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Vacuum Energy in goj-Theory for g— oo

G. V. Efimov
Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, Dubna, USSR

Abstract. In the nonlocal g¢j(d=1) and local go3 theory the S-matrix is
obtained in a form of the functional integral which is proved to exist. The
density of vacuum energy
.1
E(g)= — lim 7In <01Sy(9)|0>
V-

is investigated. It is proved to be analytic through the whole complex g-plane
except for the negative real axis and point g=0. Its asymptotic behaviour for
g— oo is found.

1. Statement of the Problem

The @*-theory is rather popular; and quite a number of papers are devoted to
investigations of various aspects of this theoretical model. Without exaggeration,
one can say that it is just this model that tests majority of theoretical methods and
approaches. It is difficult to report all contributions of investigations of different
aspects of the ¢*-theory.

In the given paper, the go*-theory is applied to study the density of vacuum
energy

Flg)= = lim 3 1n <OISy{g, )0 (1)
The function E(g) in (1.1) is finite in the local ¢3-theory for space-time dimensions
d=1 (anharmonic oscillator) and d =2 (the so called ¢3-theory) only. For d>2 the
function E(g) does not exist at all in the local theory because of ultraviolet
divergences. However, E(g) is finite in the nonlocal theory when the causal Green
functions D(k?) of the scalar field ¢ decreases rather fast in the Euclidean direction
(k* =k3 —k*— — o0).

In the given paper we will consider all these cases and obtain the analytical
properties in the complex g-plane and the asymptotical behaviour of the function
E(g) for g— co.
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16 G. V. Efimov

We will examine the theory of one component scalar field ¢(x) described by the
Lagrangian density

Z(x)=39(x)(O-m*)o(x) — g[K(* Do (x)]* (1.2)

The operator K(I*> [J) is nonlocal and satisfies the conditions
i) K(z) is an entire analytical function of an order of ¢ =% in the complex
z-plane,

ii) K(z) decreases rapidly enough when z=1[1?k?=1*(k3 —k*)— — o0,

i) K(—PPm?)=1,

iv) [ is a parameter characterizing the region of nonlocal interaction.

The local theory is the limit [—0. The finite unitary S-matrix in perturbation
theory for the Lagrangian (1.2) is constructed in [1].

In paper [2] the representation of the S-matrix as a functional integral was
given for the case of nonpolynomial interactions. In this paper we use the
representation obtained in [2] for investigation of the theory described by the
Lagrangian (1.2).

The S-matrix as a functional of the scalar field ¢(x) in the Euclidean space of
dimension d is defined in the form of the functional integral

Sy(g, )= do,exp { —gl d*x[D(u, x)+ (x)]*} . (1.3)

Here the following notations are introduced.
The system is supposed to be in a finite folume ¥V CIR,. In the volume V there is
an orthonormal system of functions {g(x)} (s=1,2,3,...) such that

[ d'xg,(x)g, (x)=0,,,
V (1.4)
Y gx)g(x) =0 (x—x).

=1

N
The volume V and the system of functions {g,} can be chosen in the following way

V={x: —Lng§L,j=1,2, cnd},
d
(0.0 =g, = { T3, (L3)

! cosn<s—1)x s is odd
yar L\ 2 )
fo=1"

V2L

The measure do, is defined as

do,=[] du, exp{— 1uf}
s=1 2

Von

. S .
sin——x, siseven.
2
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so that

fao,= I | -Ferp |- uf =1,
Sometimes we will use the notation

=1

s=1

The function @(u, x) is defined as

2
NS

P, x)= Z D (X, (1.6)
where

D(x)= g dyDy(x, y)g,(y)

Dy(x, y)=hy(x)D(x = y)hy(y), (1.7)

&k K(= 12k
@2n)! |/ m*+k?

A function hy(x)e D(V), ie. this function is infinitely differentiable and positive,
has the support V and

lim h,(x)=1.

V-

ikx

Z(x)=]

The function Z(x) is connected with the causal function D(x) in the following way
DV(X’ X/) = j dy@V(X, y)@(y, xl) B
14

lim Dy (x,x")=D(x —x')

V-

ddk lzkz 2
=[{dyD(x—y)D(y—x)=| L]

2r)y*  m2+k?

zk(x—-x’) (18)
The system {g,} is chosen in such a way that

d’k [K(—1?k%)]?
Sz @Z(x) D (x, x) D(O) j(zn)d[ r(nz-{—k?‘)]

ZSM@SZ(x)<oo, VYM>0, V<.

s=1

The functional integral in (1.3) is defined as
Sy(9, )= lim SM(g, p),
Nz (1.10)
SM(g, )=[dol ’eXp{ g [ dx[d™M(u, X)+¢(X)]4},
14
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where
N 1
do®™=T] du exp{——uf}, (1.11)
s=1 27'C 2
N
M, x)= Y D (xX)u,. (1.12)
s=1

The choice of the interaction in (1.3) or (1.10) corresponds to the so called usual
but not normal product of operators. We can do it in the nonlocal theory and for
the anharmonic oscillator. In the case of the local ¢3-theory we have to take the
normal product of operators (see Sect. 6).

In this paper we will study the density of vacuum energy defined as (1.1) where

<01Sy(9, 9)I0>=S,(g,0)=S(9)

is given by (1.10). Our investigation proceeds as follows. We prove that:

i) the functional integral (1.3) given by limit (1.10) does exist for any V < co and
defines an analytical function in the complex g-plane singular at point g=0;

ii) the function E(g) in (1.1) is analytical throughout the complex g-plane except
the negative real axis including the point g=0;

iil) the upper and lower bounds are found for the function E(g) when g— oo in
the nonlocal theory as a function of dimension d and an ultraviolet behaviour of
the causal Green function D(k?) in the Euclidean region;

iv) the representation of E(g) is obtained as a dispersion integral in the
complex g-plane;

v) the upper and lower estimations in the local gg%-theory for the function

E(g, )= — lim ——ln Sy(g, D)

V—*oo

are found where @ =const. The minimum of E(g, @) for g— o0 is at the points

b, =+ ‘/zllng, n=1).

