SU(2), 2fc), the Hubert space of all wave functions

2 The mass term is chosen proportional to (M t #) 2 rather than M? so that when projected onto the

plane, it becomes 4MfR4(R2 + x2)~2. As R —• oo, this smoothly approaches 4M 2
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χ(g) with

!dg\χ\2< co χ(geiωσ3) = e-ί2k»χ(g).

Similarly, JPl can be identified with L2(SU(2), k + /). The operator T then maps
L2(SU(2),2/c) into L2(SU(2), 2/c + 2),

T = / _ + / _ ( l n | w | 2 ) , _ (50)

and

T+=I+-I+(ln\w\2) (51)

maps L2(SU(2), 2k + 2) into L2(SU(2), 2/c). In what follows, we need not know that
w|2 comes from an instanton solution and consider therefore the general case,

where | w | 2 is replaced by any smooth positive function p(g\ which is homogeneous
of degree zero:

A basis of zero modes of Γis then given by (cf. Eq. (15))

so that the projector P o can be represented by

We now proceed to calculate Γ r e g along the lines sketched in the introduction.
The computations are broken up into several steps.

5.7. The Exact Green's Function for A

The Green's function G(cf. Eq. (5)) can be written in the form

G = G_G+ (54)

ΓG_ = 1; P 0 G - = ° (55)

T+G+ = l-P0. (56)

The operator G_ maps L2(SU(2),2fe + 2) into L2(SU(2),2fc) and G+ is the adjoint
of G_. Equation (55) is solved by the Ansatz

G_=(l-P0)p-1G_p; 1_G_ = \. (57)

Because /_ is invariant under left multiplications on the group SU(2), the integral
kernel G_(g,gf) ofG_ can be chosen left invariant:

G-(g,gΊ = v2k(β"1 β) ( 5 8)

As G_ maps L2(SU(2),2fe + 2) into L2(SU(2), 2/c), y2k must be homogeneous

y2k(e-iω'σ3'g'eiωσ3) = eί2k^'-ω)ei2ω'y2k(g) (59)
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γ2k therefore depends on essentially only one variable so that the equation /_ G_ = 1
reduces to an ordinary first order differential equation for γ2k. This equation is
easily solved, when written out in coordinates x and τ (cp. Eq. (15)). The outcome is

β

c o s -
/ ( 6 0 )

s i n -

which completes the description of y2k and therefore of the full Green's function G.
For later use, note that

P o being the projector onto the zero modes of/_ in L2(SU(2), 2k). Also, the adjoint
G + of G_ satisfies

I+G+ = l-P0. (62)

5.2. Computation of the Variation δΓreg

When the external field p is varied, Γ r e g changes according to

ί Γ -1 V *~Λ
reg ) i v Ό' L-u i^ \ i / / i

(63)

From the explicit form (53) of the projector Po it follows that

reg ^ ^

Noting ^J = (5T + T+ T+δT, Eq. (63) can be somewhat simplified:

δΓreg = Tr j<5T+ Γ G + + Σ ^T(zl + (Mfi)2)'11 j + c.c. (64)

where c.c. means complex conjugate.
δT+ = — I+(δ In p) is a local operator so that the trace operation amounts to

evaluate G+(g,gf) at coinciding arguments and then to integrate over g. The short
distance singularities of G+ are cancelled by the corresponding singularities of the
Green's functions of the regulator fields. The short distance expansion of
G^ = T(A + (MR) 2 )" 1 can be calculated perturbatively (Appendix A):

•v iv

G>(x), 1) = - R(l + iεμ v*A In P ) ^ ^ (x -* °)

Here, terms vanishing at x = 0 have been neglected and the coefficients of the
non-zero terms are given for M = oo.

The short distance behaviour of the zero mass Green's function G + follows
from the exact expression derived in the preceding subsection 5.1:



68 B. Berg and M. Luscher

•v- j γ

G+(u(x), 1) = - R(l + x,dμ In ^

-\dg'p{\)G+{\,g')p-\g')P0{g',\)+O{\x\).

Inserting Eqs. (65) and (66) into Eq. (64), we see that all short distance singularities
cancel indeed and we are left with

δΓΐeg = 2δ \dg(I+ Inp)(I_ Inp) - Ίr{δT+pG+p-ιP0} + c.c. (67)

Equation (67) can be simplified noting that

δT+ = ~[T+,δ\np']

PoT
+=0; T+pG+=pI+G+=p(l-P0) (68)

Poρ-1Po = PoP~1'

We then arrive at

δΓreg = 2δ$dg(I+lnp)(I_\np)

+ 2(2fc + l)δ$dg In p - 2Ύr(Poδ In p).

