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Abstract. We study SU(2) Yang-Mills theory on S3 xIR from the canonical
view-point. We use topological and differential geometric techniques, identify-
ing the "true" configuration space as the base-space of a principal bundle with
the gauge-group as structure group.

1. Introduction

We study in this paper the space of connections on the trivial SU(2) bundle on S3

and the action of the gauge-group on this space. Let Ή = ($k denote the space of
connections belonging to Sobolev class (fc), fe^3. We introduce the groups Aut,
Aut° (see Sect. 2) of gauge transformations belonging to the Sobolev class (k +1).
We then define the space <$0 of generic connections, which are the connections
whose holonomy coincides with the whole group SU(2), and prove that the above
groups act properly on ̂  (Proposition 2.4) and that ̂ 0 in a principal Aut (or Aut°)
bundle (Propisition 4.3). The proof involves deriving estimates for certain elliptic
operators whose coefficients belong to Sobolev spaces and are not necessarily C°°.
We define the groups Aute, Aut°e (Sect. 4b)) and show that the Aut (resp. Aut°)
bundle cannot be reduced to the subgroup Aute [resp. Aut° (Theorem 5.1)]. In
particular gauge-fixing is not possible. This result is proved by looking at left-
invariant differential forms on S3=SU(2) with values in the Lie algebra of SU(2)
and by showing essentially that the principal SΌ(3) bundle obtained by the action
on 3 x 3 real matrices of rank ^ 2, by multiplication on the left, is nontrivial
(Theorem 6.2).

In Sect. 7 we introduce the Coulomb connection. We show (Theorem 7.5) that,
in case we use the biinvariant metric on S3 = SU(2\ the values of the curvature
form of this connection at the point ω/2e^0, where ω is the Maurer-Cartan form,
span a dense subspace in the gauge algebra.

The study was motivated by the following physical considerations, taking
Dirac's theory [1] of singular Lagrangians as starting point. We may recall that
the Faddeev-Popov procedure was derived [2] by an extension of Dirac's
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constraint analysis programme. With the realisation due to Gribov [3] that the
Coulomb gauge has ambiguities in the case of non-abelian theories, it has become
necessary to examine anew the quantisation of such theories.

The SU(2) Yang-Mills theory without matter-fields is described by the action

where Fμv = dμAv — dvAμ + [Aμ,Av~]. We assume that the fields Aμ(x) fall off fast
enough at space-like infinity, that they can be mapped into fields on S3 x IR, R
representing the time-co-ordinate. Because of gauge-invariance, the Lagrangian is
singular and the problem as is well-known, reduces to the following.

Consider the phase-space {Ai9 πj (i, 1, 2, 3) of the space-components. There is a
constraint on this space, usually expressed as diπί + \_A^ π ] = 0. On this con-
strained space a "Hamiltonian" is defined.

The constrained space, however is not a symplectic manifold. The "true"
configuration space, and its phase space are obtained by factoring out by the
"time-independent" gauge transformations. More precisely, time-independent
gauge-transformations act on the space of fields (% = {Ai(x)}. The gauge-invariant
configuration space Ή is the quotient by this action, and the gauge-invariant
phase-space, the corresponding phase-space. In terms of diagrams :

gauge-group
Φ

- v- ,-«

Here p is the projection from T*(<ίί), and </, the fibre product over ^ of ̂  and
T*(^), is precisely the constrained phase-space.

The "Hamiltonian" given above goes down to T*(4ί) and becomes a true
Hamiltonian there. Correspondingly there is a well-defined, non-singular
Lagrangian on %>.

Faddeev [2] quantises by identifying T*(<&) with a section of the bundle
</->T*(<<ί), this section representing the subsidiary constraint, which together with
the first, forms a second-class system. Since T* )̂-^ admits the zero section, it is
clear that the existence of such a section is equivalent to the existence of a section
for (6^ C6.

The Lagrangian on Ή can be obtained directly by the simple procedure of
letting A° = Q in the original Lagrangian, thus getting

i3x.

This Lagrangian has "time-independent gauge-transformations" as a symmetry,
and gives rise to a Lagrangian on ̂  in a natural way. This involves defining a
"horizontal space" at each point A{ of ̂ : this is the space of tangent vectors At that
satisfy
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Note that in the abelian case the horizontal spaces form an integrable distribution,
and the Coulomb gauge corresponds to taking a maximal integral manifold as the
section <β^>m. Note also that in general this definition of horizontal spaces gives a
connection in the bundle (β^(6. We call this the Coulomb connection.

