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Abstract. The existence of conservation laws for novel classes of nonlinear
evolution equations (with linearly x-dependent coefficients) solvable by the
spectral transform is investigated. A remarkably explicit representation is
moreover obtained for the conserved quantities of the “old” classes of
nonlinear evolution equations (with x-independent coefficients ; including the
Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the
nonlinear Schrodinger equation, etc.).

1. Introduction

A characteristic feature of the class of nonlinear evolution equations solvable via
the spectral transform (see, for instance, [1-20]) is the existence of an infinite
number of conserved quantities (see, for instance, [ 1-28]). Indeed the discovery of
an infinite number of local conservation laws for the Korteweg-de Vries (KdV) and
modified Korteweg-de Vries (mKdV) equations has preceeded, and paved the way,
to the introduction of the inverse scattering transform (or, as we prefer to call it,
the spectral transform); it has played a crucial réle in certain fundamental
developments of the theory of these equations, such as the hamiltonian for-
mulation (see for instance [4-5]); and it has been the subject of many papers,
including several recent ones (see, for instance, [17-19], [22-28], and the paper by
Wadati, in [20]).

Recently we have introduced an extension of the approach based on the
spectral transform that enlarges the classes of nonlinear evolution equations
solvable by this technique [29-32]. A characteristic feature of these extended
classes is that they are no more associated to isospectral flows. One finds
accordingly that the existence of an infinite number of local conservation laws
holds no more. It is however still possible to exhibit conserved quantities, although
their practical usefulness is doubtful, since each of them is a linear combination of
an infinite number of the “old” conserved quantities. It is moreover possible to

*  Permanent address

0010-3616/78/0063/0155/$04.40



156 F. Calogero and A. Degasperis

investigate the time-dependence of the “old” conserved quantities ; the practicality
and interest of the corresponding results is highlighted by the discovery of
instances in which they are periodic in time (with a period determined by the
structure of the evolution equation, independently of the initial conditions).

The main purpose of this paper is to describe the results outlined above. But in
the process of deriving them we have also obtained a remarkably explicit, and
simple, representation of the old conserved quantities. Thus the results of this
paper are relevant not only to the novel classes of nonlinear evolution equations
solvable via the extension of the spectral transform method recently introduced
[29-32], but also to the equations belonging to the standard classes [1-287,
including for instance the KdV, mKdV, nonlinear Schrodinger (NLS) and Sine-
Gordon (SG) equations.

In the following Section we report tersely the main results concerning the novel
classes of nonlinear evolution equations, so as to make this paper, at least
notationally, self-consistent. The results are then derived in Section 3 for the class
of nonlinear evolution equations solvable by the spectral transform associated to
the Schrddinger spectral problem, and in Section 4 for the class of nonlinear
evolution equations solvable by the spectral transform associated to the (genera-
lized) Zakharov-Shabat spectral problem. Section 5 contains the explicit analysis
of three examples, namely generalized versions (with linearly x-dependent coef-
ficients) of the KdV, mKdV and NLS equations. A concluding Section 6 contains
some final remarks.

2. Preliminaries and Notation

The (novel) class of nonlinear evolution equations solvable via the spectral
transform associated to the Schrodinger linear problem can be written as follows
[29]:

u,(x, ) =o(L, t)u (x, )+ (L, t) [xu,(x, 1) +2u(x,1)]. 2.1
Here u(x, 1) is the field to be determined, characterized by the initial condition
u(x, to)=uy(x). (22)

In this paper we always restrict attention to fields vanishing (sufficiently fast!) as
|x|— o0 ; it is of course sufficient that this condition be imposed at the initial time
to- In (2.1) a(z, t) and f(z, t) are essentially arbitrary functions, although the most
interesting cases correspond to a low-order polynomial (or rational) dependence
on z; f=0 yields back the “old” class of nonlinear evolution equations (including
the KdV equation, see below ; note that the condition =0 is also necessary and
sufficient to guarantee the invariance of (2.1) under space translations). The
integro-differential operator L is defined by

Lf (x)=f . (x)—4u(x, 1) f (x)+ 2u,(x, 1) TO dx' f(x), (2.3)

/ being here an arbitrary function (vanishing as x— + co). Note that L depends on
u itself, and this causes (2.1) to be a nonlinear evolution equation. Clearly in these
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formulae, as in the rest of the paper, subscripted variables indicate (partial)
differentiation.
The spectral transform S associated to u consists of the following data

S{R(k), — 0 <k< +00:p,ctn=1,2,...N}, (2.4)

which are defined by the spectral problem characterized by the Schrodinger
equation

Wy (K, X) = [u(x) = k* Ty (k, x) (2.5)

and by the boundary conditions

p(k, x)——— exp(—ikx) + R (k) exp(ikx)

xX— + o0
(2.6)
w(k, x)——— T (k) exp(—ikx)
+
[ dx[ylip,x))*=1, (2.7)
plip,, x)—— ¢, exp(—p,x),p,>0. (2.8)
x>+ w

There is then a one-to-one correspondence between a function u(x) (vanishing as
|x|—~oc) and its spectral transform S: the spectral transform is associated to u
through the direct spectral problem outlined above, Equations (2.5-2.8); while u is
uniquely determined by S through the inverse spectral problem, characterized by
the equations

N + w0
M(x)= Y cZexp(—px)+(2n)~ ' [ dkR(k)exp(ikx), (2.9)
n=1 —®
K(x,x)+M(x+x')+ TC dx" K(x, x")M(x'+x")=0,x"=x, (2.10)
u(x)= —2dK(x, x)/dx. (2.11)

In these last equations we have omitted to indicate any time-dependence. But
of course if u is time-dependent, also time-dependent are all the quantities defined
above; indeed the solvability of the class of nonlinear evolution equations (2.1)
obtains because the corresponding time-evolution of the spectral transform is
simple, being characterized by the equations

