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Decay of Correlations
in Classical Lattice Models at High Temperature*

Leonard Gross

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

Abstract. In classical statistical mechanical lattice models with many body
potentials of finite or infinite range and arbitrary spin it is shown that the
truncated pair correlation function decays in the same weighted summability
sense as the potential, at high temperature.

1. Introduction

We consider a lattice model on Z m with single spin space X and interaction φ. Here
φ denotes a real valued function uAX

Λ, the union running over all nonempty finite
subsets, A9 of the lattice Zm. Under suitable conditions on φ, and for sufficiently
small β, the interaction βφ has a unique Gibbs state σ. We shall study the decay of
the truncated two point function for σ. More precisely, and somewhat more
generally, we study the behavior of ψ(a) = σ(fga) — σ{f)σ{ga) where / and g are
bounded real functions on X{Zm) and ga is the translate of g by an element a in Zm.

For what potentials φ does ψ(a) decay in some specified manner as α-+oo (e.g.,
exponentially)? This question has been addressed in numerous works, in which,
under a variety of different conditions on the form of φ, an assumed decay rate for
φ at large distances is shown to imply some related kind of decay rate for ψ(a) as
(2-+CO. The restrictions on the form of φ usually involve a restriction on either the
range of φ (e.g., finite range), the many bodiedness of φ (e.g., pair interactions), or
on the cardinality of X (e.g., cardinality two), or some combination of these, and
sometimes further form restrictions designed to allow use of transfer matrix
methods or correlation inequalities. For a survey of the extensive literature up to
1974 we refer the reader to Duneau, Souillard and Iagolnitzer [4], and to Ruelle
[16]. We also refer the reader to Ruelle [17] for background structure. We
mention here only the recent papers of Israel [11], Sylvester [18], and Holley and
Stroock [8], which obtain exponential decay for some interactions of what may be
called locally finite range. For other recent work see also [20-22].
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10 L. Gross

Our results are roughly of the following form. Let X be an arbitrary measure
space with a single spin probability measure. Assume φ is translation invariant
and put

= sup Σ
Aj{0,a}eXz

m

Let d( , ) be a translation invariant metric on Zm. If

L\μ)e < oo (l.ij
aeZ™

then for sufficiently small β and suitable / and g, we prove that ψ satisfies

Σ ψ{a)ed{0>a)<oo. (1.2)
aeZm

We require no form restrictions on φ but only size restriction and (1.1). The precise
statement is in Theorem 3. Translation invariance of φ is unnecessary when
suitably formulated. The key results are Theorems 1 and 2 which are formulated in
terms of conditional probabilities of σ and allow application also to the case of
arbitrary temperature and small activity (Corollary 4.4). In view of the identical
appearance of (1.1) and (1.2) our main result can be described succinctly by saying
that the truncated two point function decays at high temperature (or low activity)
at the same rate as the potential, if by "rate of decay" we understand the weighted
summability condition (1.1), which is determined by the metric d. If d(a, b) = k\a — b\
for some constant k>0 then (1.1) is satisfied if φ is of finite range or if φ (more
precisely, 0 is exponentially decaying. In either case ψ also decays exponentially. If
d(a,b) = k\og(l + \a — b\) then (1.1) allows polynomial decay and (1.2) forces at least
polynomial decay. The technique of proof, which is based on modifications of
Lanford's and Vasershtein's proofs [12,19] of Dobrushin's uniqueness theorem [1,
Theorem 2], seems to be new. It seems likely that the technique can be extended to
study higher order correlations.

2. Statement of Main Theorems

Let L be a countable set and X a compact metric space. We write Ω =XL for the
space of all functions s from L into X, and we denote by sa the value of s at a point
a in L. Ω is the configuration space of a lattice model with individual spin space X.
We use the fact that X is a compact metric space just for ease of formulation of
results. Actually any measurable space, X, will suffice for all our purposes except
existence of Gibbs states. One need only replace the space of continuous functions
on Ω by the space of bounded measurable functions on Ω which are uniformly
approximable by cylinder functions. But the cases of principle current interest are
X = finite set, Sm, compact group, or a finite product of these. We expect that in
field theoretic models, where X — real line, the more quantitative hypotheses are
unlikely to hold.

For each point a in L and each point s in Ω let μfl( \s) be a probability measure
on the Borel sets of X such that

i. μa( \s) does not depend on sa and

ii. s-» j f(x)μa(dx\s) is continuous on Ω for each continuous function / on X.
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C(Ω) will denote the space of continuous real valued functions on Ω with
supremum norm \f\o0. For each point a in L define τa: C(Ω)->C(Ω) by

(τj)(s)=$f(xvs)μa(dx\s) (2.1)
X

where s is the restriction of s to L — {a} and x v s is the point of Ω taking the value
x at a and which is s elsewhere on L.