In the absence of a section, a conceptually simple, although in practice diffi-
cult, path-integral procedure suggests itself. Suppose we consider transition am-
plitude between points A, B, in ̂ . This involves integrating over all paths from A
to B, using the Lagrangian in C6. But for a given smooth path, the action is the
same as the one given by lifting the path to a horizontal one in # (to a path
satisfying δ.A. + [A., At~] = 0), between points A and B above. Thus the holonomy
of the connection on <β is clearly relevant. We calculate the holonomy for a special
choice of a metric in S3 and find that it is dense in the gauge-group. In other words,
if we fix A on the fibre above A, a dense set of points above B can be joined to A by
horizontal paths. (Thus the ambiguity is in some sense maximal.) Schematically:

Note that in the abelian case the holonomy is trivial, and a horizontal path in ̂
starting from a point in the Coulomb gauge always stays within the Coulomb
gauge. In particular all paths from A to B below, when lifted through A, end in the
same point B above B.

Results on gauge-fixing, applicable when the base-space is S3 or S4, and the
structure-group is a general compact semi-simple Lie group [in particular SU(NJ],
have been announced by Singer [4]. The present work was done independently
and our approach is different. In the particular case that we consider, our first
main result (Theorem 5.1) is stronger than the nonexistence of a section for the
action of the group of gauge-transformations. The second main result (Theorem
7.5) of this paper, on the holonomy of the "Coulomb connection", is new.

2. The Space of Connections and the Action of the Gauge Group

We shall consider connections on the trivial SU(2) bundle over S3. We identify the
set of connections with the set of 1-forms with coefficients in the Lie Algebra,
SU(2), of 5(7(2) by means of the map απ>σ*(α) where σ is the canonical section of
the trivial SU(2) bundle. We shall use connections which belong to the Sobolev
class (fc) with fe ̂  3. We denote the space of such connections by ^k or simply ̂
when once we have fixed fe^3. Let *Aut denote the gauge group consisting of
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maps from S3 to 5/7(2) which belong to the Sobolev class (fe+ 1). *Aut° will refer to
the subgroup of *Aut consisting of maps which are homotopic to the constant map
S3 -> Identity.

In the rest of the paper, we will only occasionally need to distinguish between
the groups *Aut and *Aut°. We will let *G denote either one of them.

We will need

Lemma 2.1. For z'^2,
i) The Sobolev space Hl of functions from S3 to C of class (ΐ) forms a Banach

algebra under pointwise multiplication.
ii) The multiplication Hl x ff -+JT is smooth.

iii) // we denote by Jt mappings of S3 into M(2, (C) (complex 2 x 2 matrices)
which are of Sobolov class (i) then the group *G is a closed C00 submanifold of M.

Proof. For a proof of (i) see [5], Theorem (5.23). Bilinearity and (i) imply (ii) and
(iii) follows from [6, p. 78].

We have an action of *G on ̂  given by

(α, φ)^-+φ~1aφ + φ~1 dφ = tt°φ for

We see from Lemma 1 that *G is a Lie group and that the above action is smooth.
The Lie algebra ^ of *G is identified with the Lie algebra of maps from S3 to

®U(2) which are of Sobolev class (fe+ 1).

Lemma 2.2. The isotropy of *G at any point of %> is compact. In fact the isotropy
group is isomorphic to the centraliser of the holonomy group in SU(2).

Proof. If φ belongs to the isotropy group at αe^ then φ~ΐaφ + φ~ίdφ = ot or dφ
+ [α, φ] = 0. Thus φ is invariant under parallel translation, considered as a section
of the bundle with M(2, (C) as fibre. Thus φ is determined by φ(e) and φ(e)
commutes with the elements of the holonomy group.

Remark 2.3. The group of constant functions with values in the centre of SU(2)
acts trivially on #. The isotropy group of *G at αe^ coincides with this subgroup
if and only if the holonomy group is SU(2) this condition in turn is easily seen (e.g.
by Schur's lemma) to be equivalent to the condition : if β is a 1-form with values in
Slϊ(2), and dβ + [α, /?] = 0 then β = 0. We call such connections, whose holonomy is
the whole group SU(2\ generic and denote the set of generic connections by ̂ 0.
Note that the gauge group *G acts on <6 \ and *G/(Z/(2)) acts freely. We will denote
*G/(Z/(2)) by G.

Proposition 2.4. The action of *G on Ή is proper.

Proof. It is enough [7] to show that the map μ : Ή x *G->^ x #, (α, φ)f-»(α°φ, α) is
closed and that the inverse image of each point by μ is compact. Lemma 2.2 shows
that the inverse image of any point is compact. That μ is closed follows from

Lemma 2.5. Let (αw, <pw)e^ x *G be a sequence such that αn-»α and (xn°φn = βn^ β in
Ή. Then there exists a subsequence {φt} of {φn} which tends to a limit φ (so that ot°φ

=β)
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Lemma 2.5 will follow from Lemmas 2.6-2.8. In these lemmas we use the
notation of Lemma 2.5.