2. Existence of the Functional Integral

Here we show that the functional integral (2.3) does exist, i.e. the limit in (1.10)
exists for all complex g=0.
First let us consider the right half plane Reg>0. In this region we have

ISM(g, @) <1,  (YN>1). 2.1)
Further consider the difference
ANTM =SV Mg ) — SN (g, @)
=[ o} lexp—g | dxLp()+ @M (n 0]
14

—exp { —g £ dx[p(x)+ PM(u, x)]“} ) (2.2)
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Transform this difference in the following way
1 62
ANTM=[dé(1—¢) fdoM M —

0 ¢

. exp{ —g Ij/ dx[p(x) + @N(u, x) + EPHN-M(y, x)]“}

=[d&(1—=&)[dol Mexp {—gC(u, &)}
0
{ —12¢ [ dx[P™M(u, x)1*[o(x) + P™(u, x) + Ep™(u, x)]?
14
+ 1642 “ dx PNy, x)[p(x) + PM(u, x) + Ep™M(y, x)] 3]2} ,

where
PO M, x) = SN, x) — O, x),

Clu, x)= | dx[p(x) + D™(u, x) + EPNM(u, x)]*.

Making use of the Holder inequalities for integrals

2

1py 1
|jdaA1A2|§[jdo|A1|Pll hdolAZP’Z} ,
where p, +p, =1, one can obtain
1
AN M [dE(1— &) [da™exp {—Reg-C(u, &)}
0
{121g|C*2(u, &)+ 16]g|>C**(u, &)} [j dx(P N0 (u, x))* |2
V J
Further using the obvious inequalities

Cre Re9C<[Reg] 1y%e™7,
fdo(w)y <[[doyw]*, (x<l,[do=1),

one can obtain finally

|AN M| < const-[{ da™ M [ dx(ip™ M (y, x))*| 1/
N u 7

N+M 2y1/2
=const.{jdx< y @f(x))} . (2.3)

Because the series )’ 2(x) converges well, for any ¢>0 there exists N, such that
for any M >0 and N > N, the inequality

|[ANTM] <, (2.4)

is valid. This means that the sequence S{M(g,¢) for V'<oo and Reg>0 is
fundamental and bounded.

Thus the limit in (1.10) does exist. This limit defines the functional integral (1.3)
for any V' < oo and Reg>0.
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Fig. 1

Now consider the region Reg<0. The integrals in (1.11) are not defined for
Reg <0, therefore we have to do the analytical continuation of the function
S™(g, p) in the region Re g <0, that is not a complicated problem. In order to do
the continuation into the region

g—ge’(—n<0=mn)

the contours of integrations over u, should be transformed as follows

~i0
u—ue 4.
Then we get
; N ® du, 1 -2
S(N)(gele’ (P)= ( exp { — —e 2u3}>
4 SEII foo ]/ 2

.0

-exp { —g[dx [elzq)(x) + &My, x) 4} ) (2.5

Now it should be proved that the limit N—oo of this functions does exist for
—n<0=m. To this end let us go over to the integration in (2.5) over each variable
u, along the contours LS as shown in Fig. 1. Then we have

R
]/- exp{—ie Zusz}

.0
-|lexp { —g[dx [elzgo(x) + WMy, x)r}. . (2.6)
14

N
1SP(ge”, ) =TT |
s=1Lsg

Consider the integral
du,

1 -2
ol
I exp { —g lf/ dx[®(x)+ @s(x)us]“}l

=IIS+IZS’

IS=
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1
12
3¢

exp{ gjdx[ D(x)+ D (x)Ee or}

exp{— (d [qﬁ(x)+@(x)503 9]4} (1"‘0(8_%1&)),

14

where — R =¢,,<R,. Here the mean value theorem was used. Further
1 =28 2
exp{— ~e 2 (Rse 4 +ns) }
o]/2n 2
O
- { exp{«g f dx[(b(x)-l—@s(x) (Rse 4 +17s) }
1 4
: 4
={exp{ jdx[ +J(x)(Re4+n1s)] }
0
+ lexp { —g[dx [dﬁ(x) -9 (x) (Rse 4 +1125)
14
1)
Making use of this estimation for each integral in (2.6) we obtain

ISM(ge”, )|

N N 94
<11 exp{ gfd [ (x)e4+ Y D (x)Eo,.e H
s=1 14

s1=1

+(d>—>—45)}

where 7, ,,7,,>0. Finally we have
0

.[1+0(e_m> .

I.= exp{ gjdx[ D(x)+ D (X)E s

Choosing R,=s"(b>3) we have

1

ﬁ (1+O(e_?b)) =C<w

and
< Y |9, <.
s=1
Therefore
. N 4
IS®ge, w)léCexp{—Rng dx|o()+ Y 9,005, }
|4 s=1

or

|S§/N)(gei6, (P)I < (e~ Regrconst (27)
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The analogous estimations can be applied to the difference 43 *™ in (2.2), and an
estimation of the type (2.3) can be obtained.

Thus the functional integral (1.3) defined as the limit (1.10) does exist for any
V < oo and defines an analytical function in the complex g-plane.