Definition. A probability measure σ on the Borel sets of Ω will be said to have
conditional probabilities {μa}aeL if

ΦJ) = σ(f) (2.2)

for all a in L and all / in C(Ω). If the measures μa arise from a potential, then, as is
well known [1,13,17], the Eqs. (2.2) are special cases of the D.L.R. equations for
the Gibbs states, σ, of the potential This is the case of main interest to us. It will be
discussed in Sect. 4.

For any two distinct points a and b in L put

ββfί, = isup{||μb(.|s)-^(-lί)||Var:s = ίoff{α}} (2.3)

Let d( , ) be a semimetric on L. That is, d is a real valued nonnegative symmetric
function on LxL satisfying the triangle inequality. The example d = 0 is not
without some interest. Given the system {μa} and a semimetric d we put

. . &>α = 0 ^v all α. (2.4)

Furthermore we write

a = s u p £ i 3 a i i , (2.5)
beL aeL

and

If / is in C(Ω) and a is in L put

<U/) = sup{|/(s)-/(ί)| :5 = ίoff{α}} (2.7)

and

l l/L=Σe d ( β > %(/). (2-8)
beL

The first sentence of Theorem 1 is Dobrushin's uniqueness theorem [1] when
</ = 0. See also [12,19].

Theorem 1. // α < l ί/zen ί/zβre is αί most one probability measure σ on Ω with
conditional probabilities {μα}αeL Moreover for any functions f and g in C(Ω)

K/^-σ^σ^l^β-^^l l/IIJI^I^l-^-^l-α 2 )- 1 (2.9)

Theorem 2. Assume L = Zm and assume that the semimetric d is translation invariant.
If a<l and y(l+α)<l, and if σ is a (unique by Theorem ί) probability measure



!2 L. Gross

with conditional probabilities {μa}aeL then for any functions f and g in C(Ω) and any
point c in L

Σlff(/fl|

β)-
σί/)σ{fl'«)led(β'c)^ll/llcll0llo(i-αΓ1 ( i-y-αy)" 1 (2 1 0)

aeL

where ga refers to the translate of g by a and the subscript on \\g\\0 refers to the origin

of Zm.

Explicitly, ga{s) = g(s(a)) where s(

b

a) = sb + a.

Example. LQΪX = {0,1}, and let L be an arbitrary countable set. Take f(s) = sa and
g(s) = sb. Then | |/ | |Λ = 1 and \\g\\b = l. So Theorem 1 asserts that if α < l then

Thus the conclusion of Theorem 1 reduces to a decay estimate on the truncated
two point function. Somewhat more generally, if X is arbitrary, and u and υ are in
C(X) and f(s) = u(sa) and g(s) = u(sb) then the right side of (2.9) is finite, resulting in
an inequality similar to (2.11).

If L = Zm and d(a,b) = r\a — b\ where \a\ is the Euclidean norm on Zm and r > 0
then (2.11) asserts that the decay is exponential with correlation length r" 1 . If, on
the other hand, d{a,b) = rlog(l + \a — b\) then this is also a metric and e~d{a>b)

= (1 + \a — b\)~\ so that (2.11) implies power law decay of the correlation function.
We shall see in Sect. 4 that if a potential satisfies condition (1.1) then at high
enough temperature we have α < l , and consequently the two point function
decays as in (2.11). But note that the decay in (2.11) is weaker than the decay
required for (1.1). Thus there is a loss of qualitative information in passing from
(1.1) to (2.11). Theorem 2 remedies this at the price of going to a slightly higher
temperature (which has the effect of reducing α and y). If in the preceding example
we take f(s) = s0 and g(s) = s0 and c = 0 then the conclusion of Theorem 2 reads

Thus the truncated two point function decays in the same weighted summability
sense as the potential at high temperature. See [4] for further discussion of
background.

3. Proofs of the Main Theorems

Choose an enumeration a1,a2,... of the points of L. We shall write δn(f) instead of
δan{f) and τn and μn instead of τan and μan. Similarly for ρjΛ and β. k. The operators
τn are bounded operators on C(Ω) of norm one as follows from 2.1). Put

(3.1)

If / is a function in C(Ω) which depends only on the first m coordinates sai,..., sαw

of its argument s then τkf = f if lorn. Consequently lim Tn pf exists. Since

functions depending on only finitely many coordinates are dense in C(Ω) in

supremum norm and since || Tn p | | = 1 for all n, p, it follows that the uniform limit of

Tn pf exists for all / in C{Ω) as p->oo. We put

TJ=\imTnJ feC(Ω) (3.2)
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and we write also T=TV Clearly | |7J = 1 for all n.
Now if μ1 and μ2 are probability measures on some space on which / is a

bounded real valued measurable function then, putting c = (sup/ + inf/)/2 we have

inf/|. (3.3)

Thus if / is in C(Ω\ and s, t are two points of Ω which coincide except at the point
a in L then for any point b φ a.

