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Abstract. We show that the fast motion iteration method in General Relativity
gives an asymptotic approximation to exact solutions of the reduced Einstein
equations. Rigorous estimates of the error commited at each step of the
iteration are derived.

1. Introduction

In General Relativity powerful theorems are known, which guarantee existence
and uniqueness of solutions to Einstein’s equations [1—4] under very general
conditions. In contrast to this, however, very little is known about the validity of
the approximation methods, on which the comparison between theory and
observations is based. One has in fact reasons to be rather sceptical about the
usual procedures.

The main result of this paper is an exact estimate of the error one makes by
solving the reduced Einstein equations in the usual fast motion iteration scheme.

We outline the basic arguments with the following model problem: Solve, for a
given source o(x,y,zt), and for a finite time interval 0<r<7T, the quasilinear
equation

Opp:=(0+¢)p=0., [O=—0}+0.+0]+0: (1.1)

with zero initial data, ie., ¢ =0, =0 for t =0, in which case all properties of the
solution should be determined by the source. In the scetch, which we shall give in
this introduction, || || will stand for norms in Banach spaces, which will be
specified later in the text. Further “c” will stand for a constant depending only
on T.

The existence theorems for the problem (1.1) are based on the iteration

D¢"¢,;+1:Q> ¢0:0~ (1.2)
If ¢ is small enough this sequence has the property
!|¢n+1_¢n“§/A“H¢nw¢n—1”7 O<}'<13 (13)
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which shows that ¢, is a Cauchy sequence in a Banach space, hence it converges to
a unique solution o. Furthermore

lo—o, l|<-—— by = ol =1 4l (1.4)

The contraction constant 2 as well as H¢1 | can both be bounded by a norm of the
source g, hence

o=l =clol" " (1.5)
Suppose we want to actually calculate the iterates ¢,. Then we face the problem of
constructing the Greens functions of [ , which is not possible analytically. The
usual way around this difficulty is to rewrite (1.1) as

O¢p=0—¢i¢ (1.6)
and to iterate as follows:
Dénﬁ»lzg_(z)nei --n7 (EOZO (17}

Here we have to solve in each step just a flat space wave equation, whose source is
determined by ¢ and the ¢,, calculated before. In general, however, this sequence
(¢,) can not be expected to converge, as can be seen from domain of dependence
arguments.

Unfortunately, we have now two equally useless sequences: {¢,} converges,
but cannot be calculated, whereas {¢,} can be calculated, but we don’t know
whether and how the ¢,’s are related to the exact solution ¢.

In Einstein’s theory of gravitation exactly the same difficulty occurs.

Nevertheless, it is possible to show, as we shall now outline, that the {d_>,,}
sequence is in fact asymptotic to the exact solution ¢ as ¢—0 (in a sense to be
specified in the text) and the error commited at each step can be estimated.

Combine the two iterations (1.5) and (1.7). One gets by eliminating ¢

D‘Zu(d)nJr 17 (EIML 1) ¢n ¢)n ﬁ2¢;z+ 1 + ¢n X ¢n+ 17 d)n) (18)

provided one subtracts (15 ¢, , on both sides. This is a linear wave equation for
Qpiq— d)"H with wave operator [J; and a source depending only on quantities
of the ¢, iteration, 02¢, ., and the difference (¢, — (]5,,) We have in this case an
energy inequality which boundes the unknown ¢, , — @, ., in terms of the source.
Hence one can estimate (provided that we can brake up the norm of the products
into the product of the norms which we shall show in the text)

”¢n+1 d)n-t—l | <C H¢n ¢n“ “02¢n+ 1 H + ”d) Il “82(¢n+1 ¢n)”} . (19)
Since all three terms | 02¢, ., |, I|d. | and [02(, . , — P,)|l can be estimated by |o]
one finds a recursion relation of the form:

1= Pur il =cloll 1o, — Pl +clof"? (1.10)

which can easily be solved (since the first member ¢, — ¢, =0), provided the norms
of (¢, ., —b,+,)and (¢,—¢,) are taken in the same Banach space (a fact which we
shall show in the text). Thus

I, — ./l cllol" . (1.11)
Combining this with (1.5) the result is

l¢p—d,l<clo|™" . (1.12)
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It will turn out that the norm of ¢ will contain derivatives of g up to order n+1, i.e.
the right hand side, in contrast to (1.5), is not in fact proportional to a power of a
fixed number. Equation (1.12) shows that the sequence {¢,} is in fact asymptotic to
the exact solution ¢.

