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Abstract. We show that the fast motion iteration method in General Relativity
gives an asymptotic approximation to exact solutions of the reduced Einstein
equations. Rigorous estimates of the error commited at each step of the
iteration are derived.

1. Introduction

In General Relativity powerful theorems are known, which guarantee existence
and uniqueness of solutions to Einstein's equations [1-4] under very general
conditions. In contrast to this, however, very little is known about the validity of
the approximation methods, on which the comparison between theory and
observations is based. One has in fact reasons to be rather sceptical about the
usual procedures.

The main result of this paper is an exact estimate of the error one makes by
solving the reduced Einstein equations in the usual fast motion iteration scheme.

We outline the basic arguments with the following model problem: Solve, for a
given source ρ(x, _y, z, t), and for a finite time interval 0 ̂  t ̂  T, the quasilίnear
equation

Πφφ: = (Π+φdϊ)φ = ρ, O = -d? + d2

x + d* + d2

z (1.1)

with zero initial data, i.e., φ = dtφ = O for ί = 0, in which case all properties of the
solution should be determined by the source. In the scetch, which we shall give in
this introduction, || || will stand for norms in Banach spaces, which will be
specified later in the text. Further "c" will stand for a constant depending only
on T.

The existence theorems for the problem (1.1) are based on the iteration

φ Φo=0. (1.2)

If ρ g q p p y

(1.3)

ΠφnΨn+1=g, Φo=0.

ρ is small enough this sequence has the property

\\Φn+l-Φ«W£''\\Φn-ΦK-Λ, 0 < Λ < l ,
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which shows that φn is a Cauchy sequence in a Banach space, hence it converges to
a unique solution φ. Furthermore

WΦ-ΦJSτ~- WΦ.-ΦoW = ~\\ΦΛ- (1-4)

The contraction constant / as well as \\φ1 || can both be bounded by a norm of the
source ρ, hence

\\φ-φn\\^c\\ρ\\n+ί. (1.5)

Suppose we want to actually calculate the iterates φn. Then we face the problem of
constructing the Greens functions of Π\φn, which is not possible analytically. The
usual way around this difficulty is to rewrite (1.1) as

Πφ = Q-φd2

xφ (1.6)

and to iterate as follows:

ΠΦn+ι=Q-φnd
2

xφn, Φo = 0. (1.7)

Here we have to solve in each step just a flat space wave equation, whose source is
determined by ρ and the φιV calculated before. In general, however, this sequence
(φn) can not be expected to converge, as can be seen from domain of dependence
arguments.

Unfortunately, we have now two equally useless sequences: [φn] converges,
but cannot be calculated, whereas {φn} can be calculated, but we don't know
whether and how the φn's are related to the exact solution φ.

In Einstein's theory of gravitation exactly the same difficulty occurs.
Nevertheless, it is possible to show, as we shall now outline, that the {φn}

sequence is in fact asymptotic to the exact solution φ as ρ^O (in a sense to be
specified in the text) and the error commited at each step can be estimated.

Combine the two iterations (1.5) and (1.7). One gets by eliminating ρ

provided one subtracts Πlφnφn+1 on both sides. This is a linear wave equation for
Φn+i ~Φn+i with wave operator Πφn and a source depending only on quantities
of the φn iteration, dlφn_tl and the difference (φn — φn). We have in this case an
energy inequality which boundes the unknown φn+ί — φn+ί in terms of the source.
Hence one can estimate (provided that we can brake up the norm of the products
into the product of the norms which we shall show in the text)

Since all three terms | | ^ 0 n + 1 | | , \\φn\\ and \\δl(φn+1 — φn)\\ can be estimated by
one finds a recursion relation of the form:

which can easily be solved (since the first member φί — φx = 0), provided the norms
oϊ(φn+ι — 0Π + 1) and (</>„ — (/>„) are taken in the same Banach space (a fact which we
shall show in the text). Thus

ll^-φj^cllρir1. (1.11)
Combining this with (1.5) the result is

\\φ-φn\\ύc\\Q\\n+1. (1.12)
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It will turn out that the norm of ρ will contain derivatives of ρ up to order n + 1, i.e.
the right hand side, in contrast to (1.5), is not in fact proportional to a power of a
fixed number. Equation (1.12) shows that the sequence {φn} is in fact asymptotic to
the exact solution φ.