3. Analytical Properties of E(g) in the Complex g-Plane

The following theorem will be a basis of further analytical investigations [3].

Theorem. Let functions {f,(z)} (n=1,2,...) be regular in a region GCC and
lim £,()=f() %0

uniformly in each compact KCG. Let M is a set of zeroes of the functions f,(z) in G.
Then the zeroes of f(z) in G coincide with the limiting points of set M lying in G.

Let us consider the function

B,(g)=InS,(9). (3.1)

The singularities of By(g) in the complex g-plane are defined, first, by the
singularities of S;,(g9) and, second, by zeroes of S, (g) in the g-plane.
We will study the position of singularities and zeroes of the function

sP@=T1 | exp{ 1Y uig] dx(i@n<x)u")4} (32)
|4

s=1 —oo = n=1

and following the above theorem determine the position of singularities of the
function

In$,(g)= lim InS{"(g). (3.3)

So let us consider the function S{M(g) in (3.2). Introducing the new variables
ug=g~ o

we obtain

N © dl)
SM(g) = g—N/4(l—[ f s )
s=1 —oo l/-

exp{ —1/2 Z v2 Iidx (ni @n(x)vn)4}.

One can see from this representation that S{¥(g) has an essential singularity at the
point g=0 and no other singularities in the complex g-plane.

Now let us show that the function S{(g) has zeroes on the negative real axis in
the g-plane only. We calculate the increment of the argument of S{M(g) along the
contour C in Fig. 2. For this aim it is convenient to use a different representation of
the function S{M(g). Introducing in the integral (3.2) the new variables

1
Ug=—=0

N l/é N
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Cr
R
c. Ce
C. €

Fig. 2

and making simple transformations we obtain

N
130

SPg)=g "2

—
=
3
M=

vl o |
N2 j dte” 9 F‘N)(t) (3.4)

where

me=fqﬁi) (_%iv thif%&ij

—deRNlj

8(t—LR? — R*A(Q)). (3.5)

via

Here we go over to the spherical variables in the space Ry. The function A(Q) in
(3.5) is

N 4
AQ)= | dX( ) Qn(xm> ,
|4 n=1
N
2 M=
n=1
where 7, are the spherical variables. It is important that

0<A_SAQ)=A, <.

Performing the integration over R in (3.5) one can obtain after simple
transformations

FO(t)= IH = ler/b—l/) g -QV(b), 3.7)
+
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where

ng)(b)=2N—2(l/B)g+1 j(;f_;:)zv S (% — 16A(Q)) ,

b, =(A;)_1.

It is essential that the dependence on ¢ in (3.7) is picked out in the explicit form, the
integral over b is taken over the finite region

O0<b_=bsb,<w

and the function Q{M(b) is integrable.
Thus, the function S{M(g) can be represented in the form

u
SPg) =g~ dte s bf b Lb*&;—f Y (3.8)

This representation is convenient for our aim.
From the representation (3.8) it is easy to find the asymptotical behaviour of
the function S{M(g) for |g|—0 and |g|— co. Introducing the variables

g=re® and t=ge?

one can get

. B —i¢(5—1) ©
SM(re'?)=r~N2e T\2 jdge‘@/'

b+ db(|/b +0e'” — 1/) T o
(b 3.9

and then

g*N“r( )fde(M(b)[HO()}, lgl—c0.
SW(g) = (3.10)

2F<N)b+ i OV(BN1+0(g)], 1g91-0.

@Yy

Making use of this asymptotical behaviour (3.10) it is easy to calculate the
increment of the argument of S¥"(g) along the contours C, and C, in Fig. 2:

N
AargSP()lc = — ZnZ, AargS™M(g)lc, =0

Whence

N
AargSPQey e, = —2m . (3.11)
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Now let us consider the increment of the argument of S{M(g) along the contours

C, and C_ in Fig. 2. For this aim the function S{M(g) for g =re*" can be written in

the form

by
ng)(reiin)z _ T NI2pFin(N/2) j de(‘}")(b)
b_

N2
O L et ) B (i amb— VB >
3 [ dge@ + f dge™®
0 l/b—o +il/o—-b
Let us consider the even N =2n. Without loss of generality we can consider the
limit
Sy(9)= lim 53"(q).
The function S{"(re*™™) can be represented in the form

SEM(re* ™) = AW(r) + iBP(r) = R{P(r)e %"

Let us consider

B{(r)=ImSZ"(re’™) = R""(r) sin 0$(r)

Y/ “Zf aboE B Y/Br e Ty ().

} r\41
1 (-1
(- )( ) gl i—1-2g)1

—_

n—

M~I

. [
T";l(ﬁ:

The function B{’(r) can change its sign not more than |-

0

-1
} times because the

20 , —1
the contour C, can increase its phase not more than by = ([n—2~} + 1). Thus we

have

polynomial T[u ]is of degree [n;l} It means that the function S{*"(re'™) along

—1
AargSPG)lc, +c. é?-n( z 5 ] + 1). (3.12)

Collecting all estimations (3.11) and (3.12) we obtain
AargSE(g)|c<n

The increment of the argument of S{*"(g) cannot be negative because S{>"(g) has
no poles. Besides it is always a number multiple of 2n because S{*" has zeroes only.
Finally we get

AargSE(g)le=0 (Vn>0). (3.13)

Consequently the function S{?"(g) has no zeroes in the complex g-plane except

. . . . n—1
the negative real axis, and on this axis it has } zeroes. The number of zeroes

increases when n— oo.
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Thus, according to the Theorem the function Sy (g) in (3.3) has zeroes on the
negative real axis only in the complex g-plane for any V < co. It means that InS,(g)
has singularities at point g=0 and on the negative real axis. Consequently
according to the same Theorem the function E(g) in (1.13) has singularities at point
¢g=0 and on the negative real axis in the complex g-plane.