R, (k, t)+kB(—4k2, ) R, (k, 1)
=2iko(— 4k, ) R(k, 1), (2.12)
p,(t)=p(t) B[4p* (1), 1]. (2.13)

We have omitted to indicate explicitly, in the last equation, the label n characteriz-
ing the different discrete eigenvalues ; nor have we written the equation for the time
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evolution of ¢, (t), since it is complicated and it is not needed in the following. We
write instead the evolution equation satisfied by the transmission coefficient
T(k,t), that will play a crucial réle in the following:

To(k, )+ kp(—4k2, 1) T (k, 1)

= —2ikT(k, 1) | dxB(—ak> L,1)[xu (x,0)+2u(x,1)]. (2.14)

In this formula, and always in the following, for any given function f(z, ) we define
f(z,,z,,t) by the formula

Sz 20, 0= (20,0 =f (25, 0]z, = 25). (2.15)

The formula (2.14), that is reported here for the first time, can be obtained in close
analogy to the derivation of (2.12) described in the first paper of [29], using the
results of the second paper of [13] (a misprint in this paper should be corrected;
— /Z should appear in place of + 4 in front of the third term in the r.h.s. of Equation
(3.2.19)).

If =0, both p and T are time-independent; the first of these well-known
properties displays the isospectral character of the flow, and the second property
provides a convenient starting point for the derivation of conserved quantities, as
we shall discuss in the following Section in the more general context of the flow
(2.1) with 0.

We end this terse survey noting that (2.12) is explicitly solved by the formulae

R(k,t)=exp|2i j At yo(— 472, ¢)| Ry Tk (1, K)] (2.16)

o

x=xLt kot k)1, (2.17)

the function y(t, k,) being defined by the (ordinary) differential equation

%t ko) =x(t. ko) BL— 477 (8, ko), £] (2.18)
and by the initial condition
1(tg ko) =k, (2.19)

while the function ko(t,k) in (2.16) and (2.17) is defined from y through the
(implicit) formula

1t k) =k. (2.20)
Of course R, is the initial value of R:
Ry (k)=R(k,t,). (2.21)

Proceeding in close parallelism to the treatment given above, we report now
the corresponding formulae for the (novel) class of nonlinear evolution equations
solvable via the spectral transform associated to the (generalized) Zakharov-
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Shabat linear problem [29]. Now the class of nonlinear evolution equations reads
a30,(x, 1)+ (L, ) v(x, £) + p(L, t) xv(x, £)=0. (2.22)

Here and below the matrices o5, 0, and o_ are defined by

1 0 0 1 00
03———(0 _1),o’+=<0 0),0_:<1 0), (2.23)

and the field to be determined,
v(x,)=r(x,t) 7, +q0x, )1, (2.24)

is a two-component vector (or spinor), represented by this formula in terms of the
two eigenvectors y, of o5:

O3l =T L1040+ =000 =14 (2.25)

In addition to the nonlinear evolution Equation (2.22) there is of course an initial
condition,

v(x, ty) =1y (xX). (2.26)

The integro-differential operator L is now defined by the formula

+ w

Lu(x)=(2i)* {63ux(x) +2u(x,1) | dx'[g(x,t)u (X))

—r(xX,t)u_ (x’)]} , (2.27)

u(x) being here a generic vector,
u(X)=u, (x) g +u_(x)x_. (2.28)

The nonlinear evolution equation (2.22) involves the vector field v(x,1), or
equivalently the two scalar fields g(x, t) and r(x, t) ; cases in which it can be reduced
to an equation for a single scalar field are indicated below. The functions y(z, t) and
u(z, t) are essentially arbitrary ; the most interesting cases correspond to low-order
polynomial (or rational) dependences on z, and moreover to some restrictions on
their reality and/or parity, to allow the reduction mentioned above. The “old”
class of nonlinear evolution equations (including the mKdV, NLS and Sine-
Gordon equations; see below) corresponds to u=0, this condition being also
necessary and sufficient to imply the invariance of (2.22) under space translations.

The spectral transform S associated to v consists now of the following data:

S o' (k), — o0 <k< +o00; kD), 0P}, (2.29)

which are defined by the (generalized) Zakharov-Shabat spectral problem charac-
terized by the equation

P (x,k)=[gx)o, +r(x)o_—ike,]w(x, k) (2.30)
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and the asymptotic conditions

Mm Texp(ikxa) ¥(x, k)] =1+0_a (k) + 0, (k)

_ . ) (2.31)
lim [exp(ikxoy) P(x, k)] =4 (1 +03)p (k) + 3(1 — 03B (k).
+ 0
| dx(yp(x, k), (0, +o_Jp(x, k) =1, (2.32)
im Texp(F ik xp(x, k)T =00"7 5.
. 2.33
i, [oxp(£ K )] =047 o
o) = iyI5E) (2.34)

In (2.31), ¥ is a matrix of rank 2 whose columns are solutions of (2.30), satisfying
appropriate boundary conditions (set out by (2.31) itself); in (2.29) and (2.32-2.33),
the sign label on the discrete eigenvalues k'*) is defined by the rule

+TIm(k{£)>0. (2.35)

There is a one-to-one correspondence between a vector v(x) and its spectral
transform S: the spectral transform is associated to v by the direct spectral
problem outlined above, Equations (2.30-2.35); while v is uniquely determined by
S through the inverse spectral problem, characterized by the equations

M(x)=3(1+0o,)m(x)+ (1 —a,)m " (x), (2.36)
+ o
mE(x)=TFi) o' exp(+iki*x)+2n) "' | dka'*(k)exp(+ikx), (2.37)
+ o0

K(x, x")+M(x+x")+ j dx"K(x,x")o,. +o_)M(x"+x)=0, x'zx, (2.38)

q(x)=—2K,(x,x), r(x)=—2K,,(x,x). (2.39)