Essentially the same estimate will be true for the reduced Einstein equations,
i.e., Einstein's equation in a harmonic coordinate system

gΛβdΛdβg^ + P^(gκ\ dQgκλ) = ρ" v . (1.13)

The difference between the exact solution gμγ and an approximate solution g\\Λ\
calculated by an iteration analogous to (1.7) will be bounded by a power of a norm
of the source,

| | 0 - £ J ^ c | | ρ | Γ + 1 . (1.14)

The method by which we estimate the difference of the true solution and the
iterates of a non-converging iteration procedure can be applied to other problems
of classical field theories.

The plan of the paper is the following:
In Sect. 2 the tools from functional analysis is outlined.
The analysis of the convergent and asymptotic iterations is given in Sects. 3

and 4 respectively, and their comparison and final theorem appears in Sect. 5.
Concluding remarks and comments follow in Sect. 6.

2. Function Spaces and Multiplication Properties

We define the following function spaces on / x IR", where / is the interval [0, T]

[9].

Definition 1. Es is the space of tensor fields h on I x IR" such that
i) the restriction ht of h as well as the restriction (Dα/i)f of its derivatives of

any order |α |^5, to each £ r = IR'7x {t} is almost everywhere defined and square
integrable.

We set

j Σ \(D*h)t\
2dx}112. (2.1)

ii) The mapping 7->IR by ί-HI^Hf' is measurable and essentially bounded.
Es endowed with the norm:

||Λ||s = Hss Sup ||ft||ff (2.2)
tel

is a Banach space.
We will need the following multiplication properties.

Lemma 1. // k, l^m and k + l>m+ - we have the continuous multiplication

property

p v F —» F (1 'W
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by

{u,v)-+u®v (2.4)

i.e., there are constants ak t m such that

ll««ll»^fl|t.I.».ll«L ll»llI. (2.5)

Proof. On each Σt we can show that

^ak,Jufk'-\\υ\\f' (2.6)

in the same manner in which the analogous inequality is established for the
corresponding Sobolev spaces over Σt [7, 8]. Taking the essential supremum in I
we get (2.5). •

n ~
Corollary 1. If k>-, Ekis a Banach algebra.

We shall write akJJ as akl and akk simply as ak.

Lemma 2. If s> -, Es is continuously imbedded in L°°(/, C%(JR?)) that is there exists

a universal constant c such that V feEs

Lemma 3. // the restriction (f\oeL2(Σto) and DfeE0 then feEί and

Definition 2. Σt is uniformly space like with uniform lapse for a C° 2-contra-variant
symmetric tensor field y on / x 1R3 if there exist strictly positive constant a0, Ao, av

Av B such that on Σt

where yμv are the components of y in the natural frame on / x 1R3.

Remark. The above inequalities imply the analogous inequalities for yμv. The three
conditions are equivalent to the following geometrical restrictions:

1. The normals to Σt lie always in a cone around —.

2. The opening of the light cone of the metric y is bounded away from zero and
infinity.

3. The lapse function on Σt is bounded and greater than a positive constant.

Definition 3. We say that a C° 2-contra-variant tensorfield y is a regularly
hyperbolic metric on / x R 3 if Σt is uniformly spacelike with uniform lapse for each
tel and if the constants a0, Ao, av Av and B can be chosen independently of ί.
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Let Π y be the operator Π\γ = yμvDμDγ and consider the equation on /xlR 3

ΏyΦ=Q

with ρ given, for Cauchy data φ = dtφ = O on Σ o . Denote by η the Minkowski
metric on / x IR3, which is diagonal ( — 1, + 1 , + 1 , + 1) in the natural coordinates
and let χ be the difference χ = y — η. The following theorem was established in [9].

Theorem 1
Suppose: 1. y is a regularly hyperbolic metric on I xlR3.

