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Abstract. In a field theoretic framework we investigate generators of symmetry
transformations induced by conserved local, not necessarily translationally
covariant currents. Assuming the invariance of the vacuum and a mass gap, it
is shown that the generator on one-particle states in general can be any
polynomial of the generators of the Poincare group and the internal sym-
metries. We give an example showing that the generator, defined as an integral
over a conserved current, in spite of leaving the vacuum invariant, need not be
self-adjoint.

1. Introduction

We consider a symmetry of a Wightman field theory induced by a conserved local
current jμ(x) which, in the general case, is not translationally covariant. We assume
that jμ(x) commutes with the basic fields for space-like separations and hence
currents inducing supersymmetries are not considered here. The corresponding
symmetry generator Q has been investigated in [1], [2] and papers quoted therein.
In particular, it has been shown (under the assumption of a mass gap and the
invariance of the vacuum) that Q extends to an operator on asymptotic scattering
states. Its action on asymptotic fields is given by

i[β(*+y\ ψκ(χ}] = Σ PK&, 3x)ψλ(χ). (i.i)

^Here Q(ξ) denotes the generator β translated by £eIR4, Pκλ(y,dx) = Ξκλ(y,dx)
+ Λκλ(y, dx)dxo. Ξ, A are polynomials in yeR4 and spatial derivatives δ, vanishing if
the fields φκ, ψλ have different mass. {ιpκ} is a (countable) complete set (cyclic with
respect to the vacuum Ω) of linearly independent asymptotic incoming fields (We
could also have chosen outgoing fields: Q does not depend on the choice in or out).
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The free fields ψκ of arbitrary spin are assumed to be in the Schwartz normal
form [3] with (anti-) commutator

κ,κ' are multi-indices, κ = (j,λ^ ...,ΛnC/)) in the notation of [3], Λ fe{0, 1}, and ψκ

transforms under undotted spinor representations (n(j\ δ) of the Lorentz group.
All quantum numbers (mass, charges) carried by the field are specified by . The
ηκκ,, (vanishing forj'Φ/) form an invertable hermitean matrix, real (imaginary) for
integer (half integer) spin.

The advantage of having the fields in this normal form is that no derivatives
occur in front of the A -function in the case of higher spin fields. The fields are, in
general, not hermitean. However, they fulfil a reality condition [3].

The Pκλ fulfil some restrictions, e.g., one has

(y93JηλQAMλ(x^y) = ± ΣPQ^Sy)ηλκΛMλ(y-x). (1.3)
λ λ

The sign depends on the statistics. This equation was given for scalar fields in [1]
and will be rederived for the general case in the next section.

The vanishing of Pκλ for different masses implies that the commutator of Q
with the mass operator PμP

μ vanishes on one particle states,

tQ,PμP
μ-]ψκ(x)Ω = 0. (1.4)

This collection of previously obtained results will be sufficient for the
following. It will suffice to consider only one mass multiplet. We therefore drop the
mass index. For convenience, we assume now that any mass multiplet is of at most
finite multiplicity (otherwise, e.g., (1.1) would hold only as an equation for forms).

The purpose of this note is to show what Q may look like. We prove that Q on
one-particle states is a polynomial in generators of Poincare transformations and
internal symmetries (Sect. 4). In a theory of free fields, any such Q indeed occurs
(Sect. 3). However, Q need not be selfadjoint (Sect. 5).

For an interacting theory, it is believed [4, 5] that Q may be only a linear
combination of those generators as one already knows in classical mechanics. We
will discuss this question in a subsequent paper.

2. Restrictions on the Generator

For y = — x, we write instead of (1.1)

iίQ,Ψκ(xK=Pκλ(x,dx)ψλ(x) (2.1)

(Summation convention!) with a corresponding decomposition of P in Ξ, A.
The property that Q on one-particle states commutes with the mass operator

(1.4) evidently is equivalent to

d»dμ(Pκλ(x, 3>A(x)) - Pκλ(x, djd*dμιpλ(x). (2.2)

By the assumptions on the current from which Q is derived, all fields on the
right of (2.1) have half-integer spin if the field ψk has half integer spin, and
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correspondingly for integer spin. Depending on the statistics of \pκ consider
[[β>Ψ κ (xJ] 9 ψ σ (yy]± (we continue to write [ , ] occasionally for [ , ]_ ). Since the
(anti-)commutators of the free fields \p are c-numbers,

>κ(*)]> ψσ(y)~] ± = + [[6, v>σOO], ψκ(*)Ί± (2.3)
or

PκΛ(x, δ>Aσzl(x - j;) = βκpσ λ(j,, 3̂ (3; - x), (2.4)

εκ = +1 or — 1 if ψκ obeys Bose or Fermi statistics respectively.
In general, besides (2.2) and (2.4), there are no further restrictions on Pκλ (apart

from a reality property due to the hermiticity of Q). This follows from the
construction of the next section.