Essentially the same estimate will be true for the reduced Einstein equations,
i.e., Einstein’s equation in a harmonic coordinate system

gx/}‘axaﬂguv + Puv(gnl, aggx?y) — Q;w ) (] . 1 3)

The difference between the exact solution ¢"" and an approximate solution gh”,

calculated by an iteration analogous to (1.7) will be bounded by a power of a norm
of the source,

lg—g,l <clol™ . (1.14)

The method by which we estimate the difference of the true solution and the
iterates of a non-converging iteration procedure can be applied to other problems
of classical field theories.

The plan of the paper is the following:

In Sect. 2 the tools from functional analysis is outlined.

The analysis of the convergent and asymptotic iterations is given in Sects. 3
and 4 respectively, and their comparison and final theorem appears in Sect. 5.
Concluding remarks and comments follow in Sect. 6.

2. Function Spaces and Multiplication Properties
We define the following function spaces on I x R", where [ is the interval [0, T']

[91.

Definition 1. ES is the space of tensor fields h on I xIR" such that

i) the restriction h, of h as well as the restriction (D*h), of its derivatives of
any order |u[<s, to each 2, =R" x {t} is almost everywhere defined and square
integrable.

We set

HM@=“ lewmwﬂm. (2.1)

X Jol=ss

ii) The mapping I—-R by t— | h||¥ is measurable and essentially bounded.
E, endowed with the norm:

Ihljy=Ess Sup || k|| (2.2)
tel
is a Banach space.
We will need the following multiplication properties.
Lemma 1. If k, [=m and k+I>m+ g we have the continuous multiplication
property
E,xE—E, (2.3)
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by
(u,v)»u@v (2.4)
i.e., there are constants a, , ,, such that

luvl, = ay g il 0l (2.5)

Proof. On each 2, we can show that
vl S @y llulli - ol (2.6)

in the same manner in which the analogous inequality is established for the
corresponding Sobolev spaces over X, [7, 8]. Taking the essential supremum in [
we get (2.5). [

Corollary 1. If k> g, Ek is a Banach algebra.

We shall write ¢, ,, as a, , and a, , simply as a,.’

Lemma 2. If s> g, Es is continuously imbedded in L*(I, C)(R")) that is there exists

a universal constant ¢ such that ¥V feE,

Esstgup {|f|é‘g} =clfl.

Lemma 3. If the restriction (f), € LZ(Z,O) and Dfe Eo then fe El and
IFIE 20159 +2T>-(IDf 1 o)* -

Definition 2. X, is uniformly space like with uniform lapse for a C° 2-contra-variant
symmetric tensor field y on I x R? if there exist strictly positive constant a,, Ay, a,,
A,, B such that on 2,

ay= "VOO =4,
a1|§|2 é“/ik‘fiék.g_AJaz
W <8,

where 7" are the components of y in the natural frame on I x IR,

Remark. The above inequalities imply the analogous inequalities for y,,,. The three
conditions are equivalent to the following geometrical restrictions:

. . 0

1. The normals to X, lie always in a cone around —.

Ot

2. The opening of the light cone of the metric y is bounded away from zero and
infinity.

3. The lapse function on X, is bounded and greater than a positive constant.
Definition 3. We say that a C° 2-contra-variant tensorfield y is a regularly
hyperbolic metric on I x R? if ¥, is uniformly spacelike with uniform lapse for each
tel and if the constants a,, A, a,, A;, and B can be chosen independently of t.
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Let [, be the operator [],=7""D,D, and consider the equation on I x R?
O,0=¢

with ¢ given, for Cauchy data ¢ =0,0=0 on Z,. Denote by 5 the Minkowski
metric on I x R3, which is diagonal (— 1, +1, + 1, + 1) in the natural coordinates
and let y be the difference y =7 —#. The following theorem was established in [9].