2. DyeL°°(/xlR3)

3
4.

then there exists a solution φ in Ek to the above Cauchy problem, unique in Eί,
satisfying the inequality:

\\Φ\\k^c'k\\ρ\\k_x,

where constants c'k depend only on a0, Ao, av Av B, \Dy\LX, \\χ\\k and T.

Remark. If χeEk with k ^ 3 , Lemma 2 implies that condition 2 is satisfied and that

\x\ύc\\χ\\k

everywhere on / x IR3. On the other hand it is easy to check that y is regularly
hyperbolic if \χ\ ^ const < 1. Hence if χ is contained in a closed ball of radius R in Ek

with fc^3, such that:

Rc<l, (2.7)

condition 1 is also satisfied. We conclude that in this case the coefficients c'k can be
chosen to depend only on R and T. We therefore choose a fixed R, a priori,
satisfying (2.7) and shall regard the c'k as depending only on T.

3. The Convergent Iteration Method

Einstein's field equations for the metric g

Rμv=Tμv-±Tgμv (3.1)

do not allow to prescribe Tμv as a given field on a manifold because (3.1) implies

Tμv.x = 0. . (3.2)

If one however imposes the condition of harmonic coordinates (3.1) becomes the
reduced Einstein equation

Rμv = Tμv-\Tgμv = ±ρμv. (3.3)

This equation has solutions for arbitrary prescribed ρμv. The solution is however
only a solution of (3.1) if 1) the data for (3.3) satisfy the constraints and 2) if the
solution gμv and Tμv defined from ρμv and gμv satisfy Tμ v. v = 0.
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We are going to consider solutions of (3.3) with given ρ and trivial Cauchy
data, namely:

(g)o=Ί> M > = 0 (3.4)

because we want to study how the source generates the field.
Expressed in terms of g (3.3) becomes

Dag=f{g,Dg) + ρ (3.5)

with

f(g,Dg) = Pg(Dg,Dg), (3.6)

where Pg is a bilinear form with coefficients which are rational functions of gμv.
In coordinates we have

gΛ<3DββcΓ = P% %Dρg^Dσcfδ + ρ'"'. (3.7)

We can write Pg in the following form:

(3.8)

where I = Pη is a combination of δμ, ημv and.^μv and we have defined h = g — η. We
shall denote |/| =p.

Lemma 4. // heEs with s^2, and g = η + h is non-degenerate, then HheEs, and if in
addition \\h\\s is sufficiently small, there exist constants q and r such that:

i) \\Hh\\ι

for each I:O^l^s.

Proof First Hh is a rational function of h, namely a polynomial in h with
denominator a power of detg. Since g is non-degenerate, the denominator is
different from zero. Therefore Hh is an analytic function and corollary 1 implies
HheEs. Then i) and ii) follow from the fact that Hh contains no constant term and
\\h\\s is sufficiently small. •

We associate with the reduced Einstein equations the linear system obtained
by replacing g in all terms except the second derivatives by a given tensor field y,
having trivial Cauchy data. That is:

Π7g=f(y,Dy) + ρ. (3.9)

Let us set χ = y — η.

Lemma 5. // χeEs with s ^ 3 and y = η + χ non-degenerate, then f(y,Dy)eEs_ι, and
if in addition \\χ\\s is sufficiently small, it holds:

Proof. We write /(y, Dγ) as:
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As DχeEs_1 with s —1^2, Corollary 1 together with Lemma 4 imply feEs_ι.
Further, if ||y |̂|s ^ is sufficiently small from Lemma 4i) we have:

A l l s - 1 7 1 1 A l l s

provided that

^ s - i l l z l L - i ^ P . • (3.10)

Lemma 6. // χv χ2 are in the closed ball of radius bs in Es, s ^ 3 , and bs sufficiently
small, the following inequality holds for each I such that 1^/^s

Proof. We write

+ (Hχi-Hχ2)(Dχ2,Dχ2). (3.11)

We shall estimate the Ej.j-norm of each of the three terms in the above expression
separately. For the first term using Lemma 1 (Es_1 x E ^ ^ i , . , )