Lemma 2.6. Let U be an open co-ordinate cell in S3 and p a point of U. If there
exists a subsequence {φj of {φn} so that φt(p) tends to a limit g in SU(2), then φl

tends uniformly on compact sets to a limit φ : (7->M(2, C).

Proof. We have dφ^φβ^^φ^ <pz(p)-»0. Define φl = φiφ^l(p\ βι =
Then dφl = φlβl — oclφl and φΐ(p) = Identity.

Introduce co-ordinates (x.) on U with χ.(p) = 0, U being mapped onto IR3 by
(x ). Denote by α (x) the components of a connection αe^ in this co-ordinate
system. When xe!7, α, βeΉ consider the system [with ίeIR, yeM(2,C)]

This is an ordinary linear differential equation in y(t) with α, βe^ and xeC/ as
parameters and a fixed initial condition. Then by (10.7.2.) of [8] the system has a
unique solution y(θLiβtX)(t), defined for all ί, x, α, β, which is continuous in all four
variables and differentiable in the first.

Now, note that by uniqueness y(Λljl,X)(t) = φl(x,t) and Φι(x) = y(Λlίβl,X)(ί). The
lemma follows easily by continuity in (α,j8).

Lemma 2.7. There exists a subsequence {φt} of {φn} which tends uniformly on S3 to
a limit φ which is a continuous map φ :53— »5£/(2).

Proof. Cover 53 by two open cells U and U', choose a point p in their intersection.
Since SU(2) is compact there exists a subsequence {φ{} such that φt(p) tends to a
limit. Let V, V be compact sets in U and Uf respectively which also cover S3. Then
by Lemma 2.6, φl converges uniformly on both V and V and hence on S3 to a
continuous function φ : 53^>M(2, C). Since 517(2) is closed in M(2, (C), φ has values
in SC7(2).

Lemma 2.8. If a subsequence {φt} of {φn} tends uniformly to a continuous function
φ :53— »5Ϊ7(2), then φ is of class (fc+ 1) and φt-+φ in *G.

Proof. We have αz->α and βz-^β in /ffc and <pj->φ in C°. But dφ^φβ^^φ^φβ
— aφ in C° by Sobolev lemma; this implies that φ is in C1 and φ^φ in C1.
Similarly φz-^φ in C2 topology as αz, β/eC1 by Sobolev. In particular φz->φ in the
Sobolev space H2. Now, since d is an elliptic operator with injective symbol (on 0-
forms) we see that φt-^φ in H3. We conclude by induction that φ^φ in Hk+ί.

3. Some Estimates

In this section we shall derive some estimates connected with elliptic operators
(whose coefficients are not necessarily C°°) arising from connections belonging to
Sobolev class (fe). These will be needed in the rest of the paper and in particular to
prove that the set ^0 of connections whose holonomy is the whole group is a
principal G-bundle.
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Consider the tangent space to ̂  at any point α. This can be identified with ̂
itself. Given a metric on S3, we can define an inner product on Ή by

This gives rise to a (weak) Riemannian metric on Ή.
Let & denote sections of Sobolev class (i) of the adjoint bundle. For any

define dΛ\<βk-*yk~l by (β,docΓ) = (daβ,Γ) for βe%\ Γe^k+l. Note that if
denotes exterior multiplication by α with respect to the Lie algebra multiplication
in SU(2) and z(α) is the adjoint of β(α), then da = d + β(α) and da — d + z(α). [Note that
/(α) is the interior multiplication by α defined using the metric and the Lie algebra
multiplication in SU(2)]. Then AΛ = dΛdΛ takes ^+1 to <3k~l.

Note that for Γe^k+1, dadaΓ = Q if and only if daΓ = 0 so that if αe^0, Aa is
injecti ve, by Remark 2.3.

We now prove two lemmas which we will need in the proof of the next
proposition.

Lemma 3.1. // veHk, fcΞ>3, then v is a multiplier in Hm for — k^m^k.

Proof. It is enough to show that for ueHm, O^m^/c, vueH™ and u^vu is
continuous, for then we can define vT for TeH~m by duality: (vT9uy = (T,υuy.
For m ̂  2 this follows from the fact that Hm, m^2 forms a Banach algebra. Since
k ̂  3, φ is C1 (by Sobolev) and it is easy to show that φ is a multiplier in H° and Ή1

also.