\(τbf)(s)-(τbf)(t)\ = \$f(x v §)μb(dx\s)-$f{x v t)μb(dx\t)\

v s)-/(x v t)K(ίίx|s)| + |j/(x v ί'Kμ^xIsj-μ^xlί))!

(3.4)

by (3.3). Thus δa(τbf)Sδa(f) + ρ^bδb(f) if a + b. On the other hand if a = b then
since (τA/) (s) is independent of ŝ  the left side of (3.4) is zero. Thus

We have taken the derivation of the basic inequality (3.5) from Lanford [12]. The
proofs of Theorems 1 and 2 are based on repeated application of a slightly
extended form of (3.5). By the triangle inequality for d we have

Hence for any point a in L,

Following Vasershtein [19] we shall manipulate these inequalities in matrix
form. Define matrices Λ{n) by

fc if ^ φ n

for i, fe, n = 1,2,3,... and put

Bn>p = Ain)Ain+ί)...AW for n^P. (3.8)

Since each row of ^ ( r ) has at most two non zero entries and since

it is clear that each entry of Bnp is a finite sum. Moreover it follows from (3.7) that

δik if kφ[n9p]
»\k if ( 3 9 )
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Thus the limit B{n)= lim Bnp exists entry wise. In fact
p-^co

B(n)=\δίk if k<n
Uk \(Bn'Xk it k^n.

In particular we put Λ = B{1\
The first of the following four inequalities is due to Vasershtein [19].

00

Lemma 3.1. If sup Σ βt k = ot<l then
k i=ί

Σ Ak^a far all k (3.11)

and
00

Σ ^ ^ ( l - α Γ 1 for all k. (3.12)

00

// instead, sup Σ βi,k = y<^^ t^ιen

00

Σ B\n)

k^(l — y)'1 for all i and all n, (3.13)

and
00

Σ A^yil-yΓ1 for all i. (3.14)

Proof. From the definition (3.7) we see that Σ ^ π k = l if k φ n and is ^ α ^ l if
k — n. Hence ι = 1

00 00

Σ Aik= Σ (Bl'k)ik by (3.9)
Z—ί l,K A-J V /I, ft ^ V /

/j(l) \ Λ(2) \ Λ(k)
ί,jί ] JuJ2] ' " jk-uk '

Jk- 1 Jk-2 \Jl

The innermost sum is at most one. Hence so is the sum onj^, and so on, until we
reach the sum on j k _ 1 which is at most α. This proves (3.11).

To prove (3.12) we use induction on k. If fe = l then by (3.10)

Σ B M 1 ) = B(I2A
n = l

Thus the induction hypothesis is satisfied for k = l . Suppose fc>l. Now if n + 1
gfc-1 then by (3.10) and (3.8)

7 = 1

/ c - 1

Σ
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by (3.9) because δnj = 0 if j>k— 1. Sum this equality from n = \ to k — 2 and
separate the j = k—ί term to get

fc-2 k-2fc-2 fc-2

Σ D ( « + I ) v V f R " + 1 > f c ~ l N i /? j _ V / ' R n + 1 » k ~ 1 > \ /?

n= 1 j — 1 n= 1 n= 1

/c-2Γ/c-2

j = H π = l
- L Lΰn,j

j H l

ι-fc-2

J V
)
U = l

L ΰn,k- R
k-l,k<

By the induction hypothesis the term in square brackets is at most (1 — α)~ 1 since
each j that occurs is less than k. Moreover since B{"£-\ = 1 by (3.10) when n = k—ί,

k- 1

the term in braces { } is £ B{^}\ - 1 , which by the induction hypothesis is at
n=l

most (l-α)~1-l=α/(l-α). Thus

n=1 j = l

But

n = k- 1

by (3.10) and (3.8). Hence

7 = 1

= (l-αΓlkΣ)8M
7 = 1

^(l-αΓ^χ +1

This concludes the proof of (3.12).
To prove (3.13) and (3.14) note that for n+l^k^p and any i

(Bn-\k = {B»\k by (3.9)

Σ tijβJk by (3.9)
jφ[n,k~l]