\\I{D{χ1-χ2),D(χι+χ2))\\

i.i-iKWZi-Xih (3-12)

For the second term we use Lemma 1 ( E j ^ x E ^ ^ E μ j ) twice as well as
Lemma 4i)

\\HχιΦ(χι-χ2),D(rΛ+X2))\\ι-1

.^j^fb^Wχ.-γJl,. (3.13)

For the third term we use Lemma 1 (Es_ίxEι_1->Eι_ί), Corollary 1
(E&_ 1 x Es_ x ~^ES_ x) and Lemma 4ii) to get:

^ras_1as_ul_1\\χ2\\2

s\\χ1-χ2\\ι_1

Combining (3.12)—(3.14) we obtain

^ j - Z i W n (3.15)

from which we recover the lemma if:

(3.16)
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Theorem 1 and Lemma 5 imply now that if ρeEk_ι and χeEk with /c^3 and if in
addition ||χ| |£k is sufficiently small, then Eq. (3.9) has a solution g = η + hϊor trivial
Cauchy data such that heEk. Furthermore, the solution is unique in Eί. Hence we
can define a map Φ:χ\->h from a sufficiently small ball in Ek into Ek, for k^3. We
shall now prove:

Lemma 7. // ρeEk_1, /c^3 and bk is sufficiently small, Φ maps the closed ball of
radius bk in Ek into the closed ball of radius b'k in the same space, where:

&; = 4(2pβ*-A 2 + llell*-i) (3.17)

Proof. From Theorem 1 we have:

l l^4( l l / l l *- iΉI<?l l*- i ) ,

which, taking into account Lemma 5 gives:

provided that (3.10) is satisfied. The above inequality implies the lemma. •

Corollary 2. If ρeEk_ί, /c^3 and ||^||fc_ x is sufficiently small, Φ maps the closed ball
of radius Bk in Ek into itself, where

Bk=

Proof. From Lemma 7, b'k^bk if

c'k(2pak^b2

k + \\ρ\\k^)^bk. (3.19)

The above inequality can be satisfied provided that

i^l (3 2°)

Then the minimal bk satisfying (3.19) is the smallest of the two roots of the
corresponding equality, which is (3.18). Furthermore,

ak\\ρ\\k^. (3.21)

Consequently, (3.10) is satisfied provided that

2qc'kak_1\\Q\\k_ι^p. • (3.22)

Using the map Φ we define the sequence {hn} by:

^o = 0

hn + ί=Φ(hn).

Corollary 3. If ρeEk^ί, /c^3 and ||^||fc_ x is sufficiently small, the sequence {hn} is
contained in the closed ball of radius Bk in Ek.

The sequence {hn} is shown to be a Cauchy sequence by demonstrating that Φ
is a contracting map.
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Lemma 8. // χ 1 ? χ2 are in a closed ball of radius b in E3, b is sufficiently small and
ρeE2, their images under Φ satisfy the following inequality:

χ 1 2 i 1 2 1 (3.23)

where:

λ{b,b') = c'ί{auuob' + 4pa2t0b) (3.24)

and V is given in terms of b and \\ρ\\2 by (3.17) for k = 3.

Proof. Let hί=Φ{χ1) and h2 = Φ(χ2). Subtracting (3.9) for h2 from the same
equation for hί we obtain: (yι=η + χvy2 = η + χ2)

\Jyh1-\3y2h2=f(yvDyί)-f(y2,Dy2) (3.25)

or equivalently,

Dy1)-f(y2,Dy2). (3.26)

Applying Theorem 1 for k = 1 to (3.26), where we consider hί —h2 as the unknown
φ and the right-hand side as the given source ρ, we obtain

ί 2 a \ ι 2 % o + \\f(χvDχ1)-f(χ2,Dχ2)\\o}. (3.27)

Using Lemma 1 (E1 xE1—>E0) we estimate the first term on the right by:

^ « i . 1 . o ί > Ί l χ 1 - Z 2 l l i . (3-28)

where we have applied Lemma 7 with fe = 3. To estimate the second term on the
right in (3.27) we use Lemma 6 with s = 3, 1=1:

^bhi-Xih- (3-29)

Substituting (3.28) and (3.29) in (3.27) we recover the lemma. •

Corollary 4. If ρeE2 and \\ρ\\2 is sufficiently small, the map Φ is contractive in the E1

norm on the closed ball of radius B in E3.

