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Abstract. A generalization of graph theory is introduced and used to obtain
Feynman parametric formulas relevant to renormalized amplitudes. The
generalization of graph theory is based upon circuit coefficients instead
of the usual incidence matrix. The parametric formulas presented are valid
for amplitudes which have been renormalized, as in the Zimmermann formu-
lation, by subtracting Taylor terms in momentum space.

0. Introduction

In their beautiful work on graph theory and Feynman amplitudes, Nakanishi [1]
and Speer [2] were able to analyze the ultraviolet singularities of the unsubtracted
Feynman amplitude by applying graph theory to obtain formulas for the integrand
in a Feynman parametric space.

For each circuit, C, of the graph representing the amplitude, they assign
circuit coefficients (set indicator) according to the rule

(€'/)= 1, if f is a line of C, and
= 0, otherwise.

These coefficients may be identified to within a sign with the numbers ά\ for
which

gives the internal momentum of the /-th line of the graph. We will call the d}
momentum routing coefficients.

In the Zimmermann [3] formulation of the BPH [4, 5] subtraction proce-
dure, renormalization is accomplished by subtracting certain Taylor terms in
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momentum space. The different singularity parts are organized into so-called
forests. When there are overlapping divergent subgraphs, the variables associated
with different forests are those of the various subgraphs. Under these circum-
stances, terms appear in which, in effect, the momentum routing coefficients have
many values other than 0 or +1. The identification with circuit coefficients
becomes in this case more obscure. There is apparently no choice of internal
momenta variables which simplifies the values of the coefficients for all forests,
although such simplifications are possible for the terms arising from any one
forest [6].

To analyze such a (BPHZ) subtracted amplitude using exactly the graph
theoretic approach would present apparently formidable obstacles involving
insight into how the singularities cancel in α-space. Instead, we develop a genera-
lization of graph theory.

A graph is usually defined as a collection of lines and vertices together with
an incidence matrix which determines how the lines are to be connected. In the
new version, the basic quantities are the lines and their momentum routing
coefficients.

This generalized graph theory is then used to obtain formulas for those para-
meter functions which are important to the renormalized amplitudes.

The results of this investigation have already proven useful in analyzing point
splitting (i.e.: Fourier transforming with respect to internal momenta) as a method
of regularization [6]. They have also been used to investigate operator product
light cone expansions [7].

1. A Generalized Graph Theory

We suppose that, in momentum space, the amplitude terms which are to be
analyzed are of a form similar to those of the forest formula of BPHZ.

Definition 1.0. Aforest term is a rational function of internal and external momenta
in which the factors of the denominator are Feynman propagators, of the form
given by Eq. (1.1), whose line momenta are linear combinations of some set of
loop momenta and of external momenta.

The forest formula of BPHZ is a linear combination of forest terms. Any
linear combination of forest terms may itself be considered as one such forest
term by making a common denominator. The /-th factor of this denominator
is of the form

Δ' = (Pe + «,)2 -m2 + M(P, + «,)! + m2)' (U)

where E is used to indicate a Euclidean metric on the term so subscripted, qf is a
linear function of the external momenta, and p£ is an internal momentum. If we
take any linearly independent set of the internal momenta, {/c 1 ?/c 2,. . . ,/cm}, that
set defines momentum routing coefficients such that

m

P, = Σ fyι> d 2)
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where we have rewritten the equation of the introduction in order to emphasize
that the routing coefficients for a forest term have more generalized values than
do those for the unsubtracted amplitude.

Definition 7.7. A generalized graph or g-graph, ©, is a set of lines to each of which
is assigned an m-dimensional vector called the internal momentum of that line.
The set of vectors so assigned is taken to include a basis for m-dimensional space.

A representation of the internal momentum vectors, in a particular basis,
is obtained in the momentum routing coefficients which, for fixed /, form a "routing
vector", or internal momentum vector,

(#,#,...,<*?).

Definition 1.2. The g-graph for a Feynman graph is the g-graph, consisting of
one line for each factor (of the form given by Eq. (1.1)) in the denominator of the
forest term. The forest term may be the integrand for the amplitude corresponding
to the graph or any of the subtraction terms. The momentum routing vectors
assigned to the lines are the ones defined by the coefficients in Eq. (1.2).