Lemma 3.2. Let αe^, If Aau = Q and ue^~(k~l\ then

Proof. Write AΛ = dada = A+B where A=ddzndB = de(a) + i(α) d + i(α)e(α). Then if
AχU = Q, Au= —Bu. Since we<^" ( / c~ 1 ) we have by Lemma 3.1, Bue^~k. Since A
has C00 coefficients, we have ue^~k+2. We see by induction that

Proposition 3.3. i) Let αe^. Then Aa :<gk+l-^>4?k~1 is a quasi-monomorphism, i.e.,
its kernel is finite-dimensional and Aa(^k+ί) is closed in ̂ k~l. For ue^k+1,we have

for some constant C. Here \u\t denotes sum of the 1} '-norms of partial derivatives of
order i.

ii) Let αe^0, so that Δa is injective. Then Aa is actually an isomorphism.

Proof. Write, as in the proof of Lemma 3.2, Δa — A+B. Since A has smooth
coefficients, we have as is well-known,

for some constant C. Also

\Bu\t_ ^1(1^)4 + de(«))uk_1+\i(a)e(Λ)u\k_1

for some constant C'. On the other hand

M0 for 0 < / < / c + l for ε> 0 and some function C(ε).
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Thus we see that, with a suitable constant C, we have

H+ι^c{Mαι4_ι + Mo}. (i)

By Rellich lemma it follows that the kernel of Aa is locally compact in the L2-norm
and hence is finite dimensional.

To see that Aa has closed image, let ffl be the kernel and W a topological
supplement of ffl . We see using the above estimate and Rellich lemma that there
exists a constant C" such that

K^C"K<_ι for uεW (2)

(see, for example [9, p. 456]). From (1) and (2) it is clear that Imzlα is closed.
ii) By i) it suffices to show that AΛ(&k+1) is dense in <&k~ \ if αe^0. Let therefore

Te&~(k~l) such that Tis zero on A^k+1). Then we have Aa*T=Q, which implies
by Lemma 3.2 that *Te^+1 so that since αe^0, T =0.

We can now prove

Proposition 3.4. For any αe^0 we have

where doc(
(£k+ί) and kerdα are closed subspaces.

Proof. Let GΛ = (AΛ)~1 i^*"1-^**1. Gα is continuous by Proposition 3.3, ii) Then
we have dα(^k+1) = ker(l — daGada) and both spaces, being kernels of continuous
operators, are closed. Since dad^Γ = 0 if and only if docΓ = Q, the sum is direct.
Finally, if βeΉ, we have

Remark 3.5. The above direct sum decomposition of ̂  holds even if α^0, as can
be seen by suitably defining Gα.

4. The Space of Connections as a Principal Bundle

a) The Generic Connections

Lemma 4.1. The space ^0 of generic connections is open in Ή.

Proof. By Remark 2.3 an element α0 of ̂  belongs to %0 if and only if ά Λ \
is injective. By Proposition 3.3 the image of dΛo is also closed. Moreover, for
αt-»dα is a continuous map when we put the strong topology on the space of
continuous linear maps from <gk+1 to ̂ . From this it follows that da is injective in a
neighbourhood of α0.

Lemma 4.2. For every ae^0 the map G—^ given by φ\->tt°φ is an injective
immersion.
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Proof. The differential of the map at any point β in the orbit is dβ : &k+ 1 -»#. By
Proposition 3.4 the image is closed and admits a topological supplement, so that
the lemma follows.

Proposition 4.3. The action of G makes <$ 0 a principal G-bundle.

Proof. This proposition follows from Proposition 2.4 and Lemmas 4.12 and 4.2,
using (6.2.3) of [10].

b) The Groups Aute,

We now define the groups Aute, Aut°. Aute is the (normal) subgroup of *Aut
consisting of those elements φe*Aut which take the value identity at a fixed point
e on S3. (Note that as fe^3, by Sobolev lemma φ is of class C1). Let
Aut° = Auten*Aut°. We will let Ge denote either Aute or Aut°.

Note that the groups Aute, Aut^ act freely on #. The Lie algebra &e consists of
elements of & which vanish at e. As in the case of G, Ge operates properly on #.
Also

Lemma 4.4. For ae%? the map Ge— ̂  given by απ>α°φ is an injective immersion.

Proof. Note that $e is of finite co-dimension in ^ and we can write $ = (£e®F,
where F is a finite-dimensional space. The differential of the map Ge— »^ at any
point β in the orbit is dβ \(^e-^(6. This is easily seen to be injective. By Remark

Finally, we have

Proposition 4.5. The action of Ge makes m a principal Ge bundle.

Proof. Same as Proposition 4.3.