Theorem 1
Suppose: 1. y is a reqularly hyperbolic metric on I x R3.
2. DyeL” (I xIR%)
3. yek,
4. geE, _, R
then there exists a solution ¢ in E, to the above Cauchy problem, unique in E,,
satisfying the inequality :

Il =cdlel-y
where constants c;, depend only on a,, Ay, a,;, Ay, B, |Dy| .. ||l and T.
Remark. If ye I:Zk with k>3, Lemma 2 implies that condition 2 is satisfied and that

[ =clixl

everywhere on I xIR®. On the other hand it is easy to check that y is regularly
hyperbolic if || < const < 1. Hence if y is contained in a closed ball of radius R in E,
with k=3, such that:

Re<1, (2.7)

condition 1 is also satisfied. We conclude that in this case the coefficients ¢} can be
chosen to depend only on R and T. We therefore choose a fixed R, a priori,
satisfying (2.7) and shall regard the ¢ as depending only on T.

3. The Convergent Iteration Method
Einstein’s field equations for the metric g
R® =T —1Tg" 3.1)
do not allow to prescribe T*" as a given field on a manifold because (3.1) implies
™  =0. ‘ (3.2)

If one however imposes the condition of harmonic coordinates (3.1) becomes the
reduced Einstein equation

R;:v =T — %Tgll\' — %qu . (33)

This equation has solutions for arbitrary prescribed ¢**. The solution is however
only a solution of (3.1) if 1) the data for (3.3) satisfy the constraints and 2) if the
solution ¢g"* and T** defined from ¢"* and ¢"" satisfy T, =0.
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We are going to consider solutions of (3.3) with given ¢ and trivial Cauchy
data, namely:

@o=n. (0,9)=0 (3.4)

because we want to study how the source generates the field.
Expressed in terms of ¢ (3.3) becomes

O,9=/,(g.Dg)+o (3.5)
with
fg,Dg)="P Dy, Dg), (3.6)

where P, is a bilinear form with coefficients which are rational functions of g"".
In coordinates we have

gaﬁDaDﬂg,uv :PZ[; %rDng/fDagyé +qu ) (3.7)
We can write P, in the following form:
P,=I+H,. (3.8)

where I =P, is a combination of 4, #"" and 57, and we have defined h=g—»n. We
shall denote {I|=p.

Lemma 4. If he E, with s=2, and g =n +h is non-degenerate, then H,e E, and if in
addition ||h||, is sufficiently small, there exist constants q and r such that :

) [H,ll,=4qlhl,,

i) |[H, —H, [l <rlh —hl|
for each I:0<I<s.
Proof. First H, is a rational function of h, namely a polynomial in h with
denominator a power of detg. Since g is non-degenerate, the denominator is
different from zero. Therefore H, is an analytic function and corollary 1 implies

H,eE,. Then i) and ii) follow from the fact that H, contains no constant term and
[|h1l, is sufficiently small. [

We associate with the reduced Einstein equations the linear system obtained
by replacing ¢ in all terms except the second derivatives by a given tensor field 7y,
having trivial Cauchy data. That is:

O.g=/(.Dy)+o. (3.9)
Let us set y=y—n.

Lemma S. If ye Es with =3 and y=n+ y non-degenerate, then f{(y, Dy)eE and

if in addition ||y||, is sufficiently small, it holds :
1fC. Dl S 2a, U713 -
Proof. We write f(y, Dy) as:

S, Dy)=P (D7, Dy)
=1(Dy, Dy)+H (Dy,Dy).

s—1
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As DyeE,_, with s—1=2, Corollary 1 together with Lemma 4 imply fekE,
Further, if |7],_, is sufficiently small from Lemma 4i) we have:

I l=y Sacp+aa il - D3
<2a, plxl}
provided that
qa,_|zlli-y=p. O (3.10)