In these last equations we have omitted to indicate any time-dependence. But
of course if v is time-dependent, also time-dependent are all the quantities defined
above;indeed the solvability of the class of nonlinear evolution equations (2.22)
obtains because the corresponding time-evolution of the spectral transform is
simple, being characterized by the equations

o)k, 1)+ Jin(k, 04k, 1) (K, 16 (k1) =0, (240
K = Lip[k)(e), 1] . (2.41)

We have omitted to indicate explicitly, in the last equation, the label n character-
izing the different discrete eigenvalues; nor have we written the equation for the
time evolution of ¢'*)(¢), since it is complicated and it is not needed in the

Sn

following. We report instead the evolution equation satisfied by the quantities
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BE)(k, t), that will play a crucial role in the following:

Bk, )+ Sk, DB (K, 1) + 0k, ) (k, 1) =0, (2.42)

Ok, t)= — i TO ax(v(x, t), (o . —a )k, L, t)xv(x, t)). (2.43)

In writing the last formula we have used the notation (2.15).

If u=0, both k{*) and B'*) are time-independent ; the first of these well-known
properties displays the isospectral character of the flow, and the second property
provides a convenient starting point for the derivation of conserved quantities, as
we shall discuss in Section 4 in the more general context of the flow (2.22) with
u=*0.

The linear partial differential Equation (2.40) is explicitly solved by the formula

(o, t)=exp{?L j dey[x(t', kolk, 1), t’]}d%i)[ko(h nl, (2.44)
the function y(t, k,) b;ing defined by the (ordinary) differential equation
7t ko) = Fiulx(t ko). 1] (2.45)
and by the initial condition
Wto ko) =kq ., (2.46)
while the function k(k, t) is defined from y through the (implicit) formula
wt ko) =k. (2.47)
Of course of*) is the initial value of o'*)
alEI k)= B )k, t,) . (2.48)

Finally we report the conditions relevant to the reduction of (2.22) to a
nonlinear evolution equation for a single scalar field:

case ): r(x,t)=¢eq(x,t); o'k 1)=ea ") (~k,1),

Bk ==k 1) 5 k()= —kT(0), o= —eal (e ;
YWz )=—=y(=z1), wzt)=—-pu-z1);

case ii): r(x,t)=eq*(x,t); o'k, t)=eal TV (k*, 1),

Bk ) =B A ) s K@=k, el (=gl (1) 5

Yz, )= —y¥z* 1), wz,t)=—p*z*1).

The last conditions reported in each case, specifying the limitations on the
functions y(z,t) and zt) that characterize the structure of each particular
equation of the class (2.22), are necessary and sufficient to guarentee the
compatibility of the other equations with the time evolution, namely if they are
given initially, they are always maintained.

In case 1), the class of nonlinear evolution equations (2.22) can be written
directly for the single field ¢, and it reads

q,(x, ) =M, )q(x, 6) + (M, ) [ xq (x, 1) +q(x, )], (2.49)
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where o and f are related to the functions y and u through
V(Z, t) == 2iZOC[(2iZ)2, t] > ,Ll(Z, t) == 2lZﬂ[(2lZ)2, t] 5 (250)
and the (integro-differential scalar) operator M is defined by the formula
+ oo
Mf(x) = £, () +4eq*(x, 1) f(x) +deq,(x, 1) | dx'q(x’,0) f(x).
¥ (2.51)
For instance, the mKdV corresponds to a(z,t)=z and f(z,t)=0.

In case ii), one can similarly write, in place of the vector Equation (2.22), the
scalar (complex) equation

iq,(x, 1) =n(S, 1)q(x, 1)+ (S, )xq(x, 1), (2.52)
where now the real functions # and v are related to y and p by the formula
y(z,t)=—in(z,t), u(z,t)=—ivz1), (2.53)

while the integro-differential scalar operator S is defined as follows:
+ w0
Sfx)=02i)~" {—fx(x)+28¢I(X, 1) [ dx'lglx',0) f*(x') = q*(x', 1) f (x’)]}- (2.54)

(Warning: this operator does not commute with complex constants, namely
Scf(x)#cSf(x) if ¢ is not real). For instance, the NLS equation corresponds to
n(z,t)= —(2iz)?* and v(z,1)=0 (e=—).

Note that the definitions (2.50) and (2.53) imply automatically that y and u
satisfy the conditions displayed above respectively for case 1) and ii).

We end this Section mentioning that a more general class of nonlinear
evolution equations may be solved via the spectral transform associated to the
matrix Schrodinger spectral problem (see the second paper of [13]); the extension
of such a class to include non-translation-invariant contributions such as those
considered above has however not yet been reported, and therefore we postpone to
a separate paper also the discussion of the conservation laws in such more general
context.

3. Conserved Quantities for the Class of Nonlinear Evolution Equations
Solvable by the Spectral Transforin
Associated to the Schridinger Linear Problem

It is convenient to associate a function ¢(k, t) to T(k,t) through the definition
T(k,t)y=T(—k,t)exp[4ip(k,1)] . (3.1)

It is then immediately seen, inserting (3.1) in (2.14), that ¢(k, t) satisfies the equation

ok, )+ kB(—4Kk2, ok, 1) = — k T dxP(— 4k, L, )[xu(x, )+ 2u(x, )]

(3.2)
It is moreover easy to see that ¢(k,t) is odd in k, and it has the asymptotic
expansion

N
ok, 0)="). @"(1)(2k)>" "1 +0(k 2N 73). (3.3)
n=0
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In fact the sum in the r.h.s. of (3.3) may well converge in the limit N — oo (see below
for an explicit example); but the weaker statement that (3.3) provides an asymptotic
expansion is sufficient for the following developments.