5. Nonexistence of a Continuous Gauge

Theorem 5.1. The Aut° (resp. Autj bundle ^ 0 cannot be reduced to Aut°e (resp.
AutJ. In particular these bundles do not admit sections.

The rest of this section, and the next will be devoted to a proof of this theorem.
But first we make the following

Remark. The Aut^ bundle is not trivial. In fact ̂  is contractible while πf (third loop
space of SU(2)) = πί + 3(St/(2)). But π4(S3) = Z2.

If the bundle were trivial, ̂  would be homeomorphic to the product of
and some other topological space and π± (Ή) would be different from zero. Nor is
the Aute bundle trivial, for ̂  is connected and Aute/Aut^ discrete.

We identify S3 with SU(2), and the point e on S3 (used in the definition of Aute,
Autg) with the identity in SU(2).

The argument uses in a critical way, the space of left invariant forms on SU(2)
with values in ®U(2), the Lie algebra. Fix a basis of left-invariant vector fields Xa

such that [_Xa,Xb~]=εab(Xc where εabc is defined by ε 1 2 3— +1 and complete
antisymmetry in the indices, and the corresponding dual basis of one-forms given
by

ω»(Xb) = δab.
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We also define a metric on 611(2) by

&a>Xb) = δab

A left-invariant Lie-algebra valued from ρ can be written as

where La are elements of the Lie-algebra of SU(2) (linear combinations of Xa). Of
particular interest is the Maurer-Cartan form

which satisfies

A left-invariant form ρ = ^Laω
a gives a mapping Xa^La and there is a one-

α

one correspondence with 3 x 3 matrices Mρ [which represent vector space
endomorphism of the Lie algebra SU(2)] :

ρ~Mρ by La = Mfa.

The Maurer-Cartan form corresponds to the identity homomorphism :
Mω = Identity.

The curvature is a Lie-algebra valued two form :

On left invariant vector fields X, Y, we have

, 7) = [Mβ(Y), Mβ( Y)] - Mρ([X, Y])

so that F = 0 if and only if Mρ represents a Lie algebra homomorphism. With
respect to our earlier choice of basis of left invariant vector fields, this means that
F = 0 if and only if either Mρ = 0 or MρeSO(3) (with respect to the Lie algebra
metric given earlier).

We will need the following lemmas

Lemmas 5.2. Let N denote the space of left-invariant forms ρ such that rank of Mρ is
^2, and MρφSO(3). Then G acts freely at any point in N. There are no equivalences
in N under Ge.

Proof. Let ρ = ]Γ Laω
a. If a gauge-transformation g fixes ρ

By hypothesis FφO. Consider the image of F at any point xeS3. If ImF is of
dimension ^ 2, g(x) = Identity and if ImF is in the one-dimensional subspace t) of
Slί(2), g(x) is in the corresponding one-parameter subgroup H. By left in variance of
F we have thus two possibilities. Either g(x)= ± Identity VxeS3 or, ImFcί) and
g(x)eHVxeS3. In the second case.
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which implies g~1Lag — Lael). But g~lLag — La is orthogonal to ί), and hence zero.
Thus Laefy for each a, and ρφN.

Now suppose that geGe takes ρ = ̂ Laω
a to ρ' = ̂ Lf

aω
a, ρ'φρ. Then since

#(e) = Identity we have F = F' and again g takes values in a one-parameter
subgroup H of 517(2). We also have

which implies La-La = (g~1 dg)a(e) e ί)

so that again ρ, ρ'^ΛΓ.

Proof of Theorem 5.1. As in Lemma 5.2, let JV denote the space of left invariant
forms ρ such that rank Mρ^2 and ρ is not in the adjoint orbit of the Maurer-
Cartan form. Consider the mapη:N-^^0/Ge induced by the canonical

>^0/Ge. By Lemma 5.2 this map is injective. Let N' = η(N)

If the G bundle c€0 could be reduced to the normal subgroup Ge, the
G/Gβ = SO(3) fibration mjG^ΉJG would admit a (continuous) section. Note
that the action of SO(3) on w' and the action of SU(2)/12^SO(3) on N by
MQ-^gMQg~l commute. Hence the S0(3) bundle N would be trivial. But this is not
the case as will be proved in the next section (Theorem 6.2).

6. Nontriviality of the "Three-Body" Bundle

Let M(3) denote the vector space of 3 x 3 real matrices. Consider the right action of
S0(3) on M(3) by (B,g}-+g~lB, #eSO(3), BeM(3).

Remark. If we identify M(3) with (IR3)3 by means of the map
where {e l5e2,e3} is the canonical basis in IR3, the above action goes over to the
diagonal action ((/1? /2, f^\g} = (g~lf^g~f^9~lf^\ /^IR3. Hence the term
"Three-Body Bundle".