Proof. Under the hypotheses of the corollary, Corollary 2 ensures us that the
closed ball of radius B [given by (3.18) with /c = 3] in E3 is mapped into itself by Φ.
The rest follows from Lemma 8 provided that :

tU tO)B<l (3.30)

which, in view of (3.21) holds if

2c /

ιc
/

3(fl l f l f O + 4 p α 2 > o ) | | ρ | | 2 < l . G (3.31)

The contractiveness of Φ allows us to prove an existence and uniquess theorem.

Theorem 2. // ρeEk_1 with /c^3 and if | |ρ | |£ k _ 1 is sufficiently small, the reduced
Einstein equations with source ρ have one and only one solution g on I x IR3 with
trivial Cauchy data, where h — g — η is in Ek and g is regularly hyperbolic.
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Proof. By Lemma 8, if the hypotheses of the theorem are satisfied, the map Φ is
contractive in the E^norm on the closed ball of radius B in E3. By the contraction
mapping principle, Φ has a unique fixed point h in Eί. To show that h is also in Ek

we argue as follows: By Corollary 3, for each multi-index α with 0^|α|^/c, the
sequence (D*hn)t is uniformly (in n and t) bounded in the Z?(lR3)-norm. Thus we can
extract a subsequence which converges weakly to some (/ιa)feL2(IR3). It is easily
seen that h* = D*h°. Since the weak limit of a measurable map is measurable, we
can show that r^||/zo | |^ f is measurable, hence h°eEk. Finally, it is evident that
h° — h apart from subsets of zero measure in each Σt [9-11].

4. The Asymptotic Iteration Method

The convergent iteration method, which was analyzed in the previous sections,
cannot be constructed in practice, since it requires the knowledge of the Green's
function of a given metric for the Cauchy problem posed. This is the reason why
the following iteration is used instead in actual calculations, which uses only the
Green's function of the Mίnkowski metric, i.e., the truncated retarded integral.
This is essentially the so-called "fast motion iteration method" [5, 12, 13]. This
method is defined by associating with the reduced Einstein equations (3.5) the
following linear system

Πg=f(y,Dy) + ρ-(πy-Π)y, (4.1)

where y is, as in Eq. (3.9), a given tensor field and • = Π^
Let ρeEk_2 and χeEk, /c^3 such that y = η + X is non-degenerate. Then we

know from Lemma 5 that /(y, Dy)eEk_ v Further, the last term on the right which
is χ-D2/eEk_2. Hence the effective source in (4.1) is in Ek_2 and Theorem 1 (with
y = η) gives us a solution h = g — ηeEk_i having trivial Cauchy data, unique in Ev

Thus we can define a map Ψ:χ\->h which sends a sufficiently small ball in Ek into
Ek_v This map is thus not, as Φ is, a map from one space into itself. The reason for
this is the appearance of second derivatives on the right hand side of (4.1) which
causes the loss of one order of differentiability.

Using the map Ψ we define the sequence {hn} by

(4.2)
.

Lemma 9. The map Ψ sends the ball of radius bk in Ek, k ̂  3, into the ball of radius
bk_ι in Ek_v where:

The coefficients ck are the coefficient c'k of Theorem 1 in the special case y = η.

Proof. Applying Theorem 1 with y = η gives us

\\h\\Ek.ι^k-Λ\\Qh-2 + \\f(x>Dχ)\\k_2 + \\χ-D2χ\\k.2}. (4.3)

Using Lemma 1 (Ek_1 x E k _ 2 ^ E k _ 2 ) , /c^3

2

1 ! | χ | | ^ a ) c . I , t _ 2 ! | Z | | t

2 . (4.4)
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The term in / is estimated using Lemma 5.