4. Upper and Lower Bounds of E(g) in Nonlocal Theory

In this section we obtain the upper and lower estimations for real positive g on the
density of the vacuum energy in nonlocal theory when the causal Green function
D(k?) decreases rapidly enough in the Euclidean direction.

First, the lower bound of E(g) will be obtained. Let us consider the function

Sy(9)= | da, exp{ —g 1£ dxd*(u, x)} . (4.1)

The inequality

jdxq')“ u, x)> fdxfb u, x)]
gives
Sy(9)< [ do, exp{ - i[ | dxd*(u, x)r}. 4.2)
Viv

This integral can be calculated in the following way. It can be represented in the
form

1 = )
SV(g)_S_—— j dte_tFV(gat)7 (43)

V7 -

where

Fy(g,t)= | do,exp { —2it ‘/E | dx®*(u, x)}.
Vo

The last integral is calculated in the Appendix. When V is large enough we get

Fy(g, t)=exp{ vy (‘;d ol (1 +4it ‘/; (kZ))} (4.4)

Substituting this function Fy(g,t) into (4.3) and introducing the new variable
t=u]/V one can obtain

Sy(g)= !/I:— j? du
.exp{_

ut+4 j 1n(1+4zu]/_ D(kz))” 4.5)

(2ny’
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When V—co this integral can be calculated by the method of steepest descents.
The saddle point is on the negative imaginary axis in the (u+ iv)-plane. Putting
uy, = —iv, we have the equation

d d'k
i vg_ﬂ(z i In(1+4v, |/gD(k?)| =
or
dk D(k?
vo=19] ) (4.6)

91 2ny 1 +4v,]/gD(k?)

Thus the following estimation on E(g) is valid

E(g)=— lim —IHS (@) ZE_(9),

V-w
d (4.7

d |
E_(9)=—vg+ [(2 L n(1+4v, )/ gD(k?),

where v, is determined by (4.6). The formulas (4.7) can be written on the basis of
Eq. (4.6) in a different form

S kaD/(kZ) —D(k?)
E_(@)=0, /3] dk | d
) YRR 1 440,1/gD(KY)

Now let us obtain the behaviour of E_(g) for g—0 and g— 0. When g—0

'k o,
9 [ e D)= 1/ 9D(0)

(4.8)

and
E_(g9)=9D*0).

When g— oc the behaviour of v, as a function of g is determined by the ultraviolet
behaviour of the causal function D(k?). Further let us consider particular cases.
First, the case when for k?— co

D(k?)=0((k*) =79, 4.9)
where
21 +a)>d

as a consequence of the condition D(0) < co in (1.9). In this case from (4.6) for g— co
L4
v, =const-g2 4 +a-d

follows, whence

d
E_(g)=C_g*t+a-d, (4.10)

where C_ is a constant which can be determined if necessary.
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In the case of anharmonic oscillator [d=1 and a=1 in (4.10)] the causal Green
function is

1

ﬁ(kz)z 1+k2

(in units m=1). In this case the function E_(g) in (4.7) can be calculated in the
explicit form:

2
E_(g)= max{- “? +4()/T+4u— 1)}.
This expression can be written after simple transformations

(16 + 180 +9v?)

8(1+v)3v+4) ° (“.11)

E_(9)=
where
v(14+v)2+v)=2g. (4.12)
Hence it appears that in the limit of large and small g
> g—0,
E_(9)= (4.13)
§(2g)1"3 =0474¢g'3, g-.
Second, the case when
D(k?)=O(exp (— k*) (4.14)

for k?— o0. The solution v, of the equation (4.6) is

d
v, =const (In g)*"

in the limit g— oo so that

d
E_(g)=C_(Ing)> ' (1+0(l“1“g> (4.15)
Ing

Here C_ is a constant which can be found.

Now let us obtain the upper bound to the function E(g) for real positive g. The
following obvious inequality is valid for the function Sy(g) in (4.1):

SV(g)gjéuexp{—% i (1+q)u? —gjdx(z @(x)u) }

MS

:I:_OI (1+4q,)” 1/2§5uexp{——2u —gfdx(z m )} (4.16)
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Here g, are positive numbers. Then it is easy to get the following upper estimation
for E(g):

E(g)= — lim ln SHANE = llm Zln(l—i—qs)

V—»oo —2 V- s

1 24
— lim —In|do,ex {—g dx( = us> }
V_’“’V j P “[ g / 1+qs

1 1 @Z(X))Z
— li S .
ZVﬂVZIn(1+q)+39 im — jd (§1+qs

=

The numbers g, can be chosen in such a way that

lim — Zln 1+q)= j k n (1+q(k?),

vowV (4.17)
o PXx)  d%k  D(k?)
Vhfrﬁogqu ‘5(zn)d’1+q<k2>'

For example in the case of the orthonormal system (1.5) these numbers should be
taken as

7‘52
qS:qS‘ ..... Sd:q(i(sf-f-... +S:)>

V=QL).

Because the numbers g, and consequently the function g(k?) are arbitrary, we
have E(g)<E . (g),

d'k  D(k?) ]2}
In(1 k? — 5. 4.1
B =min [ 8 (1 k) + 30 s D) (@.18)
When g—0 the minimum is for g(k?)=0. In this limit we obtain
E(9)=39D*0), (4.19)

1.e. the lowest perturbation order when the interaction Lagrangian is not taken in
the normal form.