Remark. The ways in which the lines of a g-graph might be connected remain
obscure although we shall have no difficulty in defining circuits.

Definition 1.3. A set of lines of a g-graph is said to be independent if the internal
momentum vectors assigned to these lines constitute a linearly independent set.

Remark. We are mainly concerned with g-graphs for a Feynman graph, but
develop the theory in a slightly more general form both for convenience and
because of mathematical interest.

Definition 1.4. A generalized chord set or g-chord, ¥*, is a maximal independent
set of lines of a g-graph.

Definition 1.5. A generalized tree or g-tree, T, is the complement in the g-graph
of a generalized chord set.

Theorem 1.6. The number of lines of any g-chord of a g-graph for a Feynman
graph is always fixed and, for BPHZ, is the same as the number of independent
momenta (or circuits) of the Feynman graph.

Proof. In the case that the forest term is the integrand for the renormalized
amplitude, the theorem is obvious since the lines of the Feynman graph are a
subset of the lines of the g-graph. More generally it is proven elsewhere [6] that
for BPHZ each forest term has as many independent internal line momenta as
does the original unsubtracted amplitude. The independence of the line momenta
is clearly equivalent to the independence of the lines (cf. Eq. 1.2). For other theories,
Theorem 1.6 might have to be reexamined, but, in any case, the number of lines
in any g-chord must be the same as the dimension of the space spanned by the
momentum routing vectors.

Theorem 1.7. Each g-chord, T* = {V15... ,/m}, determines a unique set of momen-
tum routing coefficients { d f ' , . . . , df™} such that for any line of the g-graph,
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Pf = Σ d^Ps (1.3)
" .^^ I

Proof. The momenta of T* are a basis, and the theorem merely restates this.

Definition 1.8, A generalized circuit or g-circuit, C^, is a maximal set of lines
of a g-graph such that for some g-chord of the 0-graph and for some i, the momen-
tum routing coefficients of Theorem 1.7

for

Theorem 1.9. With T* and C. related by Theorem 1.7 αra/ Definition 1.8,

Proo/ From Eq. 1.2 and the linear independence of the p^ , we see that the momen-
tum routing coefficient may be identified with the Krdnecker delta. This, with
Definition 1.8, implies the theorem.

Definition 1.10. A class of g-circuits, {C1? ... ,Cm}, is called a fundamental set or
f-set of g-circuits iff it is a maximal class of g -circuits for which

( V f c : l ^ f c ^ m ) C k s έ \J C,.

Theorem 1.11. The g-circuits determined in accordance with Theorem 1.7 by
a g-chord constitute an f-set.

Proof. Theorem 1.9 implies that each such circuit uniquely contains one line of
the g-chord.

Theorem 1.12. A g-tree is a maximal set of lines containing no g-circuits.

Proof. Suppose T is a 0-tree, C is a g-circuit, and C c: T. Then C n T* = 0. In
order for C to be a ^-circuit, it must be generated, in the sense of Theorem 1.7
and Definition 1.8, by some other chord set T*. According to Theorem 1.9, C
contains a line of T*. The internal momenta of the lines of T* may be expressed
in terms of those of T*. If C n T* = 0, then by Definition 1.8 the internal momenta
of T* may be expressed in terms of those of T* — C. Since C n TΓ* ̂  0, we have
a contradiction with the fact that the internal momenta of T* and of T* constitute,
in each case, a basis. Therefore CnT* =/= 0, and therefore C ̂  T.

That T is a maximal such set is clear since any larger set of lines contains
the lines of T and at least one line of TΓ*. By Theorem 1.9, this set then contains
the entire circuit associated with this line.

Corollary. Every g-circuit intersects every g-chord in at least one line.