Finally, from the explicit form (53) of the zero mode projector Po, we deduce

- 2 Ύr(Poδ In p) = δ(\n det N)

which leads to the result

lnp) + (2fe+l)lnp}. (69)

The constant α is independent of p and will be calculated in the next subsection.

5.5. Computation ofΌc(k9Mj,R)

The spectrum of A can be calculated explicitly in the case p = 1. Denote by

m,m'= -j, - j + 1 , . . . J

the matrix elements of #eSU(2) in the irreducible representation of SU(2) with
angular momentum j . It follows from the Peter-Weyl theorem (e.g. [7, Sect. 2.8])
that the functions

Ψjm = <hm\0\h-k>> J = fc,fc+ 1,...

form a complete orthogonal basis in L2(SU(2), 2k). They are also the eigenfunctions
of A = I+I_ , the eigenvalues being

E. = (j - k)(j + k + 1); multiplicity: 2/ + 1.

Definingμ=j — k— l,eo = 1 and M o = 0,Γ r e g becomes

/=!
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oo C v Λ

+ Σ \ Σ î(2μ 4 2fe 4 3)In[(μ 4 l)(μ 4 2k 4 2) 4 (M^) 2 ] >. (70)

The master formula for sums of this type is

oo r v >ι

Σ I Σ et(aμ 4 b)ln[(μ + αjfo + α2) 4 (M^)2] j
v Γ ^

Γ α , 2 i 2\ fl 7/
—(oί^ 4 θ ί 2 i — T — D\(XΛ 4 oc2 —

[_2 6

4 (αα2 — b)ξ'(O, α2)

t = l

+ ^(α2 4 α2) - ^ 6(α i 4 α2 - 1) ln(M^) ^ (71)

Here, Cfe^) is Riemann's zeta function [9, Sect. 9.5]. Eq. (71) has been derived
following 't Hooft's [3] method. Since this method is fairly standard, we do not
give the details of our computation here.

Applying Eq.(71) to the case at hand, we obtain

(2k + 1) In Γ(2k + 2)
i=l

2k-l

- 2 X (Λ + 2)ln(A + 2) + jS(Mf,R).

The number β is independent of k and is therefore irrelevant.
To compare with Eq. (69) we note that for p = 1

(2k— iVi'
AT — X (Έ>2\j-2k\ f V. .//_y . _ Π 1 9k

so that

Γ r e g - <x(k9Mj9R) - 2k(2k + l)ln R + (2k 4 l)ln Γ(2Λ 4 2)
2 k - 1

- 2 Σ (λ + 2)ln(λ + 2).

It follows that

α(/c,M ,R) - α(0,M.,Λ) = 2fc| Σ β, ln(M^) 4 (k 4 1) 4 (2k 4 l)ln R | . (72)

Our results Eqs. (69) and (72) are valid for arbitrary smooth external fields p.
However, in case p stems from an instanton solution, the formulae can be simplified
even further, a task, to which we turn now.
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5.4. More Explicit Evaluation ofΓreg in Case p = | w|2

Recall from Eqs. (24) and (36) that

Pi(x) = cf\(s- aj); p2(x) = Π (s - bj).
i = l 7=1

For p = I w|2, the integral in Eq. (69) can be computed explicitly in terms of e,α'
and bj. Furthermore, det N can be related to the Jacobian J (Eqs. (39), (45), (66)),
which will then cancel in the instanton gas expectation values <#> i n s t .

In x-coordinates, the integral in Eq. (69) reads

def

d\n-
\p\2 (2k+l)R2

ι(R2 + x2f

Partially integrating and noting that

dsds ln(R2 + x2yk = - kR2(R2 + x2Γ2

we obtain

In I P I
+ χ2)2

 (R2 + χ2f y

Define a complex variable

Pz

As s runs through the complex plane, u assumes almost all values k times. Thus,
excluding small disks around the zeros of p2, we find

$d2xln\p\%ds\n\p\2 = $d2x{ln(l + \u\2)dsdsln(l + \u\2)

~ln\p2\
2dvln\p\2}•

The line integral is to be taken over a large circle at infinity and small circles around
the zeros of p2. The result is

ln\aι-bj\2.
ί,j=l

The remaining integral in A can easily be computed for R-+ oo making the
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substitution x = Ry. Summing up, we have

A= -2/c2(l + lnK2) | | 2 2

2kln\c\2 + 2 X l n | α ί - b J | 2 + 0\ — ). (73)
u=i

In order to relate det ΛΓ (Eq. (53)) to det J (Eq. (39)) we note that

Λ

where the (2/c + 1) x (2k + 1) matrix L y depends on the parameters λι only. Thus,

detJ = |detL | 2 detN.