Let us now insert (3.3) in (3.2), employing moreover the power expansion of

Bz, 1)
Blz.t)=Y B(t)". (34)

Such a representation of f(z, t) must of course always be possible, in order that the
nonlinear evolution Equation (2.1) make sense; actually the simpler, and more
interesting, instances are the cases in which the sum in the r.h.s. of (3.4) contains
only a finite number of terms. Note however that at this stage we need not limit
our consideration to such cases; nor are we assuming that the sum in the r.h.s. of
(3.4) extends only over positive values of m.

With this insertion two formulas are obtained, resulting from the identification
of the coefficients of the positive respectively negative (odd) powers of k. The first
formula reads

e"(t)=(=)""[22n+ 1] 1 CM(0), (3.5)
having defined

+ oo
COt)= [ dxL"[xufx,0)+2u(x,t)], n=0,1,2, ... (3.6)

Note that this equation has nothing to do with the time-evolution problem; it
expresses merely a property of the Schrddinger spectral problem (2.5-2.6), namely
that the “phase” @(k), related to the transmission coefficient T(k) by (3.1), has an
asymptotic expansion,

p(k)= 3 k)~ H(=yT22n+ 1] CY, (3.7)
n=0

whose coefficients are given, in terms of the “potential” u, by the explicit formula
(3.6) (with the operator L defined by (2.3)). Incidentally, an explicit check of this
formula in the special case of the reflectionless potential

u(x) = —2p?/cosh? [p(x — )] (3.8)

(corresponding to one soliton) is provided by the expression of T(k) appropriate to
this case,

T(ky=(k+ip)/(k—ip), (3.9)
yielding
ok =arctg(p)= 3 (= y@n+1)"p/k2 L, (3.10)
n=0

namely, through (3.7),
CW=—-202p)**+t; (3.11)
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while this same result also obtains from (3.6), since a simple computation, with u(x)
given by (3.8), yields

+ o
CO= | dx[xu/x)+2u(x)]=—4p (3.12)
and
CW=4p2C= 1, (3.13)
the last formula being implied through (3.6) by the relation
LI xu(x) + 2u(x)] = 4p*[xu,(x) + 2u(x)] — 4pu (x) (3.14)

following from (3.8), and by the well-known general formula

+

[ dxLu(x)=0, n=0,1,2,.... (3.15)

The second formula mentioned above obtains from the identification of the
coefficients of the negative powers of k when (3.3) is inserted in (3.2); it can now be
written, using (3.5), in terms of the quantities C"(t) defined by (3.6). It reads:

COW)=Cn+1)Y B (OC ™), n=0,1,2, .., (3.16)

implying of course that all the quantities C™ are time-independent if =0, i.e. for
the “old” class of nonlinear evolution equations. We have therefore found a
compact expression, Equation (3.6), for the constants of motion of the class of
equations (2.1) with f=0 (this class includes, as already mentioned, the KdV
equation, corresponding to oz, )=z, and all the so-called higher KdV equations).
These constants coincide of course with those already known, for instance

CO = T) dxu(x, 1), (3.17a)
CW=_3 T dx[u(x, ]2, (3.17b)
c=s T dx{[u (x, 1% +2[u(x, 1%} . (3.17¢)

If instead =0, namely in the case of the novel class of evolution Equations
(2.1), the quantities C™ are no more constant, their time-evolution being
determined by (3.16). This is an infinite system of linear first-order ordinary
differential equations; but as we presently show, it is actually possible to solve it, at
least formally. Before doing this, let us however pause to consider the simplest
case, when the function f(z,t) is a (t-independent) polynomial (of degree, say, M),
namely (see (3.4)) §,(t)=p,, for 0O<m=M, f,(t)=0 for m<0 and for m> M. Then
the system (3.16) becomes triangular, implying immediately that its solutions have,
provided 8,0, the structure

C(t)= ZCn,exp[ [+1)B,t], n=0,1,2,..., (3.18)
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the (time-independent!) quantities c,, being determined by the f,’s and by the
initial values C™(t,) of the C™’s. This formula implies that in this case (which also
yields the simpler nonlinear evolution equations contained in the class (2.1)) all the
quantities C™"(t) are periodic in t with the same period T, C®(t + T)=C™(t), iff B,
is pure imaginary, fi,=2ni/T. Thus for this simple class of nonlinear evolution
equation the phenomenon of periodicity of the quantities C* never occurs if the
consideration is restricted to real equations (as is generally the case in appli-
cations). The results given below (or, for that matter, the structure of the system
(3.16)) imply that the phenomenon of periodicity of all quantities C*(t) can occur,
for real and autonomous equations (i.e., for real time independent f§ in (2.1)) only if
in the r.hs. of (3.4) there are nonvanishing coefficients f,, both for positive and
negative values of m.

Another case worth mentioning is when the function f§ is a polynomial (with
time-independent coefficients) in z~' (say, in (3.4), f,(t)=p, for —M<m<=0,
B,.(t)=0for m>0 and for m< — M). Then the system (3.16) is again triangular, and
its solutions have, provided f,+0, the simple structure

C)=Y ¢, explI+1)Byt], n=0,1,2, ..., (3.19)
1=0

again with the constants ¢,, determined by the coefficients f8,, and by the initial
values C™(t,) (for instance in this case ¢,,=Ct,) exp(— Byt,)). Thus in this case
the time evolution of the quantities C(¢) is very simple indeed (and again of
course it is periodic iff f§, is pure imaginary). On the other hand the nonlinear
evolution equations have a more complicated structure than those yielded by a f§
that is polynomial in z.