Theorem 1.13. Every f-set of g-circuits l^,...,^} determines one or more
g-chords, T* = {/1?... /m}, such that (Vi l ^ i ̂  m)C ίnl* - {/J. In turn, the
f-set of g-circuits determined, in the sense of Theorem 1.7. and Definition 1.8, by
τ*;s{c1;...,cm}.
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Proof. Choose any line £{, from each C., such that

'i6c(-gc,,
r

and define T* = {/1?... ,/m}. For each ί, let T* be a 0-chord that, in the sense of
Theorem 1.7 and Definition 1.8, determines an/-set of ^-circuits, {Cα,... ,Cίm}
such that C.. = C.. The internal momenta, kf, of T* may be expressed in terms
of the internal momenta, krj = p( of T* = {fr \,..., /rw). As a result, if {ai9...9 am}
is any set of numbers such that

m

ΣaiPf=Q> (1-4)

then, for every r, i.e., for every choices of basis lines, T*,

m m m

ί=l ' i = l j=l

Since T* is a g-chord, {krl,...,krm} is linearly independent. Therefore, Eq. 1.5
implies that for every r and for every j,

m

Σβ^ = o. (i.6)
ι = l

Taking r=j and using our construction of T* and the definition of a ^-circuit,

m

0=Σαtf" = <*tf'> (1-7)
. -| ' J

since d^J = 0 for ^eC. — (J Cr unless i =j. Finally, by the construction of T*,
r:

^.eC^. implies^ ̂  0 implies α,- = 0. Therefore [pf ,... ,pl } is linearly independent
and this implies' T* is a 0-chord, as stated in the theorem.

We procede to show that the/-set of ^-circuits generated by T* is the same
as the one we started out with. By definition, ^eC. is equivalent to df11 ^ 0. Then,
since ^,eC,,

implies

It is now easy to see that (T* — C.)u {/.} is a ^f-chord, one of whose/set of circuits
is C.. = C.. In fact, for any line, /, of the ^-graph, Eq. 1.9 implies

^=!QlίV, + Σ

j f i
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and it is clear that the coefficient of p/ vanishes iff df11 vanishes, and therefore
C . is one of the ^-circuits of this new g-chord. We re-label (Tf — C.)u {/.} as
T*. We also re-label the momentum routing coefficients so that dfij is the co-
efficient of k^ in p( with, by the re-definition of J*,ku = p/ . Then, if we take
df'{ to be the momentum routing coefficients generated by T* = {Λ>^2> ••• >^m}>
where perhaps df'l^dfl\ we obtain

0 = p, - pe = (df'< - <$")pfi + Σ (d?'P, ~ #"fcy). (1.11)

Since the kij9 for fixed z, constitute a basis, the pΛ may be expressed in terms
of them. For r^ i,

p, =

where the last equation follows from ^ rjέC.. for r ̂  z, as required by our cons-
truction of T*. The linear independence of the ktj with fixed i and p^ = ku then
requires that Eq. 1.11 can not be true unless (V/)rfp = dfl\ which requires that
C. = C.., where the first set is generated T* and the second is the original ^-circuit
generated by T*. This completes the proof of Theorem 1.13.

At this point we can see that our ^-graphs have structural characteristics
quite analogous to those of graphs. There remains a question of possible mathe-
matical interest. To what extent can knowledge of the circuits be used to deter-
mine an incidence matrix? In other words, can ^-graphs be represented as graphs?

We will not further pursue these questions here, but choose instead to limit
our attention to an application: the generalization of the earlier results [1] for
the parametric formulas associated with the Feynman integral.

2. Parametric Formulas

We recall from Definition 1.0 that a forest term may comprise any of the sub-
traction terms for an amplitude or even the entire renormalized amplitude inte-
grand in momentum space. In any case, the g-graph for the Feynman graph
(Definition 1.2) is generated by combining terms so that there is one denominator.

When the resulting integrand is reexpressed as an integral over the Feynman
parameters and is then integrated over the space of internal momenta, the beha-
viour of the final α-space (i.e., Feynman parameter space) integrand is determined
by the properties of a certain matrix [1, 2, 4, 6], A, whose elements are

(2-1)

The following theorem was obtained by Lowenstein [8].