Because det Lis a homogeneous polynomial in a\ bj of degree k(2k — 1) vanish-
ing whenever two roots coincide, it follows that

detLoc Ilia1 - ajW ~ bj) Π( f l < - f e j )

The proportionality constant can be computed inductively giving the result

(74)UW ~ aJ\2\bi ~bJ\2 x Π k -

We finally collect Eqs. (69), (72), (73) and (74) to obtain the completely explicit
formula

iM. + 2/c + ln(l + |c | 2 ) 2

+ In det J

(terms vanishing for R -> oo or Mi -> GO as well as fc-independent constants have
been dropped).

6. Computation of Γ r e g : the General Case

The scheme outlined in the introduction works in the CPn~ 1(n^3) case, too.
The details of the calculations, however, are more involved than in the CP 1 case.

6.1. The Exact Green's Function for Δ

Again, the general structure Eqs. (54)-(56) holds with T,T+ and Po given by
Eqs. (31), (32) and (38) respectively. G_ maps ^k+2 int° ^k a n ^ c a n ^ e written
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in the form

G_=(l-P 0 ) |w | - 1 (5_ |w | . (76)

Here, the integral kernel Q^ig^g') of G_ satisfies

where δ(g, g') is the (5-function on the group SU(2) (the right hand side of this
equation is the integral kernel of the unit operator in ^k+2\ One solution is

K W y p W (77)

with yk defined by Eqs. (59) and (60). For brevity, we shall use the symbolic notation

6.2. Computation of Γre g

Consider a curve 3(0, ί), 0 ^ t ^ 1, of instanton fields. We would like to compute

5 Γ r e« = Λ Γ r e g ' f s = 0

Equation (64) is not straightforwardly applicable here, because the Hubert spaces
M\ depend on 3α. This difficulty can be overcome as follows. Define a unitary
matrix Uaβ(g,t) by

U={j>® 3 - 3®3 + (3'3)(3®3)}^; U(g,0)=l

(the dot denotes differentiation with respect to i). Obviously,

U(g'eiωσ\t)=U(g,t);

so that U(g, t) can be used to identify the Hubert spaces 3tfx along the curve 3(0, ί):
iΐψeJ^ι at "time" t, U~fi

x(g, t)ψβ(g) is an element of Jf x at t = 0. Correspondingly,
any operator 0 acting in some Jf7

z at time t can be pulled back to an operator
U~10U acting at ί = 0. Because U is unitary, Eq. (64) holds, provided we define

δT+=~(U-'T+U)\t=0

= - ( l - 3 ® 3 ) {(/+3)®53 + /+(^ln|w|)} (78)

As in the CP 1 case, the short distance singularities in Eq. (64) cancel. We shall not
repeat this calculation here, but merely state the result (cp. Eq. (67)):

+ | | } | w | G + | w | - 1 P 0 } + c.c. (79)

Unfortunately, the reduction of δΓreg to a local expression requires a fair
amount of algebra, which is deferred to Appendix B. The outcome is (cp. Eqs. (37),
(39))
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(80)

-2Tr(P0<Sln|w|).

The terms in Eq. (80) involving the zero modes rf can be related to the variation
ofdetJ:

δ In det J = J J 1δJji

δjJt = - f d0 j»rY2a in |w

The first integral here matches with the zero mode contribution to Eq. (80).
To evaluate the second integral we note that

δw = Kj ^rr-w κt = constant
cλι

Jdw\ d2w

where the coefficients XJJ(A) are independent of g. We then find

which is not difficult to compute with the choice (36) of parameters:

K^U + c.c. = δ t {fcln|cj2 + Σ !n|< - 4\2

α=l (. i<j

Summing up, we have

α=lL i<j J J

This equation determines Γre g up to a constant which can be computed by consider-
ing a CP1 instanton imbedded into CPn~1 and comparing with the results obtained
in the previous section. The final formula is

ίk \
Γ r e g = nk Σ et In Mt + k + nl - + 1 I In (cβcβ)

n Γ
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7. Summary and Discussion

Composing Eqs. (47) and (82), we find the following expression for the instanton
grand canonical ensemble

n k

•0(ce,fl£)exp-l/(ce,ej). (83)

Here, z is the fugacity,

z = ̂  exp - \- + Σ e, In M( + ̂ 1 , (84)

(7 is the many body potential

U = £ f Λc H P | 2 β A ln| p | 2 + infc(ln(5αCc[) - 1)

(85)
α = 1 L i<j

and the instanton parameters cΛ,a
j

β are defined in Eqs. (23), (36). In Eq. (83), the
world radius R has already been taken to infinity. When the ultraviolet cutoff is
removed,

def v

In A = — Yaei In M -> oo

the coupling constant/ must be renormalized according to

2 π Λ Λ~, ~ 2π
( 8 6 >

Here, μ is the normalization point and/Λ(μ) the renormalized coupling constant.
Defining the renormalization group invariant mass

-?o 2π
2 2 (87)

R

Equation (84) reads3

In
z = mje-<» + 2v2" (88)

Equation (86) completely agrees with the renormalization of the 1/n expansion [1].