Let us now proceed to discuss the formal solution of the system (3.16) in the
general case. It is provided by the formula

+ oo
C(t)= | dx[0(t,to; Lo)]*"F  Lolxu(x, to)+2u(x,t,)], n=0,1,2,...,
o (3.20)

where L, is the operator L of Equation (2.3), but with u(x, t) replaced by u(x, t,),
and the function 0(t,¢,;4,) is defined by the first-order nonlinear ordinary
differential equation

0,t,t05A0)=0(t, o 2)BLAO (1, t0 5 20)s 1] (3.21)
and by the boundary condition

Otg,ty:Ae)=1, (3.22)
implying (see (2.18-2.19))

0(t, to; —4kd)=x(t ko)/k, - (3.23)

Indeed (3.23) insures that the quantities C"(¢)of Equation (3.20) satisfy the initial
condition (i.e. Eq. (3.6) for t=t,), while the fact that (3.20) satisfies (3.16) can be
formally verified by straightforward substitution, using (3.21) and (3.4) (assuming
of course that the priority of the operations of ¢-differentiation and x-integration
can be exchanged, and treating moreover the operator L, as if it were an ordinary
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variable; this can be formally justified by performing a power expansion, as
indicated below).

It should be emphasized that the function 0(t,ty,4,) can in many cases be
explicitly computed solving the differential Equation (3.21); for an example see
Subsection 5.1. It may then be also possible to compute in explicit form the
coefficients 0,,(t,t,) of the expansion®

[0(t,t; 20)]" =) 0,,(t,10) Ay ; (3.24)
1=0
and using these coefficients (3.20) can be rewritten formally in the form
C"(t)= Y 0,,(t1,) C"(1,). (3.25)
=0

Equation (3.20), as well as this last equation (when applicable) can be
interpreted in two ways. Firstly, they display explicitly the time evolution of each
C™(t), once the (initial) values of all the quantities C**"(t,), [=0, are given ; this is
particularly useful if the t-dependence of the (explicit) coefficients 6,,(t,t,) is
periodic. A second interpretation of (3.20) or (3.25) obtains from the remark that
these formulae remain valid if the roles of t and t,, are exchanged, so that instead of
(3.20) one can write

@D

.
C(to)= | dx[00to,t:L)12" L' xu, (x, 1)+ 2u(x, )], n=0,1,2, .. (3.26)

0

(where of course the operator L is now defined by (2.3)), and instead of (3.25)

CP(to)= Y 0,,(ty,t) C"*D(1) (3.27)
1=0

(the function 0, and the coefficients 0, being always defined by (3.21-22) and
(3.24)). The last two formulae define now quantities that are time-independent for
the (generalized) class (2.1) of nonlinear evolution equations; however, since
generally the A,-dependence of 0(z, t; 4,) is not polynomial, the sum in (3.27) does
extend to infinity, so that even when the coefficients 0,,(t,, t) are explicitly known
and have a simple time-dependence (see the example of subsection 5.1), the
theoretical significance of these “constants of the motion” is not transparent and
their practical usefulness is moot.

These results imply of course that if the function 6(t,t,;4,) defined by (3.21)
and (3.22) is, for all values of 4, periodic in ¢ with period T, all the quantities C™(¢)
are also periodic, C™(t+ T)=C™(t). Necessary conditions for this have been
mentioned above. Note that they imply that the phenomenon of periodicity of the
quantities C™(t) does not occur for the simpler equations of the class (2.1). As we
will see in the following Section (and in Subsection 5.3) the situation is different for
the class (2.22) of nonlinear evolution equations solvable via the spectral transform
associated to the generalized Zakharov-Shabat spectral problem.

1 Clearly this expansion holds only if the function 0(t,ty;4,) is holomorphic in 4, in the
neighborhood of 4,=0. A sufficient condition for this is that f(z,¢) be itself holomorphic in z in the
neighborhood of z=0
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Let us emphasize that periodicity of all the quantities C*™ does not imply that
the generic solution of (2.1) is also periodic.

We end this Section noting that, in the special case f(z,t)=f3,(¢), the system
(3.16) decouples and its explicit solution is then given by the formula

C ()= exp|(2n+1) j dt' B (¢)| C™(t,). (3.28)

This is, however, also the case in which the novel nonlinear evolution Equation
(2.1) 1s reducible by a change of variables [30] to the old form (with f=0).

4. Conserved Quantities for the Class of Nonlinear Evolution Equations
Solvable by the Spectral Transform

Associated to the (Generalized) Zakharov-Shabat Linear Problem

We proceed now in close parallelism to the treatment of the preceeding Section,
and therefore our presentation is terse. The use in some cases (below and above) of
the same notation in the Schrodinger and Zakharov-Shabat contexts should cause
no confusion, since the two cases are always separate.

It is now convenient to associate a function @(k,1) to B)(k,t) through the
definition

Bk, t)y=exp[2ip(k,1)] Bk, 1). 4.1)

It is then immedately seen that ¢(k, t) satisfies the equation

0.k, 1)+ % uk, t) o, (k, )

=— % T) dx(v(x,t), (6, —a_) ik, L;t) xv(x,1)). (4.2)

Insertion in this equation of the asymptotic expansion (that might even converge
as N— o)

o)=Y (1) Q2ik)™"+0(k™ "1, (4.3)

n=1
yields again two formulas, resulting from the identification of the coefficients of the

positive respectively negative powers of k under the assumption that u(z ) is
expressed by the power expansion formula

wz, )= (1) Qiz)"™ (4.4)

(this is the analog of Equation (3.4)).
The first formula reads

" (1) =iC™(t)/n, (4.5)

where we define

C"(t)= TO dx((x,1t),(6,. —o_)RIiL)"xv(x,t)),n=1,2,... (4.6)
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Thus it expresses a property of the spectral problem rather than of the time
evolution. For instance, for the single soliton case

r(x)=—ig"Vexp(—p_&—p,x)/cosh[p_(x—¢)], (4.7a)

q(x)=ig' Vexp(—p_&+p,x)fcosh[p_(x -], (4.7b)
where p, = —i(k'"+ k7)) and ¢V 7= —2p% exp(2p_¢&) (see Eq. (4.2.21) of I),
one easily finds that

