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Confinement of Static Quarks
in Two Dimensional Lattice Gauge Theories

G. Mack
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Federal Republic of Germany

Abstract. In two dimensional Higgs models on a lattice with Abelian or
Nonabelian compact gauge group, fractional static charges are always
confined.

1. Introduction

We consider lattice gauge theories [1] in two Euclidean space time dimensions
with compact gauge group G with nontrivial center.! We admit multiplets of
Bose fields ¢(x), but no fermions. The Bose fields are required to transform trivially
under an abelian (finite or Lie-) subgroup I' contained in the center of G. Let
C a closed path, U[C]eG the parallel transporter around C, and x the character
of a representation of G which is not trivial on I". We show that the Wilson loop
integral satisfies

{HULCT)) < x(1) exp{ — o+ (area enclosed by C)} (1.1)

with o > 0. This indicates confinement of fractional static charges. Fractional
means with nontrivial transformation law under I'.

Example. G=SU(2),I' ~Z,, ¢ any (reducible or irreducible) multiplet of scalar
fields with integral “colour” isospins, y(U)=tr U.

The proof of this result is elementary. It is essential that the Euclidean
Lagrangean is real. Coupling constants are otherwise arbitrary.

For the special case of the Abelian Higgs-Villain model [9] a stronger result
than ours is known [2] for small coupling constant 1.

2. An Example

For the sake of clarity we consider first a model with gauge group G = SU(2),
I'={+1}~Z,, ¢ scalar fields transforming according to a one valued repre-

1 By definition, the center of G consists of those elements y of G which commute with all elements,
i.e. yg = gy for all g in G. Among the simply connected simple Lie groups, the requirement of nontrivial
center excludes the exceptional groups G,,F, and E,
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sentation of G/I'. We consider the theory on a finite lattice A < Z* with free
boundary conditions. The character

wW)=trU (2.1)
is not trivial on I" since Sx(+ 1) = + 1.

The (random) variables of the theory are U(b)eG associated with links b
between nearest neighbours on the lattice, and ¢(x) associated with vertices
x€A. If the direction of the link is reversed, U(b) — U(b) ™. For any directed path
C consisting of links b, ...b,, the parallel transporter U[C]= U(b,)... U(b,).
We write U(b) = U(b)['€G/I" etc. Since the scalar fields are assumed to transform
trivially under I', their interaction with the gauge field variables U(b) involves
only U(b).

The Euclidean Lagrangean will be taken to be of the form

L=BY (U[P])+ L,({¢,U}). 2.2)
P

The sum in the first term goes over all plaquettes P, i.e. closed paths of four links
b, ...b,; the orientation of P is immaterial since y(U) = y(U™?).

Let F any observable = (u-measurable) function of the random variables.
Then

(F)=2Z""[duF; Z = [du (2.3)
du = [1dU®)[Tde(x)e"
b x

dU is normalized Haar measure on G [3].
Let C a closed directed path, then it is the boundary C = 0= of a region E = A
with area |E|. We study the expectation value of the Wilson loop integral,

<AULC])y =z [TTdU®BULC]) exp BY ((ULPDI({U, $}).
b P
I({U,¢}) = [[1d¢(x) exp L,({¢, U}). (24)

The variables U(b) take values in G and are integrated over G. Our method
of proof consists in carrying out the sub-integration (rather: summation) over
the subgroup I' of G. If fis any integrable function on G, then

[dUf(U) = [aU [dyf(Uy) 2.5)

because of invariance of Haar measure on G under the action of the group. Here

far(.)=33(.)
yell
is integration over I" with normalized Haar measure on I
We use this to rewrite the U-integrations in (2.4). Of course, U(b) remains
invariant under the substitution U(b)— U(b)y(b),y(b)el’. Moreover, since y(b)
are in the center of G, U[C] — U[C]y[C] for any closed path C made of links
b,...b,, with y[C] = y(b,)...y(b,). Also

AWULCHIC]) = o[CHAULC]),
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o the 1-dimensional unitary representation of I' given by w(y) = x(y)/x(1).
Proceeding in this way we obtain from (2.4)

uulcly =z gdU(b)x(U[C])f Ibldy(b)w(v[C] I({U, ¢})
"eXp B%x(U[P]v[P])-

In two space time dimensions, with free boundary conditions, all the variables
y[P] are independent [10]. So we may integrate over them in place of y(b)s.
Moreover, since I is abelian and o a representation of I.

o([C]D = [ «G[P]).

PcE

The product is over all plaquettes in the area Z whose boundary is C, with the
same orientation as C. This gives

S EVAN) FbIdU(b)x(U[C])f l;ldv[P]{ H:w(v[P/])}

Pc

-1({0;¢>})expﬁ;x(U[P]v[PJ).

