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Abstract. Some results on the phase structure of the gauge invariant Ising
model are derived by using convergent expansions.

1. Introduction and Statement of the Results

The gauge invariant Ising model, with which we shall be concerned in this paper, is
one of the Wegner's generalized Ising models [1] and can be viewed as a lattice
Higgs model, locally gauge invariant under the group TL2.

One believes that this model, appearing then as one of the simplest models for a
gauge theory on a lattice according to Wilson's ideas [2,3], can already be useful
to obtain some insight into the physics of gauge theories at least in the abelian
case.

A general outline and results on such lattice theories, in relation with the
present study, may be found in [4, 5].

From certain extrapolation arguments briefly reported in the next section, the
following peculiar phase structure is conjectured for this system [1, 6]: a critical
line, at which a second order phase transition would take place, separates two
regions in the plane of the coupling parameters (βp, β^ corresponding to the pure
phase domains in the phase diagram of the system. One expects also that a
qualitative different particle behaviour marks the difference between the two
regions, which could correspond to a region of particle confinement and a region
where separated charge excitations are allowed.

Our purpose here is to analyze the first mentioned conjecture concerning the
phase structure of the system by the use of convergent expansions, a very familiar
technique in statistical mechanics. For the sake of definiteness we shall consider
the case of a 3-dimensional lattice.

According to the conjecture and the particular form of the expected phase
diagram we determine two regions I and II in the plane (βp,β^) where the
corresponding expansions converge (Fig. 1).
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Fig. 1. The analyticity regions

These regions are such that:

I) // |j8p| is sufficiently small or if βp^Q and \βj\ is sufficiently large the point
(βp, βt) belongs to the region I.

II) // βp is positive and sufficiently large and \βt\ is sufficiently small the point
(βp, βt) belongs to the region II.

As a consequence of these facts the analyticity of the free energy and the unicity
and analyticity of the translation invariant Gibbs state follow in regions I and II.

The convergent expansions may also be a useful tool for studying the
probabilistic structure of the pure phases in the analyticity regions I and II. Such a
study would be of interest in connection with the second mentioned conjecture on
the particle behaviour of the system.

2. Definitions and Preliminary Remarks

The model can be described as follows: the configuration variables θ(x) andj(x, x')
take values inZ 2 = { — 1,+!} and are respectively indexed by the sites xe& and
the links (x, x') C 3? (pairs of nearest neighbour sites) of a cubic lattice <£. The
hamiltonian is

Σ
PCΛ

(1)

where A is a finite box, βl and βp are the coupling parameters, P C A denotes the set
of plaquettes (elementary squares of the lattice) contained in A, and j(P) is the
product of the /s corresponding to the links of the plaquette P.

To describe the infinite system one introduces the thermodynamic free energy
and the Gibbs states which are probability measures on the space of con-
figurations verifying the Dobrushin-Lanford-Ruelle equations [7].

The system is invariant under the local Z2 transformations (gauge trans-
formations)

0(x)->fc(x)0(x) , x')k(x') (2)
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where k(x) is any Z2 valued function on the lattice sites. Their local character
implies that not only the free energy but also the Gibbs states are gauge invariant.

As any gauge invariant function of the configuration depends only on the
reduced variables τ(x, x') = θ(x)j(x, x')θ(x') one can reinterpret the model as having
only configuration variables τ(x, x') and hamiltonian

HA(τ)=-\βl Σ τ(x, *') + £, Σ τ(P)l (3)
[ (x,x')cA PcΛ J

It will be useful to notice that model (3) at βl = 0 has again a local 2Z2 invariance
property.

Model (3) is actually one of the models introduced by Wegner. We now
point out some relevant properties of it, most of them already stated in [1].

In the 3-dimensional case the model is self-dual, namely (up to an unimportant
additive term) the free energy is invariant under the transformation

( H O ) where

th]8J = exp - 2ft thft* = exp - 2βp
(4)

This symmetry property extends in an appropriate way to the correlation
functions with particular boundary conditions.

If βl = 0 the model (also called the pure gauge model), with some coupling βp is
related by duality to the usual 3-dimensional Ising model with coupling
β*= — (l/2)logth/?p. It has therefore a critical point at a definite value βc

p of the
coupling. A non local order parameter connected with the average <τr>, where τr

is the product of τ's associated to links forming a closed curve Γ was introduced in
[1] to characterize this phase transition. It was stated that this average <τr) has an
exponential decay ruled by the area enclosed by Γ below βc

p and by the perimeter
of Γ above βc

p. This order parameter, which corresponds in this model to the
Wilson loop integral, is related to the confinement problem [2] and a proof of the
mentioned behaviour has been given in [8] for βp out of a small interval around the
critical value.

By duality the expectation <τr> is related to the surface tension [9] of the 3-
dimensional Ising model at the coupling value β*. The above remarks prove then
that the surface tension of the Ising model is strictly positive at low temperature
(large β*) where in the dual gauge model one has a surface behaviour of the order
parameter and that the surface tension is zero at high temperature (small β*) where
perimeter behaviour holds.