Lemma 6. If y,, y, are in the closed ball of radius b in ES, s=3, and b, sufficiently
small, the following inequality holds for each | such that 1 <1<s

”f(XpDh)-f(Xz’DZz)“z 1_4pa5 Li-1 5“/1 Lol
Proof. We write
SO Dy) = f (s D7) = 1ID(xy — 72)s DGy + 7))+ H, (D(xy = 22)s Dy + 7))
+(H ’_H )(D72>D72)' (3.11)

We shall estimate the E, _ j-horm of each of the three terms in the above expression
separately. For the first term using Lemma 1 (E,_, x E,_ 1—>E, 1)

[1(D(zy = 22), D(zy + 1)l
§pas_1.l,1|1)(1 + 250074 —inzézpas-u— 1bsHZ1 VAT (3.12)

For the second term we use Lemma 1 (E,_, xE,Al-»E,ﬂ) twice as well as
Lemma 41)

IH, (D(zy = 12), DOty + 72—
Sag g I1H - 1D = 22) @ D(zy + 22—
Sqa,_y - D lrlls= il + 2l =21
<2q(a,_y - b2 =12l (3.13)

For the third term we use Lemma | (E._,xE,_,—E,_,), Corollary 1
(E,_,xE, ,—E, ,)and Lemma 4ii) to get:

I(H,, —H, Dy Dyl
sa, ., \H, —H, [,-1[IDr;®Dy,ll—,
Sragqagy o1 = 20
Sragyagy - b2 =1l (3.14)
Combining (3.12)-(3.14) we obtain
I/ Gers Dyy) =S Do)l -4
sa, 1 b[2p+Qqa; ,+ra, )bz — 1200, (3.15)
from which we recover the lemma if’:

(2qag_y ;—y+ra,_ )b, =<2p. (3.16)
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Theorem 1 and Lemma 5 imply now that if ge Ek . and ye Iz:k with k=3 and if in
addition |y z, is sufficiently small, then Eq. (3.9) has a solution g =n +h for trivial
Cauchy data such that he E,. Furthermore, the solution is unique in E,. Hence we
can define a map @:y—h from a sufficiently small ball in E, into E,, for k=3. We
shall now prove:

Lemma 7. If~QEEk_ » k=3 and b, is sufficiently small, & maps the closed ball of
radius b, in E, into the closed ball of radius bj in the same space, where :

b= (2pa,_bi + ol ). (3.17)
Proof. From Theorem | we have:

Il =l f - +lelh-1),
which, taking into account Lemma 5 gives:

Il = ci2pay 7018 +lelli- 1)
provided that (3.10) is satisfied. The above inequality implies the lemma. [

Corollary 2. If o€ Ek_ k=3 and ||o, _, is sufficiently small, @ maps the closed ball
of radius B, in E, into itself, where

5 1= 1/ 1=8(c?a,_plelli_
- :

b i (3.18)
Proof. From Lemma 7, b, <b, if
2pay b + el ) Sby. (3.19)
The above inequality can be satisfied provided that
8(cia, ipllol, 1. (320

Then the minimal b, satisfying (3.19) is the smallest of the two roots of the
corresponding equality, which is (3.18). Furthermore,

B, =2¢ ol - (3.21)
Consequently, (3.10) is satisfied provided that
2060,y llolSp. O (3.22)
Using the map @ we define the sequence {h,} by:
hy=0
h, ., =o(h,).

Corollary 3. If QEENkal, k=3 and |o|,_, is sufficiently small, the sequence {h,} is
contained in the closed ball of radius By, in E,.

The sequence {h,} is shown to be a Cauchy sequence by demonstrating that @
is a contracting map.
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Lemma 8. If y,, 1, are in a closed ball of radius b in E3, b is sufficiently small and
o€ E,, their images under @ satisfy the following inequality :

[ D(xy)— Pl s A D) xy =12y (3.23)
where :
Alb, b’)=c’1(a1‘150b’+4pa2’0b) (3.24)

and b' is given in terms of b and |}, by (3.17) for k=3.