/ c i / c i . (4 .5)

Substituting (4.5), (4.4) into (4.3) we get Lemma 9. •

Corollary 5. // ρeEn + k_3i /c^3 and | |^||n + fc_3 is sufficiently small then hneEk_1

and

The proof is by induction on n using Lemma 9.
The analog for Ψ of the contraction property of Φ is:

Lemma 10. // χu χ2 are in a sufficiently small ball of radius bk in Eh /c^3 their
images h{Ji2 under Ψ satisfy:

where: μk = 2ck_1(2pak_ί+ak_uk_2)bk.

Proof. hv h2 satisfy the Eq. (4.1), hence their difference satisfies

Π(hί-h2)=f(χι,Dχι)-f(χ2,Dχ2)-(χ1-D2z1-χ2-D2χ2). (4.6)

We write the second term as

X1 O/i-Z2 -D2Z2 = (Zi-X2) D 2 Z 1 + Z 2 β 2(Zi-Z2)

Using Lemma 1 {Ek_ 1 x Ek_2->Ek_2), k^3 we get

Hence combining both gives

|ίZ l D 2

Z l - χ 2 D 2 χ 2 | | t . 2 ^ 2 α ^ l j t _ 2 ^ | | Z l - Z 2 | | / ( . (4.7)

The terms in / are estimated using Lemma 6 for l = s = k:

AWXi-XiWk- (4-8)

Applying Theorem 1 to (4.6) and using estimates (4.7) and (4.8) for the effective
source we obtain Lemma 10. •

C o r o l l a r y 6 . // ρ e E n + h_3, n ^ l , k ^ 3 and \\ρ\\n + k_3 sufficiently s m a l l t h e n

W K - K - l \ \ k - l ^ e n . k - l \ \ Q \ \ n n + k - 3 >

where the coefficients en k are given by the recursion relation
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with

The proof is by induction on n using Lemma 10.
Lemmas 9 and 10 show that there is a loss of 1 order of differentiability at each

step of the iteration method of this section. Therefore the sequence {hn} can not be
expected to converge in general, even if ρ is in Ek for all k. It will however be
shown in Sect. 6 that it is asymptotic to the exact solution.

5. Comparison Between the Convergent and Asymptotic Iteration

In the previous sections we discussed the convergent and asymptotic iteration
methods separately. In this section we shall fulfill the aim of this paper by
establishing relations between the two iteration methods.

Lemma 11. Let χ be in a ball of radius b in E3, with b sufficiently small Then

where v = c'ιa20.

Proof. Writing Φ{χ) = h, Ψ{χ) = h the following equations hold [(3.9), (4.1)]

Πyh=f(χ,Dχ) + ρ9 (5.1)

-χ D2χ, (5.2)

where y = ?
Subtracting (5.2) from (5.1) and adding on both sides of the resulting equation

the quantity (Π-\Jy)h= -χ-D2h one gets

\3y(h-h) = χ'D2(χ-h). (5.3)

Theorem 1 implies

^c\a2Λ\\χ\\2\\χ-h\\2,

from which we recover the lemma. Π
We shall use the above lemma in

Lemma 12. Let χ1? χ2 be in a ball of radius b in E3 with b sufficiently small and let ρ
be in E2. Then

\\ i ύλ(b,b')\\χι-χ2\\x+vb\\χ2-Ψ{χ2)\\2

where λ(b, b') is defined in (3.24).

Proof. We have

(Xi)- nxa)!! i ̂  IIΦ(Xi)- Φ(z2)ll i

Estimating the first term on the right using Lemma 8 and the second using
Lemma 11, we recover the lemma.
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Theorem 3. Let ρ be in Em, m ^ 2 and \\ρ\\m sufficiently small. Then the difference
between the iterative hm and the exact solution h satisfies the following estimate:

\\h-hm\\aim\\Q\\2+1,

where the jm's are constants which depend only on the size T of the interval I.