Σ δuβjk by (3.9).
fcl
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For k — n

P

Σ(βι

we have (βB \ f c = (£"'%„ = /

P

hP\ — V (Bn>P) + β

fc = n + l

p k - ί

— y y (β"'17) i8 -4

< y y fj^"'^ I?
k=n+l j=n

3in. Hence

P

- kΣ+ι Ml_tyj
P

t" Σ βi.k + βi,n
k = n+l

P

Thus (1 — y) ]Γ (Bn'p\ k^y, and consequently

7) (3.15)

If ke[n9p] then ^ = (5n 'p) i ? k by (3.9) and (3.10) so that (3.15) may be written
p

X Bty^yftl-γ) and therefore

ΣB\ni^y/(ί-γ). (3.16)
k = n

H - 1 n - 1

If n = l this reduces to (3.14). If n>\ then by (3.10) £ # $ = ^ δί>fc which is at
k = l ' fc= 1

most one. Combining this with (3.16) yields (3.13). This concludes the proof.

Corollary 3.2. // α < 1 ίften /or α// / m C(Ω)

l |Γ/ | | β ^α| |/ | | β /orα// αeL. (3.17)

Proof. Fix α in L. For any function / in C(Ω) let Df be the column vector whose
jth component is the nonnegative number Djf = ed{afaj)δj(f). Then the basic
inequality (3.6) may be written

D(τkf)SA{k)Df (3.18)

where the inequality refers to the components. Repeated application gives
D(τ1...τpf)^Ail)...Aip)D(f) = B1>pDf. If p^i then by (3.9) and (3.10) (Bu\k = 0
if k>p and equals At k if k^p. Thus if p^ί then

pm Σ (i?1 p)i,A(/)= Σ ̂ A(/)
fc=l fc=l

But τ t . . . τ p / converges to Tf uniformly as p-> oo. Hence 2).(τ1... τpf) converges to
D^Tf). It follows that

£ ^A(/). (3.19)
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Taking the sum on i yields, by (3.11),

\\Tf\\a= Σ HTf)ύ Σ Σ 4 A ( / ) ^ < X f Dk(f) = "\\f\\a'
£ = 1 fc = 1 i = 1 k=ί

Corollary 3.3. // α < 1 ίftew ίftere is αί mosί one probability measure σ on Ω with
conditional probabilities {μa}aeL. Moreover for any function f in C(Ω) Tnf converges
uniformly and

Jim Tnf = σ(f). (3.20)

Proof. The semimetric d plays no role in this corollary. If α < 1 when computed for
a semimetric d it is also less than one when computed with d = 0. So we assume
d = 0 in this proof. In this case the semi-norms | |/ | |α do not depend on a. We drop

00

the subscript a and write | |/ | | = £ <5//)

By Corollary 3.2 we have )| T"/|| ^α" | | / ) | 5 n = 1,2,... for any function / in C(Ω).
Now by changing one coordinate at a time one sees that sup/ — inf/rg | |/ | | .
Suppose that | | / | |<oo. Put un = MTnf and i;w = sup 7"/. Then vn-un^\\Tnf\\
:gα"||/|| which goes to zero as rc-»oo. However since T is positivity preserving it is
also order preserving. Since T takes constant functions to constant functions we
may apply Tp to the inequality un^Tnf^vn to get un^Tn + pf<^vn. It follows that
un =

 un + P =
 υn + p = υn' Hence vn and un converge to a common value ρ(f) which is

also the uniform limit of Tnf. Clearly ρ is a positive linear functional on the set
Cι(Ω) of functions / with | | / | |<oo. ρ(l) = l since Tl = l. Moreover \ρ(f)\S\fL
because T has norm 1. Since CX(Ω) is dense in C(Ω) ρ extends uniquely to a positive
continuous linear functional on C(Ω) given by a probability measure. Now if σ is
any probability measure with conditional probabilities {μfl}αeL then σ(τkf) = σ(f)
for all /ς and therefore σ(Tf) = σ(f). Hence if / is in C\Ωl σ(f) = σ(Tnf) which
converges to σ(ρ(/)) = ρ(/).

Lemma 3.4. For any functions f and g in C(Ω)

^ X <5,,(^+1/)«5n(7;i+lί?). (3.21)

Proof. If μ is a probability measure on some space and / and g are bounded real
measurable functions then

\μ(fg) - μ(f)μ(g)\ = I

^ sup | /

^ (sup / - inf/)(sup gf - inf g)

because inf/^μ(/)^sup/. Hence in particular

k(/ί?) - ( τ J X τ ^ ) ) ^ S δn(f)δn(g) (3.22)

if / and g are in C(Ω).
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Tπ = τ n T π + 1 sothat

\Tn(fg)-(TJ)(Tng)\x^\τJn+i(fg)-τnί(Tn+1f)(Tn+1g)-]\Oϋ

+ |τB[(ΓB+ J){Tn+ ^-(τj^jtτj^ iϋ)\x

^\Tn+1(fg)-(Tn+J)(Tn+1g)\aD+δn(Tn+1f)δn(Tn+1g).