Proof. Let h, =®(y,) and h,=®(y,). Subtracting (3.9) for h, from the same
equation for h, we obtain: (y, =n+y.7.=1+1x,)

O, h —0,,h, =0, Dy) = f(7,, Dy,) (3.25)
or equivalently,
D"/l(hl _h2): _(Dh - Dh)hz +f(”/1, DV1)~f(”)’2, sz) (326)

Applying Theorem 1 for k=1 to (3.26), where we consider h; —h, as the unknown
¢ and the right-hand side as the given source g, we obtain

hy =hylly S U0 —22) D2hsllo +1f Gas Diy) = f (s Do)l o) - (3.27)
Using Lemma | (E, x E,—»E,) we estimate the first term on the right by:
(2 “Xz)'Dzhzuo §a1,1,0{|X1 =221 10,15
Sapyobli =1l (3.28)

where we have applied Lemma 7 with k=3. To estimate the second term on the
right in (3.27) we use Lemma 6 with s=3, [=1:

1f Gy D) = f (2 Do) llo §4pa2,0b“)(1 —Jally - (3.29)
Substituting (3.28) and (3.29) in (3.27) we recover the lemma. [

Corollary 4. If QEEz and |||, is sufficiently small, the map @ is contractive in the El
norm on the closed ball of radius B in Ej,.

Proof. Under the hypotheses of the corollary, Corollary 2 ensures us that the
closed ball of radius B [given by (3.18) with k=3] in E; is mapped into itself by &.
The rest follows from Lemma 8 provided that:

A=AB,B)=c(a, , o+4pa, )B<1 (3.30)
which, in view of (3.21) holds if
2c\d5lay g o+4pa, o)lel,<1. O (3.31)

The contractiveness of @ allows us to prove an existence and uniquess theorem.

Theorem 2. If Qe];“,(_1 with k=3 and if |ollg, | is sufficiently small, the reduced
Einstein equations with source ¢ have one and only one solution g on I x R® with
trivial Cauchy data, where h=g—n is in E, and g is regularly hyperbolic.
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Proof. By Lemma 8, if the hypotheses of the theorem are satisfied, the map @ is
contractive in the E -norm on the closed ball of radius B in E By the contraction
mapping principle, cD has a unique fixed point h in E,. To show that h is also in E,
we argue as follows: By Corollary 3, for each multl index o with 0o Zk, the
sequence (Dh,), is uniformly (in n and ¢) bounded in the L*(IR*)-norm. Thus we can
extract a subsequence which converges weakly to some (h*),e [*(R?). It is easily
seen that h*=D*h°. Since the weak limit of a measurable map is measurable, we
can show that t—-|[h°|;" is measurable, hence h°cE,. Finally, it is evident that
h®=h apart from subsets of zero measure in each X, [9-11].

4. The Asymptotic Iteration Method

The convergent iteration method, which was analyzed in the previous sections,
cannot be constructed in practice, since it requires the knowledge of the Green’s
function of a given metric for the Cauchy problem posed. This is the reason why
the following iteration is used instead in actual calculations, which uses only the
Green’s function of the Minkowski metric, ie., the truncated retarded integral.
This is essentially the so-called “fast motion iteration method™ [5, 12, 13]. This
method is defined by associating with the reduced Einstein equations (3.5) the
following linear system

Og=/(,Dy)+o—(, -0y, 4.1

where 7 1s, as in Eq. (3.9), a given tensor field and (]=[],.

Let gcE,_, and zeE, k>3 such that y=n+% is non -degenerate. Then we
know from Lemma 5 that f(y, Dy)eE,_ . Further, the last term on the right which
is y-D?*ye Ek ,. Hence the effectlve source in (4.1) is in Ek , and Theorem 1 (with
7 =1) gives us a solution h=§— neEk , having trivial Cauchy data, unique in E
Thus we can define a map ¥:y+~>h which sends a sufficiently small ball in E mto

E,_,. This map is thus not, as @ is, a map from one space into itself. The reason for
this is the appearance of second derivatives on the right hand side of (4.1) which
causes the loss of one order of differentiability.