Theorem 2.1. If A is given by Eq. 2.1 and ^*((5) is the class of all g-chords in
the g-graph ©, and dj* are certain positive definite numbers defined by Eq. 2.4,
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then

193

deM=
T*: eT*

T*e.T*((&)

Proo/. Using the elementary properties of determinants, with L = the number
of lines of ©, m = the number of loops of Γ, and, for convenience, setting

we obtain

= Σ ». Σ

Clearly those terms which involve linearly dependent set of lines vanish. Therefore,

with

u-j* i^ i^

Σ dtd/
ft eT*

= (det(4.))2>0.

The last inequality follows from the fact that T* is a g-chord, i.e., a linearly indepen-
dent set of lines. This completes the proof of Theorem 2.1.

Definition 2.2. For any B such that B c ©, the reduced g-graph ®/B, is defined
as (5 — B, with it understood that all momentum routing coefficients remain
the same, except for the deletion of the entries whose subscripts are lines of B
the momentum assignments remain unchanged.

Theorem 2.3. Let C1 be the g-circuit for which the momentum routing coefficients
are df1 = d}. Let α(C) = 0 mean that /eC implies α = 0. Then the cofactors of A
obey

N ί/TΓsk I I Oίfό lό l) == U / j o * j . j . { ii j 1'

2* is a positive function of the momentum routing coefficients.

Proof. If either i ̂  1 or 7 ̂  1, then one of the rows or columns of the matrix
obtained from A by deleting the z'-th column and thej-th row has elements
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For ^φCί , ά\ = 0. The remaining terms vanish if α^) = 0. The theorem for this
case then follows directly.

Otherwise, setting α(C1) = 0 has the same effect as deleting all the lines of
C1 . To form this cofactor, we also delete the first row and first column of A. We
are then left with the A matrix for ©/Cj. Theorem 2.1 now gives the desired
result, and Eq. 2.4, identifies dj*. This completes the proof of Theorem 2.3.

Theorem 2.4. Let "splitting" parameters £1 ? £2, ... ,£L((5) be assigned to the lines
of®. Then

1
ΣeiA C:

Γ T)
ΓK ,|_ 6̂T* jj

where line indices are suppressed to indicate the usual scalar or dot product, Ή is
the class of all g-circuits 0/©,dy* is positive definite and is defined by Eq. 2.4, and
Tc is the non-singular matrix which changes the basis from the one of the original
g-chord to one which includes C as the first of the corresponding f-set of g-circuits.

Remark 1. The formulas involving splitting parameters are important for under-
standing the effects of numerators in forest terms. This is because polynomials
in the internal momenta may be replaced by derivatives with respect to splitting
parameters [2, 6]. In this case the splitting parameters are four component vectors,
the result of the dot product with respect to the suppressed line index is a four
vector and four vector products are computed according to Euclidean or Minkows-
kian metric, as may be appropriate.

Remark 2. The special case of assigning splitting parameters to Γ only is easily
recovered if the lines of Γ are a subset of the lines of @. One merely assigns the
other parameters the value of zero.

Remark 3. For convenience, we will often refer to the lines and their internal
momenta interchangeably.

Proof of Theorem 2. 4. The theorem is the generalized version of the result found
in Nakanishi [1], and is proven in virtually the same way.

Let A^ be the A matrix generated by using the internal momenta of the
lines of T* as a basis. Then

L(©)

Uτ*)y= Σ#V?'» (2 4)
<f = ι

with the g-circuits C. determined by Theorem 1.7. Let the different sets of momen-
tum routing coefficients be related by the transformation Tτ* :

m((5)

where d ί are the momentum routing coefficients in the initially chosen basis.



Graphs for Renormalized Theories 195

Eqs. 2.4 and 2.5 imply

. (2.6)

Therefore

A-ϊ = f-^A-^T-*\ (2.7)

and this implies, in an obvious notation,

= (dc)-^A-1τ-^ξdc). (2.8)
Eq. 2.6 implies

det AΎ. = (det Tτ*)2 det A , (2.9)

and det Tτ* ̂  0 because Tτ* is a change of basis.