Lemma 6.1. The action ofSO(3) on M(3) is free exactly at the set of matrices of rank
^2. The isotropy group of a matrix of rank 1 is isomorphic to SO(2).

Proof. If g~lB = B, every point of the image of B, considered as a linear map, is
fixed by 0Γ1. Therefore if rank 5^2, g = Identity and if rank B = l, the isotropy
group is isomorphic to the special orthogonal group of the orthogonal comple-
ment of the image of B.

Theorem 6.2. Let M0 denote the manifold of3x3 real matrices of rank k^2. The
principal S0(3) bundle M0 (with the action (B,g)^g~1B) is not trivial on the
complement of any point in M0/S0(3) = M0.

We first prove
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Lemma 6.3. The orbit space M0/S0(3) is homeomorphic to IR x (S5 — P) where P is a
submanifold of S5 homeomorphic to the projective plane IP2(R).

Proof. Consider first the action of 0(3) on M(3) by multiplication on the left by
g~1, geO(3). The quotient space is homeomorphic to the space of positive
semidefinite matrices. This follows from remarking that if £eM(3) the non-

negative square root ]/£'£ of B'B is equivalent to B under this action. This fact is
well-known for nonsingular B; if B is singular, let Bn^B with Bn nonsingular, so

that Bn = gn}/B'nBn with 0weO(3). Choosing a subsequence oϊgn tending to 0eO(3)

we see that B = g]/BΊ3.

Now consider the diagram

f 3)^0(3)

0(3) J*^»'

where 0>' is a (ramified) two sheeted covering of .̂ We claim that there is
ramification precisely over the set of positive semidefinite matrices, which are not
definite. This follows from the following fact : If B is a singular matrix there exists
#eO(3) with άεtg = —1 and g~lB = B. (To see this it is sufficient to consider the
case B = P is singular and positive semidefinite. If V+ 0 is the null space of P and
h~1P = P(h~1ε 0(3)), h ~ 1 leaves Fand VL = lmP invariant. We can multiply h ~ 1 \v

by a suitable constant, without changing h~l\v , to get ge 0(3) with det# = — 1 and

9~1P = P\
Now let R denote the image of 3P — 0 (0 denoting the zero matrix) in the five-

dimensional projective space associated with the vector space of 3 x 3 symmetric
matrics, R' will denote the subset of jR corresponding to non-positive-definite
matrices. The pair (jR, Rr) is homeomorphic to (D5, S4) where D5 denotes the closed
5-dimensional disc1. In fact, consider, in the space of symmetric matrices, the
hyperplane S, consisting of elements B such that ΎΐB = 1. Then Sn^ is mapped
homeomorphically into R, mapping positive semidefinite matrices onto R. It is
clear that Sr\£P is convex and compact and its interior is Sn&+ where ̂ + denotes
the set of positive definite matrices (Compactness is immediate since any element
of Sr\& can be transformed by inner conjugation by 0(3) into a diagonal matrix
[/115/12,/13] with Λ,.^0,£/l.= l). It follows then, as is well known, that

is homeomorphic to (D5,S4), (See, for example [11, p. 51]).
Now (M(3) — 0)/SΌ(3) is homeomorphic to the product of IR and the space

obtained by doubling R along R'. This follows from the nature of the ramification
locus of the map &'-+&. Since (R, R) is homeomorphic to (D5, S4) the correspond-
ing double is homeomorphic to S5. Hence (M(3) — 0)/S0(3) is homeomorphic to
Rx S5 (and M(3)/SO(3) to IR6).

The subspace of jR' corresponding to quadratic forms of rank 1 is homeomor-
phic to IP2(IR). In fact if Q is a (positive semidefinite) quadratic form of rank 1, Q
defines a positive-definite quadratic form on the 1 -dimensional space Q/(Nullity of

This fact pointed out to us by R. R. Simha, who also supplied the proof
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β) and in a one-dimensional space there is, upto a scalar multiple, a unique
positive definite quadratic form Thus the above space is homeomorphic to the
projective space of 1 -dimensional quotient subspaces of ]R3. (A similar in-
terpretation of quadratic forms of rank 2 gives a decomposition of S4~Rf into P2

and a disc bundle over IP2).
Thus M0 = M0/SO(1] is homeomorphic to lRx(S5-P2).

Proof of Theorem 6.2. We first compute some homology groups of S5 —IP2. We
have the exact sequence

and isomorphisms

\ P2) ~ Hl

c(S5 -W2) = H5_ .(S5 - P2)

where Hl

c denotes cohomology with compact supports, the second isomorphism is
given by Poincare duality and the coefficient group is TL. This gives, in particular.