Summing this collapsing sequence of inequalities from n=\ to p we get

Σ δ,K+JMTn+ιg)
» = 1

ίg)\m. (3.23)

But if / and g depend only on the coordinates s l 5..., sm then the last term on the
right is zero as soon as p^m because Tp+1f = f, etc. A standard approximation
argument for bilinear expressions then shows that

\im\Tp+ι(fg)-(Tp+1f)-(Tp+ιg)\x=O

for all / and g in C(Ω). The lemma follows then by letting p-^co in (3.23).

Proof of Theorem ί. We first estimate the right side of (3.21). By the triangle
inequality for d we have

Σ δJJn+J)δn{Tn+ιg)

n= 1

<e -d{a,b) Σ ed{a'a"X(Tn+J)\\ Σ (3.24)

Referring to the proof of Corollary 3.2 for notation, we see that the same argument
that establishes (3.19) also shows that

D^TJU Σ B$pkIJ). (3.25)
/ c = l

Hence

Σedia a"XWn+J)^ Σ ΣBΪ,tuW)
n=l n= 1 k= 1

g(l-α)- 1 ΣDk(f) by (3.12)

sa-xΓ'wfi. (3.26)
00

Similarly ^ ediKan)δn{Tn+ίg)S(l-ay1\\g\\b Combining these inequalities with

(3.24) and"(3.21) we get

^e-^^ll/IIJI^H^l-α)-2. (3.27)



Decay of Correlations at High Temperature 19

Now we repeat part of the technique of Lemma 3.4 thus:

In the last line we have used Corollary 3.2 and in the line before that we used (3.27).
By induction we get

m

m / ^ - C ^ / X ^ ^ L ^ e - ^ ^il/HJIgll^l-α)"2 £ α2*""1'. (3.28)
« = 1

By Corollary 3.3 the left side converges to \σ(fg) — σ(f)σ(g)\ while the sum on the
right converges to (1— α 2 ) " 1 . This proves (2.9). The uniqueness of σ is proved in
Corollary 3.3.

Proof of Theorem 2. Let / and g be in C(Ω) and apply Lemma 3.4 to the functions
Tf and Tgα. Multiply by ed{α>c) and use the triangle inequality for d to get

^"\(Tn+1 Tgj]. (3.29)
« = 1

Apply (3.19) and (3.25) successively to get

Now δb(ga) = δb_a(g) as follows from the definitions of δb and ga. Moreover by the
definition of D} in Corollary 3.2 we have (the element a of Corollary 3.2 is the same
a as in ga)

by the translation invariance of d.
Summing over a we get

asL aeL

= ll0llo

Therefore if we sum (3.30) over a we get

Σ ed{a-a"\(Tn+irga)^\\g\\0 £ (&"+»A\k (3.31)
aeL k=l
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But the inequalities (3.13) and (3.14) applied repeatedly yield

k= 1

Inserting this in (3.31) we may now sum (3.29) over a and get

Σ |Γ[(7 τ /χr f l ι f l ) ]-(T p + 1 /X7 τ + 1 0 β ) | o o e < 1 ( β c>
aeL

g Σ [ed(c ^,,(rn + .r/mgUί -y)~Hy/d-y))1'
n= 1

y)Γ (3-32)

where we have used (3.26) in the next to the last line and Corollary 3.2 in the last
line.

We now use a part of the technique of Lemma 3.4 for the third time.

by (3.32). Summing this collapsing sequence of inequalities from r = 0 to n— 1 we
get

(which is clearly valid also even if some terms of the preceding inequalities were
infinite). Using Corollary 3.3 and Fatou's Lemma we may take the limit as n-+co
to conclude the proof of Theorem 2.

4. Applications to Classical Lattice Spin Systems

Continuing the notation of §2 we let X be a compact metric space, L a countable
set, and Ω =XL. We let v be a finite measure onX - the apriori single spin measure.
An interaction is given by a real valued function φ on the union of all XA where A
runs over all non empty finite subsets of L. It will be convenient to denote the
restriction of φ to XΛ by φA, and, moreover, we shall regard φA(s) as a function on
Ω which depends only on s\A, i.e., only on the configuration s inside A. We assume
further that each φA is continuous. The potentials φA determine the total internal
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energy of that portion of the system which lies in a finite set A by means of UΛ(s)

= Σ φA(
s)- UΛ(s) depends of course only on the spin configuration inside A.