By combining Eqs. 2.8 and 2.9 with Theorem 2.3, we obtain

X (ξd1) M W) = (det Tτ-*2)£ (ξd^) [4T J W) (2.10)
U iJ
= 1 =1

implies

(2.11)
α(C) = 0 T*: |_ VeT*

= 1 T!fe,r*((δ/C)

where T* is any particular g-chord which contains C as the first of its /-set of
0-circuits, and df are the momentum routing coefficients in this basis. We choose
one such g-chord for every ^-circuit in ©, and we define Tτ* = Tc for this 0-chord.
We then examine

m ί7//Cϊ2 Γ / M

R = Σ (ίdO Ww«rfO - Σ τ^γ2 Σ Uϊ, Π «ι
i,j C: (UQl l c ) T*: |_ \/eT* / J

(2-12)

Suppose C' and C are any two different ^-circuits in (5. We will show that
Cr — C is a g-circuit in ©/C. In fact, whatever g-chord generates C' in ©, the lines
of C' - C will be the only lines of ©/C = © - C at which (fj' does not vanish,
so that C' — C does indeed seem to be a ^-circuit in ©/C. The only question is
whether there is a chord set in ©/C that generates C' — C. If T* generates C' in
©, and T*nC' c C, then T* - C is a 0-chord in ©/C, since T* and therefore
T* — C consists of independent lines. This set provides the same basis for internal
line momenta in ©/C as it did in ©. Therefore, in this case T* — C is a 0-chord
of ©/C, one of whose ^-circuits is Cr — C.

In any case, Theorem 1.13 insures that C' and C can be considered the first
two of an /-set of circuits generated by some g-chord which has one member in
Cr — C. We take T* of Eq. 2.11 to be exactly this g-chord, and apply the agrument
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of the preceding paragraph. Eqs. 2.11 and 2.12 then imply

R
α(c,=o έ? WetΓc)

2
(2.13)

and C^C'

With our choice of T* to supply the basis in ©, it is now clear, by the previous
argument, that C' — C is a circuit in ©/C. We then conclude from the corollary
to Theorem 1.12 that C' — C intersects every chord set of ©/C. Therefore

(2.14)

holds for any 0-circuit, C', of ©.
Suppose that R is not identically zero. Then .R consists of terms of the form

ι = l

where c is independent of α, and where / = {/1?/2, ... X m _J is not a g-chord in
© because / has at most m — 1 lines, while every g-chord has m lines.

We take any maximal set of independent lines of / and complete this with
the lines of © to form some 0-chord, T*, in the usual way that we complete an
independent set to make a basis. By this construction, / — T* consists of lines
whose internal momenta way be expressed as linear combinations of those of
T*n/. Suppose the /-set of 0-circuits generated by T* is {C1 ?C2, ... ,CW}, with
the first r of these, in the order listed, generated by the lines of T* n /. Since /
has at most m — 1 independent lines, it must be that r g m — 1. On the other hand,
the lines of / — T* are all in one or more of the first r 0-circuits, and not in any of
the remaining m — r g-circuits. Combining this result with Theorem 1.9, we
conclude that the last m — r ^-circuits are all entirely contained in /* = © — /.
Therefore there are m — r, that is, at least one g-circuit C c /*. In Eq. 2.14, we take
C' to be the same as the g-circuit, C, of the present discussion. But Eq. 2.14 then
requires that the constant, c, of the typical term in R vanish, and this requires
that R identically vanish. This completes the proof of Theorem 2.4.

Theorem 2.5. // the matrix A is defined by Eq. 2.1, and the momentum routing
coefficients d}, used to define A are those for which T* = {1, 2, ... , w}, by labeling,
if necessary, then

vΣ

Proof. We define χr = δ r

f , and use the formula of Theorem 2.4 to evaluate

r,s
= 1
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We note that

χldc = df9 and

This completes the proof of Theorem 2.5.

Readers who are interested in applying these formulas are encouraged to
consult the articles by Zimmermann [3] for a clear review of Taylor subtractive
procedures.

Using these formulas, it is possible to prove that point splitting provides a
method of regularization for which the regulator and propagator epsilon limits
may be interchanged. The author hopes to publish his research on this subject.
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