The behaviour of E_ (g) for g— oo is defined by the ultraviolet asymptotic of the
Green function D(k?). In the case (4.9) the function

2
q(k?)= (;12) , (4.20)

d . .
where 4 and > — are parameters, can be chosen to determine the function E , (g)
in (4.18).
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Substituting (4.20) into (4.18) and putting g— oo one can see that the minimum
is realized for large 4. We have

g

E.(9) émig rr}jn Cy(p)A*+ Cz(ﬁ)ml ,

ﬂ>3

where
1. d% 1

d'k K P
ik

Cy(p)=3 j(zn)d k2AFa(2F 4 q

Then it follows

d

E (9)=C -gttFa=d, (4.21)

where

dC,(p) ){2(2(1 +a)-dC,p]
22(1+a)—d) dCl(ﬁ)

C, =mﬁinC1(ﬂ)(1+

This constant C, can be calculated.
_ Thus two estimations (4.15) and (4.21) show that in the nonlocal theory when
D(k*)=0((k?)~'~¢) for k*—co in the limit g— oo the vacuum energy E(g) is
d
E(g)=Cg*tt+a-d, (4.22)

where C is a constant satisfying C_ <C < C . The formula (4.22) can be rewritten
in the form

E =C a(d, a)
(9)=Cg™2, , 4.23)
dae— 4 _ —(1_2(1+a)
A —4(1+a)—d—1+ L d
2(1+a)l

because of 2(1+a)>d according to the condition D(0)< co.

Note once more that the behaviour E(g) for g— oo is defined by the dimension
of space-time d and the ultraviolet asymptotic of the causal Green function D(k?)
for k*— 0.

The function E (g) in (4.18) for the anharmonic oscillator reads:

1% A%\ L2 dk 2
E_.(g)= min min ym | dkln(1+<k—2>)+3g = { YBY; .
N '°°(1+k2)(1+(—>)

k2
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In the limit g— oo it is easy to obtain
L A 3 1
E_(9)=min min| —— + A_gz——'—z
" asin (2ﬂsin %)

3 2’3
=0.757g"3. (4.24)

Collecting the estimations (4.13) and (4.24) we obtain
0.474¢"% < E(g)<0.757g/3. (4.25)

The exact calculations which can be done for the anharmonic oscillator making
use of the Schrodinger equation give [4]

E(g)=0.6680g"3.

One can see that our estimations are rather accurate.

At last let us consider E , (g) for g— co in the case (4.14). This estimation can be
obtained by choosing q(k?)= Aexp{ —k*"}. After simple calculations one can get in
the limit g— oo

(4.26)

4 Inl
E+(g>=c+(lng>2v“{1+o(“ “g) .

Ing

Thus in the @Z-theory with the propagator D(k?) (4.14) we have in the limit of
strong coupling

(4.27)

d
E(g)=C(lng)> ' [ 1+0 (lrlllir;g) .

In paper [5] the @*-theory with the propagator D(k?)=e~* [i.e.y=11n (4.14)]
was considered. The authors have calculated eight perturbation orders for
different characteristics of this model (energy levels, Green functions). The
knowledge of exact asymptotics (4.27) should help for different methods of
asymptotic summation.

5. Dispersion Representation of E(g)

After the investigations performed in the previous sections we prove the vacuum
energy E(g) defined by (1.1) has the following properties:
1) E(g) is analytic in the complex g-plane except the negative real axis,
i) for |g|— o0
(

[E(g)| = const|g], (5.1)
iii) for g— + o0

E(g) =const g*49 | (5.2)
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where

d

O((d’a)=4(1——i—a)——d <1

iv) for Reg>0

E(g)o ). ¢"E,, (5.3)
where E,=0(n!), i.e. E(g) can be developed into an asymptotical series.

It follows from (5.1) and (5.2) that for |g|— o0

|E(9)| = const |g["“®. (5.4)
Further it is possible to write the following dispersion representation

Eg) _ 1 dlEQ (5.5)
g 2micll—9)
where C is the contour shown in Fig. 2. The integration over this contour C in (5.5)
gives

E(g 1 F 1¥)4
Ej;c —{(C) E(fe™)]
whence
1
< deolg
= ,
=01 4grg

. . . 1
or introducing the new variable u= :

“ duo(u)

E(g)=g |

I gu (5.6)

According to the conditions (5.3) and (5.4) the function o(u) satisfies

dm:{ow_ﬂ’ " (5.7)

O™, u—oo.

The representation (5.6) can be written in the other form
E(g)=g | ds | dus(u)e™*~ 9=y | dse *B(gs), (5.8)
(0] 0 0
where

B(t)= T duo(u)e™™.
0
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This function B(t) according to the estimations (5.7) is analytical for Re¢t> — 1 and
for t— o0

B(t)=0(t™'"%). (5.9)

Thus the perturbation series in the nonlocal ¢*-theory is summarizable by the
Boral method to the exact expression.

6. E(g) in the Local ¢3-Theory

A great number of papers (see [6]) are devoted to the local @3-theory. The upper
and lower estimations were obtained for E(g) [6-8] but these estimations are quite
rough. Here, by using our representation (1.3) for Sy (g, ¢), we will get more exact
estimations for

E(g, )= — lim —ln Sy(g, D) (6.1

V—>oo

in the limit g— oo and for an arbitrary constant field & =const.
The function Sy (g, ?) in the local limit can be represented as

Sylg. ®)=lim [ do,exp {gW;"(u, D)}, (6.2)
=

where the interaction Lagrangian is taken in the normal form

WO, @)= — j d2x: [ (u, x)+ P]*:
=— j d*x [(@,(u, x) + @)* — 6D,(0)(D,(u, x) + D)* + 3D7(0)]. (6.3)

In the two-dimensional space-time the limit /-0 in (6.2) does exist for any
elements of the S-matrix. We will study the vacuum energy E(g, ®) in (6.1).