B k)= [k —k /T — k7, (4.8)
so that in this case

C™ = [2ik T — [2iK T 4.9)

and one can verify by explicit computation, at least for the first few values of n, the
consistency of this last formula with (4.6) and (4.7).
The second formula, rewritten using (4.5), reads

CP()=—nY 1, () C" " V(1) n=1,2,3,...; (4.10)

it characterizes therefore the time evolution of the quantities C™(¢). Clearly it
implies that these quantities are constants of motion for the “old” class of
nonlinear evolution equations, i.e. (2.22) with p=0 (including the mKdV, NLS and
SG equations, corresponding respectively to y(z,t)=—(2iz)> and g=r,
v(z,t)=i(2iz)* and g= —r*, y(z,t)=—(2iz)"! and g= —r, with an additional
change of dependent variable in this latter case). It can indeed be easily verified
that the compact expression (4.6) (with (2.27)) reproduces the well-known con-
stants, for instance

CH({)=— TO dxq(x,0)r(x,1), (4.11a)
CP()= T) dx[q . (x,)r(x,t)—q(x, ) r (x,1)], (4.11b)
C®n=3 +j00 dx{[q(x,0)r(x,0)1* +q,.(x,0)r (x,0)} . (4.11¢c)

— 0

Actually the system (4.7) can formally be solved also in the case with u=0:
+ o0
C")= [ dx(v(x,to),(0,—0_)

T2ix(t, ty; LT xv(x, to)hyn=1,2,3, ... (4.12)

Here L, is the operator L of Equation (2.27), but with v(x, ) replaced by v(x, t,),
and y is essentially the function already defined in the second part of Section 2,
being characterized by the differential equation

%t tg ko) =Siulx(t, 1o ko) 1] (4.13)
and the initial condition

2(Lostos ko) =Ko . (4.14)
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The function y can in many cases be explicitly evaluated (see Section 5 below).
It may then be also possible to evaluate in explicit form the coefficients of the
expansion

[X(ta to;ko)]nz I:Z() an(t’ tO) k£)> (415)

and using these coefficients to express the quantities C(t) as linear combinations
of the quantities C™(t,):

CMO)= Y yult.t)) COte)hn=1,2,3,.... (4.16)
I=1

Note that (4.14) implies that the coefficients y,, in (4.15) (and therefore also in
(4.16)) vanish identically for I <n if u(z,t)/z is analytic in z=0.

This last equation, as well as (4.12), displays the time-evolution of each C"(¢)
whenever all the quantities C(z,) are given ; and in some cases (for instance, if y is
periodic in t) it provides important information on the time-evolution of each
C™ (1) even if the initial values of the quantities C"™(z,) are unknown. Examples are
discussed in the following Section. The two Equations (4.12) and (4.16) also
provide explicit, if hardly useful, expressions of time-independent quantities, after
the roles of ¢ and ¢, have been exchanged.

In the special case u(z, ) =2iu, (t)z the system (4.10) decouples, and its explicit
solution reads simply

t

C"(t)= exp‘[—n { dt/ul(t’)} C"to)n=1,2,3,...; (4.17)
to

but this is also the case in which the novel nonlinear evolution Equation (2.22) is

reducible by a change of variables to the old form (with =0} see the second paper

of [297]).

Note that, in order that the system (4.10) become triangular, it is required
either that all u,, vanish for m<0, or that they all vanish for m=2. In these cases,
and if moreover u is time-independent, periodic solutions obtain iff yx, is pure
imaginary; and in the second case, they have a very simple structure and can be
explicitly evaluated. On the other hand we emphasize that in the case of this
section, in contrast to the preceeding section, the periodic behavior can emerge
even when u(z, t) is real, time-independent and polynomial in z, i.e. for the simpler
nonlinear equations of the class (2.22). An explicit example is discussed in
Subsection 5.3.

We end this Section reporting the special form that take the results of this
Section for the two subclasses of nonlinear evolution equations described under
case 1) and ii) at the end of Section 2.

In case 1), all the quantities C™ vanish if n is even, while those with odd index
can be conveniently rewritten using the operator M of Equation (2.51):

+ o
CP" " V()= —2¢ | dxq(x,0) M"[xq, (x,0)+q(x,0)l,n=0,1,2,.... (4.18)

In the special case of the single soliton solution, they take the values
Cem D =2p2"*1 n=0,1,2,..., (4.19)
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where p=p_ is real (see (4.7); note that in this case p, vanishes). This last formula
applies only for = +, because only for this value of ¢ solitons exist.

In case ii), the quantities C™ turn out to be real or imaginary depending on the
parity of n; again they are more conveniently written using the operator S
introduced at the end of Section 2, Equation (2.54). The formula reads

+ w0
CP()=Q2i" e | dxIm[g*(x,t)S"xq(x,0)],n=1,2,3,.... (4.20)
In the special case of the single soliton (see (4.7))
CW=— Qi ' Im[k"],n=1,2,3,.... 4.21)
This last formula applies only for e= —, because only for this value of ¢ solitons
exist.

The simplifications that these reductions imply on the formulas given in this
Section for the general class of nonlinear evolution equations (2.22) are too trivial
to require explicit display.

5. Examples

In this Section we apply the results of the two preceeding Sections to the
generalized KdV, mKdV and NLS equations [30-32]. Our treatment is terse, since
we draw on the analysis of these equations [30-32] without reporting here all the
corresponding results.

5.1. Generalized KAV Equation [30]
This equation reads
U, =0otou, + 0ty (U — O )+ B (xu, +2u)+ B,

+ oo

Xt AU = Oxuu—8u +2u, [ dx'u(x,1)|, (5.1.1)

where o, a;, f, and f, are constants, and of course u=u(x,t) (except where
explicitly indicated otherwise).