AcΛ

Write \A\ for the cardinality of A and put

k Σ ψAs)l k=O,l,29... . (4Λ)
asL Asa seΩ

Let &k be the Banach space of potentials φ for which | |φ | | k < oo.
Although the pressure is definable in the translation invariant subspace, ^ 0 , of

^o [16], an example of Fisher [5] shows that the pressure does not depend
continuously on the density at some points of this space. An abstract analog (i.e.,
lack of strict convexity of the pressure) of this physically unrealistic circumstance
has been shown to occur on a dense set in .Φo by Israel [10, Theorem 3]. We shall
not consider ^ 0 further. In contrast, strict convexity of the pressure (taking into
account equivalence of potentials) is known in the translation invariant subspace,
J\, of ̂  [7] and hence in Φk, k ̂  1. A proof of a strong form of strict convexity in
Φ2 has been given in [3]. We shall not be concerned with the pressure nor require
translation invariance of the potentials in this article.

Let φ be in 3PV For any finite set AcL and s in Ω put

WA(s)= Σ <PA(S)- (4.2)
AnΛ*Q

The series converges uniformly, since each term is dominated by some correspond-
ing term of the convergent series Σ Σ S U P \ΨA(S)\ whose sum is no greater than

a e A A3 a s

\A\ \\φ\\v We write, for any finite set ACL,

which is a finite measure on XΛ. For each t in XΛC put

ZΛW= ί e-w^y"/t)vΛ{dy) (4.3)
xΛ

and

(4.4)

where yeXΛ and y v t is the product element in Ω. Then μΛ(-\t) is a probability
measure on XΛ for each t. As in the previous section we may regard μΛ(-\s) as a
measure valued function of seΩ which depends only on s\Ac. If A consists of a
single point a we write μa( \s), Wa(s) and Za(s).

For each finite set AcL and each continuous real valued function f on Ω
define

(τΛf)(s) = J f(yv (s\Ac))μΛ(dy\s). (4.5)

It is easy to verify that τΛf is again in C(Ω).

A Gίbbs state for φ is a probability measure σ on Ω satisfying the following
equations (the D.L.R. equations [1], [13]).

σ(τΛf) = σ(f) for all / in C(Ω) and all finite AcL. (4.6)
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Now let

AD {a, b}
ΨA(S) (4.7)

ζ(a, b) is a measure of the strength of the total interaction between particles at
points a and b.

Theorem 3. Let φ be in &x and let d be a semimetric on L. Put

Σ ζ(a,b)edia>b\ (4.ί

i) // α0 < 1 then φ has a unique Gibbs state σ and for any functions f and g in
C(Ω) and points a, b in L

\σ(fo)—σ(f)σ(g)\Se~d{a'b)\\f\\a\\y\\b(i~ α o ) ~ 2 ( i ~ α o ) ~ 1 (4-9)

ii) // L — Zm, d is translation invariant and α o <(J/5 —l)/2^0.62 then for any
functions f and g in C(Ω) and any point c in L

Lemma 4.1. // a + b and s = t except at b then

II II (. \t\— II (' I<ΛII < / ? 4 ζ ( « ' b ) _ 1

Moreover

(4.11)

(4.12)

where ρaJj is given by (2.3).

Proof. It will be convenient to regard s and ί as elements of Xla}c. Then

Za(s)
v{dx)

_ Γ

s sup
xeX

Now

\Wa(xvs)-Wa(xvt)\ =

S) - Wa(x -v{dx)

f̂lV°/ pWa(x V S) - Wa(x V ί ) _ (4.13)

(φA(xv s)-φA(xw ή)

{φA(xv s)-φA{xvή)

(4.14)

But

Za(s)

Za{t)
= ^

,-Wa{xvt)

za(t)
-v{dx)
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Thus the ratio on the left is dominated above and below by the maximum and
minimum, respectively, of the first factor under the integral, since the other factor
is a probability measure. Thus in view of (4.14) we have e~2C{a'b) ^Za(s)/Za(t)

e ~ 4ζia'b) ^ Za(s)Za(t)"1 eWa{x v s) ~ Wa{x v t} ^ e*Cia>b). (4.15)

Since l-e~u^eu-l when w^O (4.11) now follows from (4.13) and (4.15). But

ζ(a,b)^\\φ\\1 and ex—l^xex when x ^ O .

Hence (4.12) also follows.