First we obtain the upper estimation E (g, ?) in (6.1). Let us write down the
following obvious inequality

Sy(g, @)= lim | du
1-0

~exp{— %guf— %gqs(us—vs)z—gidx:[g%(xwﬁcb“:}, (6.4)

where g, are positive and v, are real numbers. After simple transformations one
can get

Sy(g, )>hmH1+q 1/2-exp{; 1+ }jéuexp{——Zu}

I

~exp{—g£dx[(zl/91_$% +d5> —6D,(0)<§ 715(%“5-‘-(151)

+3Df<0>}},
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where

?, ¢+Z 1_:1);15 V.

Then the following inequality is valid for E(g, @)

E(g, ®) < —11m Zln 1+q)-|-—11m —Z

1+qs Vs

2 (x)
+ lim lim < ( d%x (do K s
150 Voo V f j §|/1+qs

2
us+¢1> +3D,2(0)}.

4
us-l-fpl)

o[y 2

The numbers g, and v, can be chosen in such a way that

lim Zln (1+qy)= f

Jim 2 on )2 n (1 +q(k?),

% . 40 ,
V—>00V s 1+qs g 1+q(0)

' D (x) 2(0)g(0) 4q(0)
VIL“@H%“S 1440 "~ T+40) "™
PXx) . d*k Dk?)
Vhffo ViTrq, o Tt qk?)

kRGP
=Gy Tt gty P

Here g(k?) and v are arbitrary, m=1.

G. V. Efimov

(6.5)

For example, in the case of the system (1.5) it can be done in the following way

2
qs:qslsz_ (Lz(s +82))

V=0 (2L)*6,,0,,,v.

Slsz sil
Then the estimation (6.5) can be written

90
2°(2n )2 2 1+4(0)

+glim [342 — 64,02 + 047,
-0

g, 0) <~ j In (1 -+ q(k2) + ~
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a0
1+4(0)
k_[K(=PI)Pq(k)
@m? (L)1 +q(%)

where ¢, =0+

A1=DZ—D1’1=§

One can see that
d*k q(k?)
2m)* (1+Kk>)(1 +q(k*)"

4(0)
1 +4(0)

11m 4,=4[q]=]

Introducing the new variable ¢ = v— @ we obtain finally

Elg, ®)<E. (g, 9),
.1 d*k
E.g.#)= min {355 In(1+0)
14 ¢(0)

+— 40) ———(p— D) +g[34*[¢q] - 6w2A[q]+w4]} (6.6)

Let us choose

AZ

—

A

z -0
IS LA I A=0:
Tan1ra724 T TV
—1InAd, A-ow
47
We have for (6.6)
A 1 2 2 2 4
E+(g,¢)=rfln §+§(w—@) +9g[347(4)—6p°4(A)+v*];. (6.7)
s W

In the limit g— o one can obtain putting y=sign @ |/34(A) and calculating the
minimum with respect to A4

3 2
(]ng+ln;53> —B}

1 3 3 2
+§(I<D]— E(lng+lnPB)) , (6.8)

3
E+(9»‘I))=—8—n—29
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where

=2

oo
Ing

lng+1nizB}=2lng
T

One can see from this estimation that the minimum vacuum energy E (g, ?) in
(6.7) is at the points

3 Inlng
=+|/— 1
_l/4nlng[ +O< ing >

but not for @=0.

Now let us study the lower estimation E_(g, ®) in (6.1). This estimation is
obtained in a more complicated way.

First of all let us introduce the regularized field

(6.9)

D (u, x) =Y D (x)u,

for which
PN zj d’k A; 1 o
(27r [/l—l——kz/l +k?
where
Az1.

Then introducing the notation

(P, )P u, X)) = [ da, &(u, x)P(u, X')

we get in the limit V—o0 and [-0
dzk eikx B 1
21+k2 " 2n
D 4(x) =@ (u, x)®(u,0)) = | dy@“"(x )2
Pk (A2 — 1) {
G ez~ e Lo~ Ko, (6.10)
D, 4(x)=<{ P u, x)P“(u,0)) = [ dyD'"(x — y)2(y)
_j dlk (AZ _ 1)2eikx
U 2m)? (T+R)(A% + k%)

D(x)={P(u, x)®(u,0)) = f Ko(1),

i\ 4
=EK0(t)—KO(At)—(1—A) tK(At)]

where K (z) is the Mac-Donald function, t=]/x>
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Let us introduce the interaction function
HP(u, @)= — [ d*x :[®“D(u, x) + D]*:
14
— — [ X{[ D, x) + 31— 6D, O[S (u, x)+ &2 +3D2_(0)},
14

where

| 1 1
DZ’A(O)zﬁ(ln A2—1+F) = 4T (6.11)

Making use of the following inequality
—(¢*—6D@? +3D?) < — 20D(¢*— D)+ C,D?, (6.12)
where C,=6+4a+a?, we have

—:[@W]*: < 20D, ,(0):[#W]2: +C,D2 ,(0),
[0 =[0]*~D, (0). (6.13)

Now let us transform Sy(g, ) in (6.2)
Sylg, P)= }ljlg [ doexp {gIW," — 20D, 4O)HS (u, P)1}
-exp {2goD; 4(O)H5 (u, D)}
= _TOO dte” ( — %) a(t)=g _Ojooo dte”s(t),
where
H(u, @)= — 1[ d?x : [®D(u, x)+ P]?:,

o(t)=lim | do,exp {20gD, ,(0)H(u, d)}
1-0

O(Wu, @)— 20D, ,(0)HS (u, P)—1). (6.14)
Let us consider the representation
Sy(g, P)=Tiy(9, D)+ Tpy (g, D), (6.15)
where