We consider firstly the case with 40, f, #0. Then (from (3.21) and (3.22); or
see Equation (8) of [307)

O(t,ty;20)=0(t—1ty; 1)

=exp[Bo(t—to)][1+pdo {1 —exp[2B,(t—1o)1}17 12 (5.1.2)
with
u=P./Bo. (5.1.3)
so that (see (3.24)).
0, t)=0 ,(t—t)={2(n+1)—1711/[I12n—-1)!"T}. (5.1.4)

exp[(2n+1+1) Bo(t—to)] ' sinh'[ By (£ — )]
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Insertion of these expressions in (3.20) and (3.25), or in (3.26) and (3.27), yields
therefore the formulae appropriate to this case. Note that the periodicity of all the
quantities C™(¢) is now confirmed, iff 8, is imaginary. Also note that, if instead 8,
is real, a sufficient condition for the absolute convergence of the sum (3.25) in this
case is that the initial data obey (for some ¢>0) the limitation

lim [C™(t,)exp(en' "%)]=0; (5.1.5)

n— o0
if instead, for some (positive) A and for some N

|IC™(t ) <" for n>N, (5.1.6)
the series (3.24) converges only for values of ¢ such that
Ln[1—|uhl ™ <Bolt—to)<EIn[1+[ud| ], (5.17)

the lower-limit restriction being operative only if [Au|> 1.
In the special case $,=0 (with , +0), (5.1.2) is replaced by

0Lt do)=0(t—1o349)=[1—2B, /(1 —15)] /2 (5.1.8)
and (5.1.4) by

in(t’ tO) = gnl(t - tO)
= {2+ D)= 111112 =D} B, (t— )] (5.1.9)

Also in this case (5.1.5) guarantees the absolute convergence of (3.25), while (5.1.6)
implies convergence only for values of ¢ such that

lt—tol<|2B, A7 . (5.1.10)
Finally if instead S, =0 (with f,=0),
0t — 1) =00t o) =exp[Bolt— o)1, (5.1.11)

so that in this case the time-dependence of the quantities C™ is given by the
completely explicit formula

CO(1)=exp[(2n-+1) By (t—14)] C™(t,). (5.1.12)

This case is however not really new, being reducible to the usual KdV equation by
a change of variables [30] (this equation had been previously investigated by
Hirota and Satsuma [337]; and its reducibility to the KdV equation was first
pointed out by Ablowitz and Wadati [private communication]).

For the single-soliton solution the quantities C™(t) are of course given by
Equation (3.11), with p replaced by the (time-dependent) function p(t) given in
explicit form in [30]; it is instructive to verify that this same result obtains from
the formalism given above, starting from the initial values C*(0) given again by
Equation (3.11), but now with p replaced by p,=p(0).
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5.2. Generalized mKdV Equation [317]?

The formulae for this case are presented below without any comment, in view of
their similarity to those for the generalized KdV equation discussed in the
preceeding subsection ; but we use here the notation of Section 4 (and of the second
half of Section 2), while in the preceeding Subsection the appropriate notation was
of course that of Section 3 (and of the first half of Section 2).

The equation reads

G+ 710+ 73 @+ 607 + 14 (g 4+ Xq,) + 11
+ o0
AXq e 3G, +497 +6xq7q,—2q, | dxX'q*(x,1)| =0, (5.2.1)

with y,, y;, p; and py real constants, and g=gq(x,t) (except where explicitly
indicated otherwise).

For pu; +0, uy #0,
x(t, to;ko)z)C(t_[o;ko)

=kolexp[2u, (t — o)1+ 4pk5 {1 —exp[2u, (t—1)1}] 12, (522

with
B=talts, 6-23)
so that y,,(t, to) = x.(t —t,) vanishes if [ <n or if  and n have different parities while
Lam+1,2p+ 2m+1 (D= 2m+2p—DIY[p!2m—1!1]. (5.2.4)

exp[ —(2m+p+1) p 7] sinh?(u, 7).

The coefficients y,, with even n could be easily computed, but they are not relevant
in view of the fact that all C™’s with even n in this case vanish (see the last part of
Section 4).

Finally if u, =0 (with p, £0),

1t 1o ko) =yt —to:ko)=koexp[—p, (t—1,)], (5.2.9)
implying in this case
CP(ty=exp[—nu, (t—1ty)] C™(t,), (5.2.6)

which merely confirms Equation (4.17).

5.3. Generalized NLS Equation [32]

We refer again to the notation of Section 4 (and the second half of Section 2), and
present the results tersely.
The equation to be analyzed reads
g, + (o +ipy + 1eX) g iy +p1X) g,
+ (75 +1,%) (G +2lg1%9)

+ 0
+2u, (qx—q § dxlg(x, t)lz) =0, (5.3.1)

2 Let us recall that in this case there is one quantity, namely the integral of the field over all space,

that is conserved (not only for the mKdV, but for the generalized mKdV as well; see [31]); this
quantity, however, does not belong to the sequence of C™ considered here
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with 7; and u;, j=0,1,2, real constants and g=gq(x,) (except where explicitly
indicated otherwise).
For the generic case with u;+0 (j=0,1,2),

1t tg s ko) =Lkt —to) = (ko + po/ty) s(t—t4)1/

Lelt—to)+ (1 —=4kopy/py) s(t—to)], (5.32)
where
c(t)=cosh(ut/2), (5.3.3a)
s(t) =(u,/p) sinh(ut/2) (5.3.3b)
p=4pou, +ui)?. (5.3.4)

Note that ¢ and s, Equations (5.3.3), are well defined, and real, for all real and

imaginary values of p. The corresponding expression of the expansion coefficients
reads