3 The coupling constant down-stairs is not renormalized to this order in the semiclassical approxi-
mation
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For large n, the mass m is just the mass of the fundamental zα particles.
For « ^ 3 w e were not able so far to explicitly compute the integral appearing

in the potential U. On the other hand, for the CP 1 case we have (cf. Sect. 5.4)

(89)

where c = c1,a
ι = a\ and bj = a{. This is precisely the Coulomb interaction

energy of k positive charges and k negative charges sitting at α1 respectively bJ.
Thus, the pure CP 1 instanton gas is equivalent to the two dimensional classical
Coulomb gas, whose partition function in a volume Fand at a temperature Tis

oo k

Zv(T,Z)=Σ(kr2z2k J Ud2a'dΨ
fc = O a\bJeV i,j=l

(90)

(in our case T— 1).
Fortunately, a number of interesting properties of the Coulomb gas have

been established rigorously by Frόhlich [10]. First of all, he showed that the
thermodynamic limit of the pressure p exists, provided T > 1:

p(T,z) = lim V~1lnZy(T,z). (91)
V->ao

The number p of instantons per unit area is4

p = ^γzP(T, z) = ^—[p(T,z) (92)

which is therefore finite for T > 1. Qualitatively, in this range of temperature, the
Coulomb gas is in a plasma phase. In terms of instanton thickness and position
variables, this would be a dense phase, the instantons overlapping each other more
and more as the temperature rises.

As T approaches 1, the Coulomb gas condenses. It follows from Frόhlich's
work (Sect. 4.c) that the pressure p{T,z) diverges as T->1 while keeping the
fugacity z fixed. The equation of state (92) then implies that the density p is infinite
at T ~ 1, i.e. in the CP 1 model we have an instanton fluid rather than a gas. Super-
ficially, the condensation of the Coulomb gas can be anticipated from the fact that
a1 — bj\~(2/T) becomes singular as T-> 1 so that the charges preferably form

neutral dipoles, which can be densely packed. This argument reveals that the pres-
sure p diverges at T=l, because of the ultraviolet rather than the infrared
divergencies in the instanton scale size integrations (cp. Eq. (1) for n = 2; for a
single instanton λ = ^\a — b\). In particular, we do not expect such a conden-
sation to take place for n ̂  3.

At first sight, one might fear that the CP 1 instanton fluid does not make sense

Equation (92) is a simple consequence of the scaling properties of ZV(T, z), and Eq. (91)
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at all, because its density is infinite. This is not the case, however, because the
expectations < 0 > i n s t usually have a limit as T-+ 1. In other words, the UVdiver-
gencies factorize and cancel in the ratio (83). This follows from the fact that the
expectation value of Θ in the Coulomb gas can be represented by the expectation
of a corresponding observable Θ in the massive Thirring model when T > 1 [11],
[10]. This model is formally defined by the Largrangian density

SB = m - m')ψ - ±g(hμΨ)2 (93)

where the mass m' is proportional to m and g — π(T — 1) (see Coleman's article [11],
in particular Sect. IV, for more details). As T-+ l,g ->0 so that the expectation
^ ) c b . g a s = ^ ) M T M converges to an expectation value in the free massive
Dirac field.

The equivalence of the C P 1 instanton fluid and the free massive Dirac field
not only shows there are no infrared divergencies but also reveals that a dynamical
mass generation much like in the 1/n expansion has taken place. The equivalence
could be exploited to compute correlation functions of the spin field [1]

but we are not going into this here.
We have little to say concerning the physics of the C P " " 1 instanton gas for

n ^ 3. We only remark that for k = 1, the potential energy U is

- Σ ln |c j 2 (94)
α = l

This expression is already much more complicated than in the C P 1 case, in parti-
cular, the parameters ca no longer play a passive role. With respect to the "particle"
positions α*, U is a Coulomb like n-body potential. It is singular when all positions
are equal, but for n ^ 3, this singularity is harmless, because it is integrable (cp.
Eq. (1)).