0
Tiy(g, ®)=g | dte®o(t),
. (6.16)

Top(g, @)=y | dte*a(t).
0

For the function T,,(g, ®) the following estimation is valid

Tiylg, @) <lim [ do,exp {20gD, ,(0)H5"(u, )} .
-0
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This integral can be calculated according to (A.1):
d2

27(2n)
vV

y
et 6.17
2 1+yD2,A(O)} (@17

|4 -
T1V<g,<p>§exp{ VK (19D, (02— 9D, ()]

where y=4gaD, ,(0)is an arbitrary number. In the limit A— oo when y is fixed we
have

T,y(g. @) Sexp {~ [+ (1 +7)—7]— Aqﬂ 1+y} (6.18)

Now consider the function T,,(g, ?) in (6.16). We want to get an estimation for
the function o(t) in (6.16). For this aim let us consider the region

Wilu, @) —2uD, (O)H(u, @)z V(b+C,D3 40)),
where b>0. It is easy to see that this region is smaller than the region

W¥O(u, ®)— H{(u, &)= Vb
because of

W (u, @) — H{(u, @)= Vb

+[VC,D3 4(0)+2aD, ,(0)HY"(u, ®)—H{ (u, ®)]=Vb (6.19)

according to (6.13).
Therefore putting

=V(b+C,D3 ,0)

one can obtain the following inequality for o(t) in (6.15) using (6.16) in the limit
-0

o(t)<min | do,exp {2goD, ,(0)HY (u, ®)}
p>1

2p

|7 (Wt )~ HP )

Further using the Holder inequality we obtain

et
qp}q,

([ do,exp (2qg2D,_(OHY (u, B}, (6.20)

L Wy, @) H, )

o(t)<min {j do, 7

r>1

1 1
where — + — =1, ¢>1, ¢ >1.
q9 4 1
The integral
=[do,exp {2qgaD, (0)HS (u, @)}
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can be calculated in the explicit form. According to (A.1) we get

- B

=esp (V] p-p)— 5 s e
where

p=4qgeD, 40)=qy
according to (6.17).

The integral

1 2N
JV, NT j do—n % ( W4(us 45) - H(4A)(u’ @)) (621)

is the 2N-th perturbation order for the interaction
W,(u, ®)— H{P(u, &)= — I.[ d?x[ {(P(u, x)+ D)*: — ((PD(u, x)+ D)*:].
When V—oo the main contribution to the integral (6.21) comes from the two-
points coupling
W, —H)*> =[do [W,(u,x)— H{"]* = VG(A, D),
where in the limit V— o0
G(A, @) =24 [ d*x[4,(x)+44,(x)D? +34,(x)P*],
A(x)=D%(x)—=2D%(x)+ D3 _4(x).
Making use of the formulas (6.10) one can get for A— o0

21 (InA?)? 2nd? (27‘5@2 2
G, B)= - -(1+4(1M2)+2 1n/12> } (622)

Turning to the integral (6.21) we obtain for large ¥V and N

(ol

Since we study the behaviour of all functions in the limit ¥ — oo then we have (from
the Stirling formula)
1
min {JV, 2q'p}ql
p>1

G(A, D)
Ty y=@N =11 E2

=minexp {plng’ }2G(A’¢)p—-ex {——VL}
TR EXPRPING PP [Ty | TP\ T G 8) [
Thus the following inequality for o(z) is valid

o(t)=0(V(b+C,D3 ,0)=0. (1)

B V
15 T g LA+ =1

Vb? }

V 2
‘eXp{ 22 27GA D)
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In the limit g— + oo the main contribution to the vacuum energy gives
T, (g, @) because ff=qy is arbitrary. Then we have for g— oo

—E(g, )= lim —lnS (9, P)

V-

.1
= lim V lﬂ(T1 V(g, d)) + TZV(gv (D))

V-

1
=0(1)+ lim - InT,,(g. )

V-w

< max %ht %lnmr(t)
bZ
= max [g<b+caD§,A(0»— AT
L p

This expression should be minimized over the parameters b and 5. Making use of
(6.12) and (6.18) we obtain

B p
9C.D3 AO=60D3 40)+ Dy 40+ ¢z

Finally we can write changing the sign in (6.23)

E(g,®)2E (9. 9),
E_(g, ) = max min {—g(b +6D3 4(0))
bb A

b? lﬁquﬁ

torend) Tagiap? g P2al)
= raepmaap-p- Lo (6.24)
8nq 16g%g " '

Now let us get the asymptotical behaviour E_(g, @) for g— co. Using the formulas
3

(6.11) and (6.22), changing the variables b— 3229 and A=A and limiting

ourselves to logarithmic terms In4 we obtain

E_(g9,9)= rrﬂlax mAin{~ g—t—z{g(g—k(lnA)z—ﬂnA)
s @

B no2A
284/(InA)°F(4, D)

+[ b ‘i—ﬁmi—i[uw)ln(uﬁ)—m—lf—z]}, (629)
nq q-9
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where

InA4

2 2\ 2
F=F(A,q§)=1+4(2n(p> 2(2“—(p> .
InA

The supremums with respect to 4, ¢, and f§ can be performed and the result in our
approximation is

3
E_(g,(P)z—Wg[lng+lnB]2+a(g, D), (6.26)

7
where B= E;q’F-(lng +InB)

R R R
s(g,@)—z—qmﬂm 1+ﬁ<15 o Ing
1 1 2
= — —_ —1 .
% (1<1>| = ng) : (6.27)

@2 . . . . .
where 2. ~ ——. Therefore the inequality (6.23) proves its value in the limit
ng

g—> 0. :
Finally we obtain in the limit g— o0

3
E_(9,9)=— Wg[lng+lnB]2

1 1 )\
— (19— l/— 2 .
+2q(| I e (Ing+1nB) ) , (6.28)
where g>1.