3. Associated Currents

For any polynomial Pκλ obeying (2.2) and (2.4), we construct for a theory of free
fields a conserved current density which is local and bilinear in the fields and which
induces (2.1).

Define

1 — 1 / *~*

(Summation over multiple indices. φ(x)dμ(x): =φ(x)dμφ'(x) — (dμφ(x))φ'(x).
The double dots denote Wick ordering). Note that in (3.1) η~£ as well as Pκλ

connects fields of the same statistics only. Then

due to (2.2).
To get [g,y^(y)] consider

< >
- y)Sx

0 Pκλ(x, dx)ψλ(x)

where (2.4) has been used in the first term 1 3g := — -„ I.
\ ox '

For free fields,

'[Q, vσ(y)l = ί DOW. va(y}~]xo=y^χ
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(For the last step it is convenient to decompose Pκλ(x9 dx) = Ξκλ(x9 dx) + Λκλ(x, d^d0^
where Ξ and A are polynomials in x and spatial derivatives only). Note that Q
leaves the vacuum invariant.

For the construction of the current density we did not use the hermiticity of Q
and the corresponding condition on the Pκλ which would have led us to a
hermitean current.

This shows that in general there are no further restrictions on the generators
apart from (2.2) and (2.4). For theories with interaction it is believed that there are
further severe restrictions [4, 5].

4. Q as Function of Poincare Generators

The — iPκλ represent Q on one-particle states. It will be shown that the Pκλ can be
written as a polynomial matrix in generators of the Poincare group and internal
symmetries. The latter correspond to constant matrices operating on field indices.

This statement follows from the fact that Pκλ commutes with dμdμ and that the
Poincare generators and the constant matrices form an irreducible algebra on each
mass multiplet. In more rigorous detail, one can proceed as follows.

Commuting (2.2) with ψβ(y) and making use of the invertibility of η,

Hence, for fixed but arbitrary K and λ

(4.1)

with every solution / of the Klein-Gordon equation for the mass M = Mκ = Mλ

considered.

4.1. Lemma. Any polynomial P(x, dx) obeying (4.1) can be written as a polynomial in

*A-*A and d

Q-

Proof. The statement is obviously true for polynomials of degree zero in x. We
prove it by induction on the degree. Consider a polynomial P(x, dx) of degree n in
x.

P(x, dx) = xβί.. .x^-^dj + P(x, dx) (4.2)

where P is of degree n—ί and the cμι μ" are symmetric in μ1...μn. By assumption,
P fulfills (4.1). This then also follows for all derivatives of P, too. Replacing P in
(4.1) by dVι...dVn_P gives

By Fourier transformation

0 = c"'-»-^ίp)p(/.

Since the c are symmetric,

(4.3)

on p2 — M2 for all K. These polynomials have the following form :
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Auxiliary Lemma. Let cμί'"μn(ip) be a polynomial in peIR4, symmetric in μ1...μn

which fulfills (4.3) for p2 = M 2 Φθ and all K. Then there exist polynomials
d(Vιμι)>>>(Vnμn)(φ) symmetric in v1...v f ί, symmetric in μ1...μn and antisymmetric under
the exchange of v with μ{ for the same ί such that

=J l f I (4 4)

(For the proof see below). Inserting (4.4) into (4.2)

p(χ, dx)=Xμι . . .χμnδvι . . .avy *""> <""" >(δ) + p(x, dx)
= 2- "(xμι δτι - xvιaμι). . .(x, A_ - xVnSJd^-^»\d) + P(x, dx) (4.5)

where P is still a polynomial of degree n — 1 differing from P by terms which arise
from commuting δ's^and x's. The terms in front of P fulfil (4.1) (as P does by
assumption). Hence P is a polynomial of degree n — 1 obeying (4.1) which has the
asserted form by induction assumption. D

Proof of the Auxiliary Lemma.1 For n = 1, define

Then dvμ is antisymmetric, and for p2 — M2 Φ 0

1
v M2 v

To prove the statement for general n, consider in cμί'"μn the index μn as a fixed
parameter. By induction assumption for n— 1 there exist polynomials
j(vιμι)...(vn-ιμn-ι),μ^^ wίth the required symmetry properties in (v1μ1)...(vn_1μn_1)

such that

cμι" Mip)l,2=M2 = ip V l .~ (4.6)

Put

d(vιμι) "(v"^(φ)=-^^ (4.1)

which is antisymmetric in vn and μn. For p2 = M2, (4.4) follows by computation
using (4.6). The same is true if d in (4.7) is symmetrized with respect to vί.. .vn and
with respect to μ±.. .μn. D

For scalar fields, this already proves the following

4.2. Theorem. A generator Q on one-particle states is a polynomial in the generators
Mμv and PQ of the Poincare group.

Proof. For scalar fields, Mμv and Pρ on one-particle states are represented by
xμdv — xvdμ and d . In 4.1 we proved for fields with arbitrary spin that Pκλ can be