8. Conclusions

The most important insight provided by our investigation is that the infrared
divergence of the one instanton contribution to the path integral not necessarily
implies that the whole instanton gas is divergent. More pointedly expressed, the
divergent scale size integral, Eq. (1), merely means that the instanton gas is dense.
The dilute gas intuition, which has been gathered by studying models with built
in mass scale (such as the two dimensional Higgs model), may be rather misleading
in the σ-model case. For example, there is no dynamical mass generation in the
cutoff dilute instanton gas approximation.

Technically, our computations were rather involved but the overall strategy
was simple. We hope to apply our method to the general Yang-Mills instanton
solution in four dimensions. A crucial ingredient of our computational scheme,
the relevant exact Green's function, has already been found [12].

In the semi-classical approximation we did not consider contributions from
solutions and "almost" solutions of the full field equations other than instantons.
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As the instanton gas is dense, however, we doubt whether instanton anti-instanton
configurations can be safely distinguished from vacuum fluctuations. Neglecting
some exact solutions may be a more serious mistake. Fortunately, in the CP1

case there are no solutions of the full field equations with finite action other than
instantons and anti-instantons [13]. The situation is different for n ̂  3. For
example, an infinite set of solutions for the CP 2 field equations is given by choosing

Zα(x)?α— 1,2,3, to be any real 0(3) instanton or anti-instanton. The CP 2 topo-
logical density of these solutions is identically zero and the action is quantized.
It is an interesting problem to classify and describe all solutions of the full field
equations of non-linear σ-models and to clarify their role in the semi-classical
approximation.

Acknowledgement. One of us (M.L.) thanks K. Symanzik for useful discussions.

Appendix A Short Distance Expansion of T(Δ + (MR) 2 ) 1

The integral kernel D{g,g) oϊ(Λ + (MR)2)~ι is homogeneous

D{geiωσ\g'eiω'σ") = eί2k{ω'-ω)D{g,gf).

We are interested in the behaviour of D(g,gf) as g -• g'eiω>σ\ Provided the field p
is rotated as well, D(g, g') is invariant under left rotations. It is therefore sufficient
to consider the case g = 1. Define (cf. Eq. (15))

The differential equation for D(x) is

- DμDμ - εμvdμAv +J0^]
= dμ + \Aμ Aμ = - εjv ln[(R2 + x2)kp(u(x))l

We compute D(x) perturbatively:

D(x) = 4π f J<*2*i d2xvD0{x - xJVixJD^ - x2)
v = 0

...V{xv)D0(xv).

The perturbation V(x) is

V = i(Aβδμ - dμAμ) - AμAμ + SJμAv + 4M2[1 - R*(R2 + x2)~ 2 ]

and the "free" propagator Do is taken to be

D0(x) = ί^eipx(P2 + 4M2)"1 = ±K0(2M\x\)

(Ko is a Bessel function, cp. [9, Sect. 8.432]).
The operator T acting on D(x) reads
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From power counting it follows that the terms of order v ̂  2 in the perturbation
expansion for TD(x) give rise to a convergent one loop integral when x = 0. As
M -» cc these integrals vanish. The terms of order v = 0 and v = 1 are easily
computed in the limit where first x -• 0 and then M -» oo :

γ i'γ

TD{x)=-R{\-iAμxμ)
 ι

 2

 2.
X

Appendix B. Proof of Eq. (80)

Let

-τΐ{δT+\w\6+\w\-1P0} = A1 +A2

We first compute Ax. Noting

we obtain

A1 = -Ύr{(δln\w\)T+\w\G+\w\-1P0}

Here, F o projects onto the zero modes of/_ (cp. Sect. 5.3):

In particular

so that

Next, observe that

and therefore

Thus, we finally obtain
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-Tr(P0<Hn|w|).

We next compute A2. Because (1 — 3 (g) 3) <S 3 is a zero mode of Γ, we have

Therefore,

A2 = -Tr{P 0 |w |- 1 G_|w| δ3®/_3}

= - ldg(I_m\ - 3®3)|w|-1/ + [|w|(l - 3 x 3) δ3]

-Ίτ{Po δwoxI_l}.

Recalling the explicit form Eq. (38) of P o , it is easy to show that

Partial integration then yields

and consequently

Combining the results so far obtained with the other terms in Eq. (79) gives (after
some trivial algebra):

1 ) - l ] l n |

A further simplification is achieved by noting that

e /c 1 I K 1 1 - 1 ^ W

^3= —(δln|w|)3 + |w| 1κι —

with some complex constants κι. Then

and therefore

which, when inserted above, yields Eq. (80).
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