We can see that the extimations (6.7) and (6.28) are close one to another in the
limit g— oo. They can be jointed, the result for E(g, @) in (6.1) is

1+O<1n1ng)
Ing

g 1/1 Inlng\\\?
+2(|q5| Vznlng(l—l—O( o ))) , (6.29)
where n~1.

It follows from this formula that the minimum of the vacuum energy in the
go3-theory in the limit g— oo is at points

P, =+ '/ilng. (6.30)
- 27

It means that in this system there is a phase transition for g—co. It should be
noted that our estimations (6.8) and (6.28) do not prove, strictly speaking, the
existence of the phase transition in the @3-theory. This was proved in [7] (see also

3
E(g, ®)=— g2 dn 9)°
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[9-11]). The reason is that the accuracy of the first term in (6.29) is O(gIng Inlng),
what is much more than the second term which is O(lng). Nevertheless our
estimations certainly indicate that the phase transition takes place and give the
points @, where vacuum energy has minimum.
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Appendix
Let us show that for V—o0
Q,=[dAexp { L[ d'xA?(x)~ia j d’x [ [ d*y D, (x, y)A() ] +z§ d*xa(x) A(x)}
14

=[6u exp{ — 3> uZ—ia | d'x [Z @s(x)us}2 +iYy ocsus}
s 14 s s

d

V. dk ~
=exp{— ?j(Qrc)"l (1 +2iaD(k?))

— 3 d'x [d*x'u(x)G(x — x’)oc(x’)} , (A1)
where
) 1 ddkezk(x x")
Glx=x)= 5 I3 ¥ 2iaD(k?)’ (A-2)
In the integral (A.1) let us change the variable
U= Z Usn no (A3)
where

LULUs
2 UaDu Uy =dd,
D,, = é g dydy g,(y)Dy(y, )9, (¥')
=ZU aur,. (A.4)
Then we have
Yui=Yo,
2 uDuy =2 dpy,

Zasuszzﬁnvn’ B ZUns S
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The integral in the new variables can be calculated:

= [dvexp { =4 (1 +2iad w2 +iy. ﬁ,,vn}

=exp{ 2Zln (1+2iad,) Z 1+2zad} (A.5)

Now let us consider

k+1

Zln 1 +2iad,))= i (2ig)* " d- (A.6)

n

Making use of the formulas (A.4) one can get

k__
Zdn_ Z Dn1n2D712113 te .annl
n

[STREEN i

= [j/dh ) “"IdYk vV Y2)Dy(y2¥3) - Dy 1) -
v

When V is large enough this function is

k __ dd
Zd,,—Vj(2 d[

n

D(k*)T*+ O(exp{ — const V' 1/4})

whence
k
> In(1+2iad,) j n(1+ 2iaD(k?)). (A7)

Further consider

y b - ¥ (~20F S pdih,

~ 142iad, =%
ZBndﬁ n_ Z O(nan,nz."'.an"k—la"k+1

LOPRERER N}

= fdy1 fdyktho‘(J’l)DV()’pJ’z)'---'DV(J’kaYk+1)°‘(Yk+1)-
v v

In this expression it is possible to take the limit V— o0

I}im Zﬁndﬁ n :jdyl~--.fdyk+1°‘(J’1)D(y1_J’2)'~~-'D(J’k_J’k+1)‘x(yk+1)
o ik
ijddej(zn)d

Substituting this formula into (A.8) we obtain

lim )

Voo g 1+2 d

[ﬁ(kz)]keik(x -x)

= [dx [ dx'a(x)G(x — x")oux") (A9)

where G(x —Xx’') is defined by the formula (A.2).
Thus substituting (A.7) and (A.9) into (A.5) one can obtain (A.1).



44 G. V. Efimov

References

1. Efimov, G.V.: Nonlocal interactions of quantized fields. Moscow : Nauka 1977

2. Efimov, G.V.: Commun. math. Phys. 57, 235 (1977)

3. Polya, G., Szego, G.: Aufgaben und Lehrsitze aus der Analysis, Bd. 1. Berlin: Springer 1925

4. Parisi, G.: Phys. Lett. 69B, 329 (1977)

S. Beruillier, C., Dronffe, J.M., Godreche, C., Zinn-Instin, J.: Comparison between large order

estimated and perturbation series in a scalar field theory with Gaussian propagator. Preprint,
Sacley (1977)

. Simon, B.: The P(¢), Euclidean (Quantum) field theory. Princeton, New Jersey: Princeton
University Press 1974

. Glimm, J,, Jaffe, A., Spencer, T.: Commun. math. Phys. 45, 203 (1975)

. Guerra, F., Rosen, L., Simon, B.: Ann. Inst. Henri Poincaré¢ 25A, 931 (1976)

. Chang, S.J.: Phys. Rev. D13, 2778 (1977)

. Frohlich, J.: Acta Phys. Austriaca, Suppl. 15, 133-269 (1976)

. Glimm, J., Jaffe, A., Spencer, T.: Ann. Phys. 101, 610 (1976); 101, 631 (1976)

(o)}

— O O 00

—_ —

Communicated by A. Jaffe

Received May 3, 1978