1 We thank E. Seller for this simplified proof
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written in terms of these,

In general for Mμv we have

iMμvψκ(x)Ω = ((xμdv - xvδμ)δκλ

((Sμv)κλ is a finite dimensional representation of the Lie algebra of SL(2, C)). We
must prove that Pκλ can be written in terms of (mμv)ρσ with

ΉΛσ : = ( Vv - xvdμ)δρσ + (Sμv)ρσ . (4.9)

This, however, causes no problem :
Consider for fixed κ,λ the term of degree n in x

(V d — Y d UY d — Y rM 9""J ( / U l V l ) (μ"v")

1̂% •Xv1

C7μ1M->Cμ2

C;v2 "SaW"^ Uκλ

Replace each xμdv-xvdμ by (xμ3v-xv3μ)δκΛ + (Sμv)κλ. One obtains

plus correction terms of degree n — l and lower. The nίh order term is now a
function of the one-particle operators mμv and δρ i, as wanted. The same holds for
the lower order correction terms. In the next step, one considers the terms of
degree n—l which are not yet in the form wanted, etc. D

The motivation for formulating Theorem 4.2 is that it allows to express Q on
asymptotic one-particle states in terms of quantities that are conserved on these.

Note that Q may connect different spin multiplets. Consider, e.g., a free vector
field Φv(x) and a free scalar field Φ(x), both of the same mass M>0 and the current
density

5. Concerning Selfadjointness of Q

Assume now that Q is hermitean and ask whether it is automatically selfadjoint.
This is the case for translation-invariant Q which then acts on one-particle states
as a real function of the momentum operator and as such is selfadjoint (on the
natural domain) [6]. For arbitrary β, one cannot hope that such a result holds in
general. We demonstrate this by an example of a generator with unequal
deficiency indices and thus having no selfadjoint extension. This generator arises
from a conserved current corresponding to a polynomial P(x, dx) of degree one in
x.

Consider one free real scalar field Φ(x) of mass M>0 and the polynomial

p(x, dx)=(a0)3 3<( V; - * A)+ (χ 0 d t - xAJSW
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which fulfills (2.2) since m0 and d0ί commute with dμdμ separately. In view of
Sect. 3 we are left with checking (2.4) to see that the corresponding current

f(x) = - \ : Φ(x)3>(x,8J φW : (5 2)

is conserved and induces a Q represented by — iPκλ on one particle states.
Observe that — im0i (as representing one of the standard generators of a free

scalar field) fulfils (2.4). Since d0ί is even in δx,

A similar relation holds for the other term in (5.1) so that the anticommutator
fulfils (2.4).

It is convenient for the following to look at Q on one particle states in

momentum representation, i.e., on L2 IR3, — |. There Q is represented by

D = c((p2 + M2) (p.id* + idj

Pj) (p2 + M2) - i(p2 + M2)p2) (5.3)

where the real constant c depends on normalization conventions for the relation
between Φ(x) and one-particle states.

We next map by a unitary transformation V the space L2 IR3,

onto L2(R3,d3p) on which the corresponding operator D=VDV 1 has a simpler
form.

2]/p2

D = c(p2 + M2) (fiS + idp) (p2 + M2)

= c((p2 + M2)2 2piδ + 3i(p2 + M2)2 + 4ip2(p2 + M2))

The domain of D certainly contains 6(IR3) [1,2].
1

The deficiency indices of D, the scaled -D and the unitarily equivalent D are

the same. We determine those of-D by looking at solutions from L2(IR3, d3p) of
c

-D*f=±if. (5.4)

Any solution of (5.4) is a distribution solution of

((p2 + M2)22p^-|-3(p2 + M2)2 + 4p2(p2+M2))^-±^ (5.5)

where g is a square integrable function.



186 W. D. Garber and H. Reeh

In polar coordinates (p-> (r, Θ,χ), pδ->r-r-\ (5.5) reads

+ 1 - 3(r2 + M2)2 - 4r2(r2 + M2)

with the solution

where C±(Θ,χ) is arbitrary. The r-dependent factor is square integrable with
respect to r2dr at oo, however, for r->0 only in the case of the upper sign. Since C±

is arbitrary square integrable on the sphere, -D has deficiency indices 0 and oo,

and so has D.
Q represented by D on one particle states and acting additively on multiparticle

states, has no selfadjoint extension as well : <2* leaves the one-particle subspace 3#Ί

invariant /for geJ^1nD(Q*) and /e 0 jVnnD(Q) where Jί?n are the π-particle
\ n^2

subspaces, one has that Qfe © J^n and (Q*g\f) = (g\Qf) = Q\. Therefore, every

selfadjoint extension would also leave 2tfγ invariant and hence would give rise to a
selfadjoint extension of D.
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