Proof. We substitute in Lemma 12 for χx, χ2 the iterates hn and hn respectively, and
hence for Φ(χ1), Ψ{χ2) their successors hn+ί, hn + 1 in the corresponding sequences.
The assumptions of the lemma require hn and hn to be contained in a ball of radius
b in E3. From Corollary 3, if ρeE2 and | |ρ | | 2 is sufficiently small, we have:

\\K\\3^2c'3\\ρ\\2 (5.4)

[taking into account (3.21)]. On the other hand if ρeEn+ί, n ^ l with | | ρ | | π + 1

sufficiently small, Corollary 5 gives us:

I I U 3 ^ 2 c 3 | | ρ | | π + 1 . (5.5)

From (5.4) and (5.5) we conclude that both hn and hn are contained in the ball of
radius

b = 2c'3\\β\\n + ι ( 5 6)

in E3. Then (3.17) gives

^ - c ' 3 ( 2 p α 2 ^ 2 + | | ρ | | 2 ) ^ 2 c ' 3 | | ρ | | f l + 1 = b , (5.7)

where the last step holds if

Substituting (5.6) and (5.7) in (3.24) we obtain

λ(b,b')^OL\\Q\\n+ί9 (5.8)

where:

α = 2c /

1c /

3(α 1 > 1 < 0 + 4 p α 2 > 0 ) . (5.9)

Further

vb = β \ \ ρ \ \ n + ί , (5.10)

where:

β = 2c'ιc
l

ia2O. (5.11)

On the other hand Corollary 6 implies

IIZ2-*Όf2)ll2 = H^-ΛII + 1 l | 2 ^e B + 1 , 2 l lβ l i ; : i . (5.12)

With the above substitutions Lemma 12 becomes the recursion relation

/ i ' 1 P I I - f f j 1 + e I I + 1 > 2 | | ρ | | ; : ? . (5.13)
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Taking into account the fact that hί=h1, if ρ e £ w , m^.2 and | |ρ | |m sufficiently
small, using induction on n for l g n ^ m - 1, (5.13) leads to:

where:

m

L= Σ R 2 α"- . (5.15)
i= 2

The difference between the exact solution h and the iterate hn of the convergent
sequence satisfies the estimate:

Wh-hJ.Sγ^Wh.-hJ^^—Wh.W,, (5.16)

where A is the contraction constant, Λ<19 given by (3.30):

/ t g α | | ρ | | 2 . (5.17)

The estimate (5.16) follows from:

\\K+X-K\X<Λ\\K-K-ΛI

(contractiveness of Φ). If then

2 α | | ρ | | 2 ^ l ,

we get from (5.16): (since p j ^ gcjρllo)

1

I I | | ρ | | n

2

+ 1 . (5.18)

Combining finally (5.14) with (5.18) we obtain:

ii^-ΰi^jieiir1,

where:

j m = /m + 2e1«-. Q.E.D.

6. Conclusions

Theorem 3 of the previous section shows that the sequence {hn} calculated by the
"fast motion" iteration method which uses only the Minkowski Green's function is
asymptotic to the exact solution h. That is, for fixed n, if ρ-»0 in the En norm then
hn-+h in the E1 norm as ||ρ||JJ4 x. Furthermore we deduced precise error estimates
for the sequence {hn} in Eί norm. In applying the estimates given to physical cases,
a choice of length scale should beforehand be made, since neither the constants ck,
c'k nor the Ek norms are scale invariant. Perhaps the most convenient such choice is
to take the time interval T= I.

On the other hand domain of dependence considerations indicate that the
sequence {hn} does not converge to /i, except in the case where ρ is analytic.

Several generalizations of our results are possible using essentially the same
methods: First, we can admit general Cauchy data instead of trivial. Second, we
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can give error estimates in the Et norm, with /§: 1. Third, the treatment applies to
any weakly coupled quasilinear hyperbolic system in any dimension, which has the
same structure as the reduced Einstein equations.

Acknowledgements. The following work was stimulated by lectures of J. Ehlers who pointed out
repeatedly the need for justifying formal approximation methods in GR and who suggested the
posssibility to make rigorous certain "plausible" error estimates sketched in [5] and [6].
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