Tt L) = 2t = to) = (hpty /)" [ — et = to)s(t 1)1 (5.3.5)
[L+e(t—to)/s(t—to)] ™ fulle*(t—t) —s*(t—15)] ),

with
fu()=xd"/dx' [x'"" (1 —xyJ/1,1=1,2,3,.... (5.3.6)

The special expressions that these results take if some of the quantities y;, or
the quantity p of Equation (5.3.4), vanish, are easily obtained from the formulae
given above, and will not be reported here. In some cases these expressions
simplify considerably ; for instance if p1, vanishes, the argument of the functions f,,
in the r.h.s. of (5.3.5) becomes simply unity (see (5.3.4) and (5.3.3)), implying that y,,
vanishes if [ <n (see (5.3.6); and note the consistency of this result with (5.3.2) and
(4.15)). Of course the same simplification occurs if u,=0; but in this case the
overall simplification is more drastic, implying

xn,(r)=(—)”“(?> (to/1)" ™" exp[—(n+Dpyt/2] sinh” ™' (1,/2), (5.3.7a)
0=i=n,
Iu(0)=0,[>n. (5.3.7b)

Thus in this last case the time-dependence of all the quantities C™(¢) is given by
the finite sum

n

C(p) 2 7= 1) COty); (5.3.8)

this is, however, not a very interesting instance, since it is just the case in which the
generalized NLS equation (5.3.1) can be reduced by appropriate changes of
variable to the standard NLS (see [32]).

We end this Subsection noting that these results imply that now the necessary
and sufficient condition for the periodicity (with the period T defined below) of all
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the quantities C™(t) is that the quantity p of Equation (5.3.4) be pure imaginary,
u=iw=2mi/T. (5.3.9)

Of course this condition may well hold even when the 3 constants y; are all real (as
it is assumed in this Subsection). Note that if x is imaginary, periodic features also
appear in the behavior of the solitons [32]; we emphasize however that, in this
case, the generic solution of (5.3.1) (or, for that matter, even the soliton solution) is
of course not periodic.

6. Concluding Remarks

This paper has investigated the time evolution of the quantities C™(t) defined by
(3.6) and (2.3), when the scalar field u(x, t) evolves in time according to (2.1); and
the time evolution of the quantities C™(t) defined by (4.6), (2.23) and (2.27), when
the 2-component vector field v(x, t) of Equation (2.24) evolves in time according to
(2.22). One conclusion of this analysis has been that the quantities C™ are
constants of the motion if the explicitly x-dependent part of the evolution
equations is missing (i.e., f=01n (2.1), u=01n (2.22); in these cases the well-known
classes of nonlinear evolution equations extensively studied in the last few years
are recovered). While the existence of these constants of the motion in these cases
was of course well-known, their compact expressions, Equations (3.6) and (4.6),
appears to be new. It is remarkable that the variable x enters explicitly in these
formulae, although it never appears in the final expressions of the quantities C*;
like some ingredients in certain cooking recipes, that have to be put in at the
beginning but are filtered out before the dish is served.

The way these quantities C™ have been introduced above, although con-
venient for the purposes of this paper, is probably not the most appropriate one to
clarify their origin. To that end it would presumably be preferable to analyze the
effect of scale transformations on the spectral problems ; indeed combinations such
as xu,(x)+ 2u(x) (in the context of the Schrodinger spectral problem) or xv(x) (in
the context of the Zakharov-Shabat spectral problem) are clearly related to the
virial theorem. But we defer such an analysis to a separate treatment.

After this paper was completed it has been brought to our attention that an
extension of the spectral transform method such as the one described in [29] has
been performed by Newell [34, 357. No discussion of conservation laws in this
more general context is contained in [34]; as for [35], while we have been
informed of the existence of this paper, we have not yet seen it.

Note Added in Proof

The novel nonlinear evolution equations of the enlarged class solvable by the spectral transform
associated to the Schrédinger spectral problem, considered in this paper and in preceeding ones of this
series [29, 307]. possess a (rather large) class of solutions that remain regular through a finite span of the
time evolution (indeed, in some cases, throughout the entire time development): they are the
multisoliton solutions, whose explicit shape (as a function of x) and evolution (as a function of ) have
been described in detail in some instances [29, 30]. These solutions obtain from initial data such that
the corresponding reflection coefficient vanishes; for them, all the results reported in this paper hold
without reservation. If instead to the initial data is associated a nonvanishing reflection coefficient, then
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for a large class of these nonlinear evolution equations (including the simpler, and therefore more
interesting, ones) the corresponding solutions, even if they are regular at t =0, generally develop, for
t>1t, (where t,=0 unless the initial reflection coefficient has compact support), a component that is
singular (as a function of x, at x=0); in k-space, this is apparent from the fact that the reflection
coefficient, for t > t,, generally does not vanish as k— =+ co, even though it had this property for =0 (see
(2.16) and note that, if |f(z, 1)] = 00 as |z]— 00, ky(t, k) tends generally to finite values when k— + 00); in
x-space, this may be traced to the vanishing at x=0 of the coefficient of the x-derivative of highest
order in the evolution equation. The validity of all results in these cases becomes therefore
questionable, since some of the basic assumptions on which the whole spectral theory is based are
violated by the time evolution. It is likely, but nontrivial, that the essence of the results remain
applicable within a more general framework, involving distributions rather than functions; but a
discussion of this requires a separate paper.

Of course all this applies as well (with obvious changes in terminology) to the novel class of
nonlinear evolution equations solvable by the spectral transform associated to the Zakharov-Shabat
spectral problem [29, 31, 32].

The fact that these nonlinear evolution equations develop a singular behavior for most, but not all,
regular initial data, is an intriguing phenomenon that underscores the mathematical interest of these
equations but casts doubts on their phenomenological applicability.
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