Using the map ¥ we define the sequence {h,} by

hy=0
_ _ 4.2)
h,e =%¥h,).
Lemma 9. The map ¥ sends the ball of radius by in Ek, k=3, into the ball of radius
by_, in E,_,, where:
bk~1=CkA1{HQHk—2+(2ak—1p+ak‘1.k—2)blf}’
The coefficients c, are the coefficient ¢, of Theorem [ in the special case y=m.
Proof. Applying Theorem 1 with y=# gives us
HEHFk L s el 2+ 1/ DD -2+ HZ'DZZ”k—z} . (4.3)
Using Lemma 1 (E,_ xE,_,—E, ,), k=3

lz-D /Hk Z—ak‘l.k—znzuk—1“%‘]k§ak—l.k—2”X”I§‘ (4.4)
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The term in f is estimated using Lemma 3.

L D2 S UG DO S 20, P71 - (4.5)

Substituting (4.5), (4.4) into (4.3) we get Lemma 9. [

Corollary 5. If g€E, ., k=3 and |o|, ., is sufficiently small then h,cE,_,
and

”En“k- (=20 ol r-s-

The proof is by induction on n using Lemma 9.
The analog for ¥ of the contraction property of @ is:

Lemma 10. If y,. 7, are in a sufficiently small ball of radius b, in E,. k=3 their
images hy. hy under ¥ satisfy:

Wy =TIl Sl = 7l
where . w,=2c¢, _(2pa,_ | +a,_ | _2)b;.
Proof. hy, h, satisfy the Eq. (4.1), hence their difference satisfies

Oy —hy) =111 D7) = f(72: D2) = (21 D22y = 12 -D*12). (4.0)
We write the second term as

Dy = 12D =0y = 1) Dy + 22 DXy = 7).
Using Lemma 1 (E,_, x Ek_zeEk_z), k=3 we get

1G =720 D22yl s Sy el = 22l 1 124l

172 Dty = 2l Sy 2 2= il = 2 -
Hence combining both gives

Iy D23y =12 D21l 2 220y o billtn = 2l 47
The terms in f are estimated using Lemma 6 for [=s=k:

1f G D)= f G Dyl -2 S0 D) — (s Do)l
§4pak—1bk‘|X1'—Xsz~ (4.8)

Applying Theorem 1 to (4.6) and using estimates (4.7) and (4.8) for the effective
source we obtain Lemma 10. [J

Corollary 6. If Qe]::,,+k_3, nz1, k=3 and |0, .5 sufficiently small then
Mhy=h, -y Se,-illolnii-3s
where the coefficients e, . are given by the recursion relation

€1 =4¢, ¢ (2pay _ +ap_y _5)e,
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with
€y, =Cp-

The proof is by induction on n using Lemma 10.

Lemmas 9 and 10 show that there is a loss of 1 order of differentiability at each
step of the iteration method of this section. Therefore the sequence {h,} can not be
expected to converge in general, even if ¢ is in E, for all k. It will however be
shown in Sect. 6 that it is asymptotic to the exact solution.

5. Comparison Between the Convergent and Asymptotic Iteration

In the previous sections we discussed the convergent and asymptotic iteration
methods separately. In this section we shall fulfill the aim of this paper by
establishing relations between the two iteration methods.

Lemma 11. Let y be in a ball of radius b in E3, with b sufficiently small. Then
1200 — POl = vbllz— YOOl 5
where v=cia, .

Proof. Writing ®(y)=h, ¥(y)=h the following equations hold [(3.9), (4.1)]

O,h=f(. Dx)+o, (5.1)
Oh=/(uDp)+o—%-D*1. (5.2)

where y=n+y.
Subtracting (5.2) from (5.1) and adding on both sides of the resulting equation
the quantity ((]—[J,)h= —z-D*h one gets

O,(h—h)=y-D*(;—h). (5.3)
Theorem 1 implies
lh=Rlly ¢z D~

<chayollzlallz =i,

from which we recover the lemma. [J
We shall use the above lemma in

Lemma 12. Let y,, y, be in a ball of radius b in E, with b sufficiently small and let g
be in E,. Then

1PGe)— Pl S Ah, b/)“h —2ally bl — Yl
where A(b, b') is defined in (3.24).
Proof. We have

[D(x,) = Pl S1P(xy) = Pl +11P(xo) — Pl -

Estimating the first term on the right using Lemma 8 and the second using
Lemma 11, we recover the lemma.
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Theorem 3. Let ¢ be in I::,,,, mz2 and |||, sufficiently small. Then the difference
between the iterative h,, and the exact solution h satisfies the following estimate :
where the j,’s are constants which depend only on the size T of the interval I.