H2(S5- P2, Z) ~ Ή2(P2, Z) ̂  Z/(2) (Alexander duality).

Now M(3) — 0 is homeomorphic to IRx S8, and the space of rank 1 matrices is
homeomorphic to IRx E where £ is a 4-dimensional subspace of S8, so that M0 is
homeomorphic to IR x (S8 — E).

From the exact sequence

We see that H2(S8 -E)πH5(E) = Q. Thus we have H2(M0) = Z/(2) and H2(M0) = Q.
It now follows that the bundle M0 does not admit a section, for, if σ were a section,
the composite mapπ^σ^ below would be the identity:

H2(M0)^^H2(M0) - >H2(M0) ,
σ* π*

while #2(M0)ΦO and H2(M0) = 0.
Now if peM0/SO(3), π~ x(p) is a submanifold of M0 of co-dimension 6 and p is a

point in a 6-dimensional manifold. It follows, as the co-dimension is ^4, that
H2(M0-p)^H2(M0} = Z2 and H2(M0-π-

1(p))^H2(M0) = 0. (See [12, p. 41]). The
theorem then follows, as above.

Remarks. 1) The SO(3) bundle M0 cannot be reduced to any Lie subgroup of S0(3).
Any (connected) Lie subgroup of 5Ό(3)φ {e}, is isomorphic to 50(2) and if there
were a reduction, the corresponding complex line bundle would have Chern class
zero as H2(M0) = 0. Hence the line-bundle would be trivial - but this would imply
that M0 itself is trivial.

2) A similar proof shows the following : The S0(ή) bundle of n x n matrices
(n ̂  2) B with rank B^n — l is nontrivial.

3) A simpler proof of Theorem 6.2, which however does not give information
about the structure of M0, can be given as follows. For peM0, the codimension of
M(3) — M0 — n~1(p) in M(3) is greater than or equal to 3. Hence
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π1(M0 — π~l(p)) = πl(M(3)) = 0. If the bundles were trivial, M0 — π~1(p) would be
isomorphic to SΌ(3) x (M0 — p) and since π1(SO(3)«Z/2, M0 — π ~ l ( p ) could not be
simply connected. The proof works for all n.

7. The Coulomb Connection, Its Curvature, and Holonomy

We now define a connection on the bundle <$0 : we take the horizontal space at
αe^0 to be the space Ha = {/?e^|δαjβ = 0}. The horizontal space is easily seen to be
invariant under the group action, as the metric is invariant.

Lemma 7.1. The above definition of horizontal space gives a connection on ̂  0. The
connection form at αe^0 is given by Gα<3α where Gα is the inverse of
ΔΛ = dadΛ:#

k+1^<yk-1.

Proof. By Proposition 3.3 (ϋ), Gα is well-defined. On a vertical vector β = daΓ,
Γe&k+1, we have GadadaΓ = Γ. On horizontal vectors Gαθα is zero by definition.
Since Zlα:(^ fc+1->^k~1 is a family of isomorphisms depending smoothly on α it
follows that the inverse Gα also depends smoothly on α.

We will denote by ώ the above connection form, and call this the Coulomb
connection on ̂  0.

Lemma 7.2. Let β1,β2 be horizontal vectors at ae%?0. // Ω is the curvature form
corresponding to ώ, we have

where i(β) denotes interior product with respect to β.

Proof. Consider j8 (i=l,2) to be the infinitesimal generator of the one-parameter
group of transformations α^t./?. + α. Then the vector fields β satisfy [j81,j82]

=0.
Then

^1 f ι = 0 ^12

d

= Ga{i(βi)β2-i(β2)βΐ) since -£-dΛ+tίβί = i(βJ.
i

We now calculate the 'holonomy group' of ώ. From now on we use as the metric
on S3 = SU(2). a biinvariant metric on SU(2).

Let ω be the Maurer-Cartan form and ωf = ω/2. Note that for left-invariant
vector fields X and Y,Fω,(X, Y) = -%[_X, Y] so that ω'e^0. Then we have

Proposition 7.3. The linear subspace generated by elements of the form
i(βι)β2 ~~i(β2)βι where βl9β2 are smooth horizontal vectors at ω' coincides with the
space of smooth &U(2)-valued functions (which we will denote by °̂°).
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Proof. Note that °̂° can be identified with the space of smooth 1 -forms by
Xa<^ωa. We shall prove that under the above identification, we can cover all
smooth 1-forms.