If βl is strictly positive the behaviour of <τr> is always ruled by the perimeter
|/Ί. This fact can easily be proved by means of the Griffiths-Kelly-Sherman
inequalities [10] which show that <τr>, at some positive βp and ft, is larger than
<τr> at βp = 0 and the same ft. But at this point one finds <τr) — (thft)'Γ'? showing
the perimeter behaviour of <τr> whenever ft>0.

Since (βl = 0, βc

p) is a critical point it follows by the self-dual property of the
model that also the point (ft = ft*(jδp), βp = oo) is critical. Hence the conjecture that
these critical points are joined by a whole critical line which divides the plane
(βp, ft) in two regions conjecture which is also supported in part by mean field
calculations [1] near the point (ft = 0,/?p.
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3. Convergent Expansions

Actually the existence of the analyticity region I has already been proved and the
corresponding convergent expansions have been treated in [6] and [11] for more
general lattice gauge theories. We shall give, however, in our case, an alternative
proof based on known results in statistical mechanics.

We first remark that in (3) βt plays the role of a magnetic field. Therefore the
known results on the high temperature behaviour of lattice systems [10] imply
that if \βp\ is sufficiently small the free energy is an analytic function and the Gibbs
state is unique and analytic for all values of βt. From the self-dual property of the
model this initial analyticity region is extended to a region invariant under (4)
which has the properties stated in the introduction for the region I (we also use the
symmetry βt-* —βt). In this region the free energy is still analytic.

The expansion which corresponds to the weak coupling region is obtained from
the following known formula for the partition function. Denote by Nt(A) the num-
ber of links and by NP(A) the number of plaquettes contained in A and let

v-(/l) Then

X"1 / /\ n \~^

{ τ = ± l } (x,x')cΛ PcΛ

= RΛ Σ Π (l+th/?zτ(x,x')) Π (
[τ=±l}(x,x')cΛ PcΛ

(5)
ScΛ

where S C A is the family of all subsets S of the set of plaquettes contained in A. A
set of plaquettes can be considered as a surface of area |5|, and dS denotes the
boundary of this surface, which is the set of closed circuits formed by links at
which an odd number of plaquettes of S occurs (\dS\ is the number of links).

We do not enter in details of the convergent expansion for the region I, which
follows from (5) by standard arguments, but prefer to come to the discussion of a
new expansion which will be the appropriate expansion for proving analyticity in
the region II.

Given a configuration we consider the set of plaquettes at which τ(P) — — 1. We
introduce the dual lattice g* which is a cubic lattice the links of which cut
perpendicularly the plaquettes of j^ in such a way that the centres of the
plaquettes coincide with the middle points of the links. We denote by A* the subset
of 3?* formed by the links which cut the plaquettes of 5f contained in A. Call C the
set of links in j£f* intersecting the plaquettes of 3? at which τ(P)= — 1. Since

Y[ τ(P) = 1 for any elementary cube JΓ of ̂  at every site of the lattice Jg* only an
PeJf

even number (or zero) of links of C occur (for an appropriate boundary condition).
This means that C is a set of closed circuits of links on S£*. Let QΛ = Qxpβ[}Np(A)
(chβ^1^ and denote by |C| the number of links of C. The partition function can
then be written

ZΛ = QΛ Σ exp(-2j8,|C|) Σ' Π (
CcΛ* (τ= ±1} (x,x')cΛ
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where the sum ]Γ' is restricted to the configurations {τ = +1} such that τ(P) = — 1
if P intersects C and τ(P) = 1 if P does not intersect C.

Develop now the product Y[(l + th/?zτ(x, x')) and observe that only the terms of

the form γ[ thβtτ(x, x'} where C is a set of closed circuits of links in <g give a
(x,x')cC'

non-zero contribution. Then J~J τ(x, xf) = Y\ τ(P) for any set of plaquettes such
(x,x')CC' PeS

that dS = C and hence its value -f 1 or — 1 is determined. We denote by n(C, C)
this number and then

ZA = QΛΣ Σ exp(-2/gC|)(thft)lc'ln(C,C') (6)
CcΛ* C'cΛ

The expressions (5) and (6) show two geometrical aspects of the interaction
defining the system. We may also notice that from any of those the duality
properties mentioned in Sect. 2 easily follow.

We now modify slightly the expression (6). For this, we decompose the set C
into a set of non-intersecting closed curves of adjacent links in Jέf *, by smoothing if
necessary the corners of the circuits in a specified way at each lattice site. In the
same way we decompose the set C in «£?. We obtain then

ZΛ = QΛ Σ Σ exp{-2j8p(|y1| + ... + |yπ|)
(yι,...,γn}cΛ* (γ{,...,γή}cΛ

n m

where {y1? ...,yn}cΛ* and {/1? ...,y'm}CA mean the family of all sets of possible
non-intersecting curves in «£?* and <£.

The next step is to factorize the terms appearing in the partition function. In
order to do this the following definitions are introduced.