Proof. We substitute in Lemma 12 for y,, y, the iterates h, and h, respectively, and
hence for ®(y,), ¥(x,) their successors h, ., h, ., in the corresponding sequences.
The assumptions of the lemma require h, and h, to be contained in a ball of radius
b in E3. From Corollary 3, if ge Ez and |lg], is sufficiently small, we have:

1hlls =2¢31lell (5.4)

[taking into account (3.21)]. On the other hand if QEEH+1, nz1 with [oll,,,
sufficiently small, Corollary 5 gives us:

bl 5 <2¢50l@ll,- - (5.5)

From (5.4) and (5.5) we conclude that both h, and h, are contained in the ball of
radius

b=2¢ 00041 (5.6)
in E,. Then (3.17) gives

b =¢y(2pab? + ol ) <2, ol 4, =b, (5.7)
where the last step holds if

8pa,(cy) el =1.

Substituting (5.6) and (5.7) in (3.24) we obtain

b, b)=alell, (5.8)
where:

a=2c c5(a, ;o +4pa, o). (5.9)
Further

vo=pllel, s (5.10)
where:

B=2ccha, . (5.11)

On the other hand Corollary 6 implies
I =PO =10, =Ryl Se, s olleln il (5.12)
With the above substitutions Lemma 12 becomes the recursion relation

My s s =Ry Sallel, I, =Rl e,y sllelnis (5.13)
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Taking into account the fact that i, =ﬁl, if pe E~m, mz=2 and ||, sufficiently
small, using induction on n for 1 £n<m—1, (5.13) leads to:

=Ryl S follolnt, (5.14)
where:
Ju= 2 Peia" (5.15)

The difference between the exact solution /i and the iterate h, of the convergent
sequence satisfies the estimate:

n n

A A
=l S T Iy =holly = 1= [y (5.16)

where A is the contraction constant, A <1, given by (3.30):

A=allof, . (5.17)
The estimate (5.16) follows from:

sy = hlly = Afh, =Ry, L
(contractiveness of @). If then

2afell =1,
we get from (5.16): (since ||h, ||, =c,llello)

1=l <2c,2"loll™ (3.18)
Combining finally (5.14) with (5.18) we obtain:

=Rl S ulleln

m

where:

jm:fm+2clam . QED

6. Conclusions

Theorem 3 of the previous section shows that the sequence {/,} calculated by the
“fast motion” iteration method which uses only the Minkowski Green'’s function is
asymptotic to the exact solution h. That is, for fixed n, if ¢—0 in the E, norm then
h,~h in the E, norm as |[g|/"* !. Furthermore we deduced precise error estimates
for the sequence {/1,} in E1 norm. In applying the estimates given to physical cases,
a choice of length scale should beforehand be made, since neither the constants ¢,
¢, nor the Ek norms are scale invariant. Perhaps the most convenient such choice is
to take the time interval T=1.

On the other hand domain of dependence considerations indicate that the
sequence {h,} does not converge to h, except in the case where ¢ is analytic.

Several generalizations of our results are possible using essentially the same
methods: First, we can admit general Cauchy data instead of trivial. Second, we
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can give error estimates in the E, norm, with /= 1. Third, the treatment applies to
any weakly coupled quasilinear hyperbolic system in any dimension, which has the
same structure as the reduced Einstein equations.

Acknowledgements. The following work was stimulated by lectures of J. Ehlers who pointed out
repeatedly the nced for justifying formal approximation methods in GR and who suggested the
posssibility to make rigorous certain “plausible” error estimates sketched in [5] and [6].
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