Proof of Theorem 3. Since ζ(a, b) = ζ(b, a) we see, referring to Eqs. (2.4), (2.5) and
(4.12), that

γ β _ y 0 ed(a,
beL beL

b)

£ ζ(a,b)ed{a>b).
beL,b + a

Thus α ^ α 0 , and similarly y:gα0. Hence α < l and Theorem 1 applies to yield i).
The existence of the Gibbs state σ is well known (see e.g. [1] or [17]). If

α o < ( | / 5 —1)/2 then y ( l + α ) ^ α o + αQ<l and Theorem 2 may be applied to yield

ϋ).
Here is another special case of Dobrushin's uniqueness theorem.

Corollary 4.2. // φ is in 3?2 and

2 | |φ | | 2 e 4 | Hi 1 <l (4.16)

then φ has only one Gibbs state.

Proof.

X ζ(α,b)= Σ S U P Σ
AD{a,b]

s Σ Σ

Thus α o : g 2 e 4 | | φ | l l | | φ | | 2 when d = 0. Theorem 3i) is applicable.
To make the temperature dependence explicit one need only replace φ by βφ in

Theorem 3 where β = ί/kT. Thus

Corollary 4.3. // φ is in ^ί on Zm and d is a translation invariant semimetric on Zm

such that

sup X ζ(a,b)ed{a>b)<(X)
aeZ™ b:b*a
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then for all sufficiently small real β the strong decay inequality (4.10) holds for the
Gibbs state belonging to βφ.

The results of this section have so far not made use of any particular properties
of the a priori single spin measure v. The extent to which v is "concentrated at a
point" on the one hand or "smeared out" on the other will clearly affect the
conditional probabilities μΛ, (4.4), and their variations, \\μa( \t) — μa( |s)| |V a r. It is
sometimes convenient to regard the external field component of an interaction φ
(i.e., φA with |-4| = 1) as influencing the single spin measure v. We illustrate in the
simplest case how the theorems of the preceding section yield results on decay of
correlations at any temperature but at strong external field (or equivalently, low
activity).

We takeX = {0,1}. We consider only potentials φ (so-called vacuum potentials
[3]) such that φA(s) = 0 unless S Ξ I O Π A (Such a potential is determined by the set
function ψ(A) = φA(l).) We write φ' for the potential obtained from φ by replacing
all one particle potentials φ{a) by zero. For simplicity of statement and ease of
comparison with other results in the literature we assume φ{a)(ί) = h is independent
of a.

Corollary 4.4. With the notation of the preceding paragraph, with φe&1 and v({0})
= v({l})=l/2,pwί

i) If OL' <\ then φ has a unique Gibbs state σ and

KV^-φJ^lge-^ ^l-α'J-^l-α'2)-1. (4.19)

ii) // α ' < ( | / 5 —1)/2, L = Zm, and the semimetric d is translation invariant then

Σ kίvJ-ΦXsJ^ '^ίl-αrHl-α'-α'2)"1 (4.20)
aeZm

for any point c.

Remark. The conclusions i) and ii) hold also in the stronger forms given in
Theorems 1 and 2. Many of the details of the proof of the corollary are extant in
the literature, but we repeat them here for the reader's convenience.

Proof. Wa(s) Ξ ]Γ φA{s) is zero if sa = 0 while

h if sa = ί. (4.21)

Thus if teX{a}c then Za(t) = {ί +e~Wa{1 v t})/2 where 1 v t is 1 at a and t elsewhere.
For two probability measures onX with weights p 0, px and q0, qx respectively the
variation of their difference is | J p o ~

μa({0)11) = e- WM v '\2ZJt))~x = (2Z f l(ί))" '.

Hence if seX{">c and differs from t only at b then

II μa( • 10 - μa( Wll v a r=2|(2zβ(t) - ' - (2za(s)) -1 \=\za(s) - zβ(ί)|(zβ(ί)zβ(s)) -
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Now we may assume without loss of generality that Wa(l v t)—Wa{\ v s ) ^ 0 . Then

e-Wa(lvt)

%2(\-eWa{1 v t)'Wa{1 vS))g-^β(i v o >

From (4.21) Wa{ί v ί ) ^ ^ - HφΊli for all t while

= Σ Wlvί)-<P,(lvs)).
.43 {α, 5}

If ί(fc) = 0 the first summand φA(\ v ί) = 0 and if s(fc) = 0 the second summand is
zero. Thus in either case we have \Wa{\ v ί ) - Wa(ί v s)\Sζ(a,b). Hence

(l/2)||μfl( \t)-μa( \s)\\YΛτ^(l-e-«a »)e-he"φn.