Now the y-integrations may be performed. We define #(U) for UeG by
j dyw(y)eﬂ"(u” =n(U) f dyeﬂx(vv) . (2.5)
r r

Explicitly
n(U) = tanh fx(U)

for the model at hand. It has the property that #(Uy) = n(U)w(y)~ . Therefore
|n(U)| depends on U only through U, since |w(y)| = 1. Moreover, since y(U)
is real

[n(U)|<e * with o> 0 independent of U. (2.6)
Explicitly
o= —Intanh 28>0 (2.7a)

since | x(U)| £ x(1) =2 for all U. For the same reason |x(U[C])| < x(1).
As a consequence we obtain the inequality

VLD 1 1002 a1 InGTP DI (0.0)
b PcE
[T1av[P]exp Y ULPTY[P]).
P P
In this step we have made essential use of the fact that the Lagrangean is real.

Now the variable transformation U(b) — U(b)y(b) can be undone again and the
y-integrations are then trivial to perform. As a result

[<ULED> I = M2~ fdp H_In(U[P'])I~ (2.8)
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Due to inequality (2.6) this gives the final result
[<ULCH Y| < x(D)e ! (2.7b)

independent of the total volume 4.
It is interesting to note that the integral in (2.8) is the partition function of
a system with real Lagrangean L + ) In|n(U[P])| enclosed in a heat bath with

P
Lagrangean L. Thus the right hand side of (2.8) is the difference of free energies
of two true statistical mechanical systems in Z immersed in the same heat bath.

3. The General Case

The general case is treated in exactly the same way. The Euclidean Lagrangean
is assumed to be of the form

L=B;30(U[P])+L1({U,¢}).

It is assumed that
i) %, and L, are real, and £ (U)=Z,(U™").

i) &, is a continuous function of UeG.

i) Z,(VUV~")=Z,(U) (gauge invariance).

The last requirement assures that £ (U[P]) does not depend on a choice
of initial point on P, and the first that it does not depend on the orientation of
P. jdy is again normalized Haar measure on I', and w(p) = x(y)/x(1), x the character
involved in the loop. We admit free boundary conditions, or any other boundary
conditions that involve only constraints on U(b) and ¢(x). The Bose fields ¢(x)
may take values in a vector space V on which a reducible or irreducible unitary
representation of G/I" acts, or on a submanifold of ¥ on which G/I'" can act, e.g.
a sphere (¢(x), ¢(x)) = 1, or they may be absent altogether.

n(U) is defined by the analog of Eq. (2.5")
[adyarxy)eP U = n(U) [ dyeP 0 (3.1)

|n(U)| is a function of U only for the same reason as before. It remains to show
inequality (2.6).

Both integrals in (3.1) involve integration of a continuous function over a
compact space I. Therefore the results are continuous functions of the variable
U which takes values in the compact space G. In particular, therefore,
j dy exp fF (Uy) must assume its minimum in U which is positive since
exp pZ,(Uy) is positive and never zero. Thus also #(U) is a continuous function
of U. But |7(U)| < 1 for all U. Indeed, |n(U)| £ 1 holds because |w(y)| = 1. Since
exp fZ, is positive, equality could only hold if w(y) were constant on I" except
on a set of Haar measure zero. By hypothesis this is not the case since w is a non-
trivial representation of I'. Being continuous on G, | #(U)| must assume its maximum
which is therefore not 1. Consequently (2.6) holds with a positive .
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All other computations are literally the same as in Sect. 2. The resulting

bound (2.7b) is valid for any finite volume A and is independent of A.

Remark. If £, depends itself only on U one obtains n(U)=0 and therefore
{UC])y = x(1) lim exp — «|E]| (“superconfinement”).

4.
(1)

2

a0

Concluding Remarks

The same mechanism of quark confinement works in theories in more than
2 dimensions treated by high temperature expansion (small f) [1, 4]. Carrying
out the sub-integrations over I already produces a factor B'¥! since all lower
terms in the power series expansion in f are integrated to zero.

In the case of a finite group I" our bounds are not good enough to establish
confinement in the continuum limit in which # — co. For instance, expression
(2.7a) tends to zero exponentially as f — co. For the Abelian Higgs-Villain
model [9], Israel and Nappi [2] have derived bounds which do not have
this feature. Thus our bounds are not optimal. Comparison with the treatment
of Callan, Dashen and Gross [5] of the Abelian Higgs model in continuous
space time reveals a possible reason. We think of our lattice as superimposed
on continuous space time. All the models of interest here admit topological
excitations labelled by an element of I' [6]. The excitations of the “classical
vacuum” (pure gauge) of lowest action are called instantons, they have a
definite size in two dimensions [7]. Our method consisted in taking into
account the effect of topological excitations of size smaller than one lattice
cell (so they become infinitely small when the lattice spacing goes to zero).
Such an excitation supported inside the plaquette P takes U[P]— U[P]y
and, more generally, U[C] — U[C]y" for any path C which winds n times
around its support. When one starts from a pure gauge, making such an
excitation costs action of order f. It tends to infinity in the continuum limit.
Excitations of larger size would be more favorable.

We hope to come back to these issues elsewhere, see also [8].
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In the definition of f (beginning of Sect. 4, p. 72) we need f(—5R/2)=1/9, f(—R/2)=8/9 instead of 1/3
and 2/3. Proofs remain unchanged, only (34) turns into Q,, <3R(1+d)S; +(8+24)S,.