To any set of non-intersecting closed curves in <£ and «£?* an abstract graph is
associated in the following way. The closed curves of the set are in one-to-one
correspondence with the vertices of the graph. Two vertices of the graph are joined
by a line if and only if they are associated to a curve yr in <£ and a curve y in Sf *
such that n(y, y')= — 1.

We define a contour Γ = {y 1? ...,yπ,/ l 5 - ,y'm} as a set of non-intersecting closed
curves {y 1? . . ., yn} C «£?* and {/15 . . .,y'm} C «5f such that the graph associated to Γ is a
connected graph. A contour can also be reduced to just one curve in <£ or in jSf *.
The following weight

1\ + ... + \yn\}(thβl)^ + + ̂  j [

is assigned to each contour Γ.
Two contours Γ1 and Γ2 are said to be compatible, and we write Γ1 ~Γ2, if the

curves of Γ1 and of Γ2 do not intersect and if the sets Γί and Γ2 define disjoint
subgraphs in the graph associated to Γ1uΓ2.

The partition function becomes then

(Γι,...,Γn}cΛυΛ*
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where Γ^Γj indicates that the sum runs over all arrangements of mutually
compatible contours.

At this point, the system can be studied by a method analogous to the method
developped by Minlos and Sinai for the study of the Ising model at low
temperature [12] (although μ(Γ) has not the meaning of a probability, being only a
weight contribution to the partition function).

We introduce the functions

QΛ({Γ,,...,Γn}) = Z-Λ

ί Σ μ(Γl)...μ(Γn)μ(Γ1)...μ(ΓJ (8)
{fι, . . . ,_Γ m _}CΛuΛ*

Γl~ΓJ,Γi~Γj

defined on the families of compatible contours {Γ1? ...,Γn}cΛvΛ*. These func-
tions verify the following system of recursive equations

μ(Γί){ρΛ({Γ2,...,Γn})+ X (-lΓρA({Γ2,...,Γn, f1 5...,fm})
{Γι,...,Γrn}cΛvΛ*

Γ ~ r
1 i L J

Γi-Γj j=2,...,n

Γ^Γl

where ΓI.^Γ1 means that Γt is not compatible with Γ1 for any i=l, ...,m. This
system of equations is analogous to the Minlos-Sinai contour equations for the
Ising model and can be deduced similarly. It can also be interpreted, as in the case
considered in [12], as a nonhomogeneous integral equation in an appropriate
Banach space, the elements of which are the sets of functions ρΛ({Γί9...,Γn}),
Ji = l,2,....

By remembering the definition given above of compatible contours and
making use of the facts that through a fixed point in a 3-dimensional lattice it is
impossible to construct more than 5l different curves of length 7(/^4 if the curve is
closed) and that the minimal surface having as the boundary a fixed curve of
length / has an area less than /2, it comes that the following series

Σ MΠ (9)
Γ^Γi

is convergent whenever the two conditions

Σ5'/2exp{-2/y}<l

are satisfied. Moreover (9) has a bound ε(βp,βl) which tends to zero when βp-+oo
and &->().

This is enough to guarantee that the kernel of the integral equation has a norm
strictly less than 1 provided that βp is sufficiently large and βl is sufficiently small,
that is if (βp9βt) belongs to region II. From this it follows that the limits Λ-+CO of
the functions QΛ exist and are analytic with respect to βp and βl in the region II, and
also that the free energy is analytic in this region (the detailed arguments can be
found in [10]).
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We remark that from expression (5) a treatment with a similar system of
equations could be developped in the weak coupling region. The role of contours
is played in this case by open surfaces made of the plaquettes.

4. Conclusion

In this section we conclude the proof of the following proposition.

Proposition. In the regions I and II defined in the introduction the free energy
f(βp,βι) of the system is an analytic function of its arguments. Moreover in this region
the translation invariant Gibbs state is unique and analytic with respect to βp and βt.

The analyticity of the free energy in both regions has been proved in the last
section, and also the analyticity of the Gibbs state corresponding to a particular
boundary condition. Although one could probably use the duality arguments in
region I and the contour techniques in region II to prove the unicity of the
translation invairant Gibbs state it would be a delicate problem which requires a
treatment of the different boundary conditions. The following remark based on
Lebowitz's results [13] gives a direct proof of this result: if at the point βp^0,
βjgrO the first derivatives of f(βp,βι) exist then the translation invariant Gibbs
state is unique. This remark is proved by noticing that if ̂ >0, <τ(x,x')> is larger
than zero, by Griffiths-Kelly-Shermann inequalities [10] and unique for the
translation invariant Gibbs states because df/dβl exists. Then the argument in [13]
shows that all translation invariant correlation functions are unique. If ^z —0 and
βp>Q then <τ(P)>>0 and unique since df/dβp exists. Then the same arguments
imply that all translation invariant correlation functions of the variables generated
by products of τ(P) are unique. Since the non gauge-invariant functions are zero at
βj = 0 the unicity of the state follows.

In order to simplify the exposition we made explicit use of particular properties
of the model in 3-dimensions, but the results above can be generalized to any
dimension by similar arguments.
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