Thus the right side of this inequality gives an upper bound for ρb a. Hence α gα'
where α is given by (2.5). Since ζ is symmetric y gα' also. Therefore Theorems 1 and
2 apply. We have formulated the conclusion of the corollary in the weak form
described in the Example of §2 to make it more familiar looking to some readers.

Example 4.5. If φ involves at most two body interactions then ζ(a,b) = \φ{a b](l)\ in
the context of the last corollary. In particular if the interaction as well as d is
translation invariant then the hypothesis of Corollary 4.4 becomes

or α'<(]/5 — l)/2 for the parts i) and ii) respectively, where v(a — b) = φ{ab}(l).
Moreover if the potential v is nonnegative then one may estimate e~Wa{1 v ί} by e~h

in the proof of Corollary 4.4, and then the conclusions i) and u) hold with a'
replaced by

Remark 4.6. In case d = 0 in Corollary 4.4 we recover some well known uniqueness

theorems (c.f. [2, 6,12,16]) for Gibbs states. By (4.17) Σ ί^MS\\φ'\\2 Hence it
b:b^a

follows from Corollary 4.4 that φ has a unique Gibbs state if \\φ'\\2< oo and h is
sufficiently large. Explicitly, uniqueness holds if β~ / ί β l | φ | l l | |φ / | | 2 < 1 while the
summability conclusion (4.20) holds with d = 0 if e'heιlφ'^ί\\φ/\\2<(]/5- l)/2. We
note however that stronger results have been proven for the case d = 0,X = {0,l}
by GaJJavotti and MiracJe-SoJe [6]. They only require \\φ'H1<oc but allow
\\φ'\\2 = co.

Remark 4.7. From the point of view of the infinite system a mathematically more
natural object than the potential that describes the interaction is the relative
Hamiltonian, H(s, ί), defined by

H(s,t)= Σ (φΛ(s)-φA(t)) (4.22)
ACL
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for two spin configurations s, t which differ at only finitely many sites. The relative
Hamiltonian is the basic object in several treatments of lattice models and is more
intimately connected with its Gibbs states than are the potentials [9,14,15].
Theorem 3 can also be formulated directly in terms of the relative Hamiltonian.
Define

\\H\\ί = sups\ip{\H(s,t)\:s = tof[{a}}. (4.23)
aeL

If 3) is the set of ordered pairs (s, ί) of spin configurations which differ at only
finitely many sites, then the space Jf̂  of anti-symmetric (H(s, t) = - H(t, s))
continuous functions on 3 which satisfy H(s, t) = H(s, u) -f H(u, t) whenever s = t = u
except on a finite set, is a Banach space in the norm || \\v The mapping φ->H
given by (4.22) clearly satisfies 11^11^211^1^, and hence is continuous from &γ

into Jf r Moreover, if ax+a2 put λ(ava2) = sup {\H(s,t) — H(uvt) — H(u2,t)\:s = t
except at a1 and a2} where Uj = s at a- and equals t otherwise. Then one sees easily
that λ(a,b)^4ζ(a,b) for αφb. If the interaction has range JR (i.e., φA(s) = 0 if
άmmA>R) then A(a,b) = 0 and ζ(a,b) = 0 if dist (α, b) > R. Both λ{a,b) and ζ{a9b)
measure the deviation from finite range. Put || J^ || 2 = ||-ίί || x -4- sup £ λ{a, b) where we

a b

take λ(a,a) = 0. Then | | f ί | | 2 ^ 2 | | φ | | 1 + 4 | | φ | | 2 and in the translation invariant
subspace of 0>

2\\H\\2S4\\φ\\2. The techniques of Lemma 4.1 and Corollary 4.2 also
show that ρ b α ^(β 2 A ( f l ' 5 ) -l)/2^β 4 l | i ί | l U(α,fc). Hence uniqueness of Gibbs states
holds if | | // | | 2 e 4 | i H | 1 1 S l Similarly decay of correlations can be studied in terms of
λ(a, b) instead ofζ(a9 b). Thus all the hypotheses of this section can be formulated in
terms of the relative Hamiltonian H. Higher order difference norms on H are
readily defined corresponding to the norms | |φ| | f e with corresponding Banach
spaces 2/fk. We conjecture that the free energy is k times continuously differentiable
in a neighborhood of the origin in the translation invariant subspace of 0>

k (or ^fk)
for any single spin space X. But compare [6, 11].

Note. After completion of the manuscript for this article I learned from Robert B. Israel that he has
independently obtained correlation decay inequalities for a general class of classical lattice models. His
techniques and norms are quite different from those used in the present article.
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