We first construct 'enough' horizontal vectors. Note that with respect to a
bun variant metric any left-invariant form y satisfies dγ = Q [By left-in variance of
metric, y is a constant function, so that we have a linear map from the space of left-
invariant forms into R Also, by right-invariance of metric dR*y = R*dy = dy, so
that this is a homomorphism of the adjoint representation of SU(2) into the trivial
representation. By Schur's. Lemma, δy = 0]. Therefore, since i(ω)ω = 0,

Also, if £ is a closed one-form (with values in IR) then dω, (ζ Λ ω) = dζ Λ ω
+ ζ Λ dω,ω = 0 since dω,ω = dω + ̂ [ω, ω] = 0. Therefore

< ω , * Λ ω = .

If A=ΣAX(i = l,2) we have i(β1}β2-ί(β2)β1=ΣlβίaJ2a].
α α

i) Let ζ be a closed 1-form. Take j61 = *(£ Λ ω), β2 = ωf. Then

0ι =Σ KA-CA]*(ω f lΛω>)

Now

ι =Σ
α < b

= Σ

where -̂> denotes the above-mentioned identification.
ίi) Take β1 =*(ζ1 Λω), β2 = *(ζ2 Λω) with ζ1? ζ2 closed 1-forms. Then

iO»l)02 - 'Wl - Σ [βα^cCl^ V^Λ]

Thus closed 1-forms are clearly covered, and also co-closed 1-forms of the type
*(0ι Λ 02) where βl and β2 are closed. The next lemma completes the proof of the
proposition.

Lemma 7.4. Any smooth co-closed 1-form β can be \vritten as a finite sum

ίp,β2p closed, smooth l-forms.

Proof. It is enough to show that any smooth closed 2-form η can be written as

^β2P

 wu"h βip>β2P smooth and closed. To see this, write η = dψ where ψ is
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some smooth 1-form. By embedding S3 in IR4 and using, for instance, the
retraction IR3 — 0-^S3 it is clear that ψ can be written as

4

Ψ= Σ ΨpdXp
P = l

4

where φp are smooth functions on S3. Then η= Σ dφp/\dxp and the lemma is
proved. p = = 1

Now we can prove

Theorem 7.5. Let ω' — —- where ω is the Maurer-Cartan form. Then ωΈ^0 and the

set of values of the curvature form Ω of the Coulomb connection (defined using a
biinvariant metric on SU(2)) at ω' is dense in the gauge algebra.

Proof. Note that °̂° is dense in <&k~1. Then the theorem follows from Proposition
7.3 and the fact that Gω, is an isomorphism.
Note. For the purposes of the present paper, the restricted holonomy group at a
point of ̂ 0 is defined as in the finite-dimensional case. It is a differentiably arcwise
connected subgroup of G.

Lemma 7.6. Let β1,β2εHa, oίE^0.Then Ω ( β 1 , β 2 ) is the tangent vector to a curve in
the restricted holonomy group at α.

Proof. This follows from the well-known geometric interpretation of curvature
(see, e.g. [13, p. 75]).

Proposition 7.7. Let L be a connected Banach Lie group, L0 a differentiably arcwise
connected subgroup of L. Let 5£0 denote the subset of 5£, the Lie algebra of L,
consisting of tangent vectors to (piecewise smooth) curves in L0 through the Identity.
If ^ 0 is dense in J§?, then L0 is dense in L.

Proof. It is easily checked that JS?0 is a subalgebra of &. Let then XE <£0. We shall
show that QxpXeL0. Let γ(t) be a curve in L0 with γ(0) = e and γ(0)=X. For small

7(t\
ί,y(ί) = expZ(ί), Z(t)ε&. Then — -+Z(Q)=X. Thus

QxpX= l imexpίnZ -
n->oo \

= lim expjZl-

= lim \γ(-
»-+«>[ \n

y - eL0, it follows that expXeL0. Let ^(resp. U) be a neighbourhood ofAs

0 (resp. e) in <£ (resp. L) such that exp : ̂ -^U is a diffeomorphism. Now £?0r\tyl is
dense in <£ r\fy, and exp(<^f0n^) = L0nL; hence L 0nC7= U so that L0n(7 is dense
in U. Since U generates L, the lemma follows.
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Lemma 7.8. Let P be a principal bundle with structure group L, with both P, L
connected. Let there be a connection on P with holonomy group L0, such that L0 = L.
Then i/xeP, the set of points in P which can be joined to x by horizontal paths is
dense in P.

Proof. Note that P/L is connected. Then the lemma follows from the fact that a
dense set of points in the fibre through x can be joined to x by horizontal paths.

If we let * 0̂ denote the connected component of ^>0 containing ω', it is clear
that * 0̂ is a principal Aut° bundle. From Theorem 7.5, Lemma 7.6 and
Proposition 7.7 it follows that a dense set of points in * 0̂ can be connected to ω'
by horizontal paths.
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