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Dissipations on von Neumann Algebras

C. W. Thompson
Department of Mathematics, University of Manchester, Manchester M13 9PL, England

Abstract. We extend a characterisation by Lindblad of complete normal
dissipations on hyperfinite von Neumann algebras to general semifinite von
Neumann algebras.

Introduction

The time-development of certain quantum systems can be represented by one-
parameter semigroups of completely positive maps on the associated C*-algebras
(see [4] for a discussion of the physical justification for this). When the semigroup
is norm-continuous the infinitesimal generator is a bounded linear map on the
C*-algebra, and Lindblad [4] gives a characterisation of those linear maps which
are infinitesimal generators of such semigroups. These he calls complete dissipations,

If we now take a von Neumann algebra $0 and look at complete normal
dissipations on j/, we would like to prove a result corresponding to the theorem
that every derivation on a von Neumann algebra is inner. In [4], Lindblad shows
that if θ:j/->j/ is completely positive then yΘ:.s/->,</ defined by

yθ(a) = θ(a)-±{θ(ί)a + aθ(l)} (1)

is a complete dissipation on .j/, and it is clear that γ0 is normal if and only if θ is.

Definition. A complete dissipation y on a C*-algebra j/ is called inner iϊγ — γθ is an
inner derivation for some completely positive map θ on stf.

Lindblad shows in [4] that every complete normal dissipation on a hyperfinite
von Neumann algebra j/ is inner. In [5] he uses the general theory of cohomology
of operator algebras to show that the same is true for any type I von Neumann
algebra, except that in this case he can only show that the range of the completely
positive map θ is contained in &(H), where .£/ is considered as a weak-operator
closed subalgebra of &(H) containing the identity map. However, since any type I
von Neumann algebra is injective, there is an expectation from .^(H) onto ^/, so by
the remark at the end of [5] we can choose θ with range contained in <$#.
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We show here that every complete normal dissipation on a semifinite von
Neumann algebra is inner. The starting point is Proposition 1 of [5], which we
state in the next section for completeness.

1. Preliminary Definitions and Results

Let j/ be a C*~algebra with identity.

Definition. A dissipation on sέ is a linear map

y:«^->.0f

satisfying, for a in J3/,
1) y(a*) = y(a)*,
2) v(l) = 0,
3) y(a*a)^a*y(a) + y(a*)a.

It is called a complete dissipation if

is a dissipation on ̂  ®Mn for every rc=i,2, ..., where Mπ is the C*-algebra of
n x π matrices over (C (so .stf ®Mn can be considered as the C*-algebra of n x π
matrices over ,s/).

Kishimoto shows in [3] that every dissipation on a C*-algebra is bounded.
For a dissipation y on a C*-algebra j</ we define, following Lindblad [5], two

related functions, the first from .£/ x .£/ to .stf and the second from stf x stf x j/ to
-j/. They are defined as follows : for a, b, c in stf

d(a, b) = d.,(α, 6) - y(αb) - y(a)b - ay(b)

and

D(α, b, c) - D})(α, b, c) - φb, c) - ad(b, c) .

Note that if <tf is a von Neumann algebra and y is ultra weakly continuous, then a
and D are separately ultraweakly continuous in each variable. Also

The following proposition is Proposition 1 of [5], except for the normality of π
and V, which is easily verified. We can also deduce the normality of V from [7].

Proposition I. Ify is a complete dissipation on a C* -algebra s$ and D is defined as
above, and if stf is considered as a norm-closed algebra of operators on a Hίlbert
space H, containing the identity on H, then there is a * -representation

of stf on a Hilbert space K and a bounded linear map

such that, for α, b, c in .£/,

D(a, b, c) = V(a*)*π(b) V(c) (2)
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and

V(ab)=V(a)b + π(a)V(b}. (3)

Ifjtf is a von Neumann algebra and is ultraweakly closed in &(H) and y is normal then
π and V can be chosen to be normal (i.e. continuous in the ultraweak topologies on

For the remainder of the paper we assume, unless otherwise stated, that j/ is a
von Neumann algebra, considered as a weak-operator closed subalgebra of
operators on a Hubert space H, containing the identity on H, and that y is a
complete normal dissipation on j/.

Define

Λ0 = {π(a)V(b)c :α, 6, CE d} £ Jf(H, K) ,

where π, K K are as in Proposition 1. If

x = π(a1)V(b1)c1,y = π(a2)V(b2)c2

are general elements in /t0, then

y**x = c*V(b2)*π(a*)π(a1)V(bι)cί

= c$V(b2)*π(a*aί)V(bί)cί

= cf D(fc| , αf α1? 61)c1 e j/ .

Now let /I be the weak-operator closed linear span of A0.

Lemma 2. (i) y*xejtf for every x, y in A
(ii) π(a)x and xaeAfor every xeA, aεjtf.

Proof. Let Aί be the linear span of A0 and let

x = Σiλίxi,y = Σjμjyj

be general elements of Λ^λ^μ^tL.x^y^Ao). Then

y*x = (Σjμjy*}(Σiλixί)

by the previous calculation.
Now let x,yeA and choose nets (xj, (3 )̂ in Λ 1 ? converging in the weak

operator topology to x, y respectively. Since ̂  is weak-operator closed in 3
and multiplication is separately weak-operator continuous, fixing β we have

Now using the fact that the ^-operation is weak-operator continuous we obtain

β

The proof of (ii) is similar and is omitted.
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Note. Since A is a weak-operator closed subspace oί &(H,K) it has a predual Λ^
and with respect to this predual it becomes a dual normal ^/-module in the sense
of [8, p. 404]. Further, by (i) of Lemma 2 we can define an j/-valued "inner
product" on A by

and Λ thus becomes a right Hubert .j/-module [6]. It can be shown that the dual
normal module structure on A implies that it is a self-dual right Hubert ^/-module
in the sense of Paschke [6]. By Proposition i, V ia a derivation of s$ into Λ. In
what follows we implicitly use the ^/-module structure on A, and in particular
the ^/-valued inner product.

2. The Main Results

The proof of the following proposition is an adaptation of the proof by Johnson
and Ringrose ([2] or [9, Theorem 4.1.6]) that every derivation on a von Neumann
algebra is inner.

The proof easily generalises to prove that every derivation on a dual normal
Hubert module over a semi-finite von Neumann algebra is inner.

Proposition 3. Let stf be a semi-finite von Neumann algebra. Then with the same

notation and assumptions as in the previous section, there is a VeA with \\ V\\ ^ I I V\\
such that for a in -j</,

V(a) = Va-π(a)V.

Proof. We write J/N for the group of unitary elements of jtf. For u in js/" define as
map

TU:Λ-*Λ

by

Tu(x) = π(u)xu*+V(u)u* (xeλ).

For u, v in sύlu and x in A,

Tu(Tv(x)) = Tu[π(v)xv* + K(φ*]

- π(u)[π(v)xv* + F(φ*] u* + V(u)u*

= π(uv)x(uυ)* + \π(u)V(υ) + V(u)v](uv)*

~ π(uv)x(uv)* + V(uv)(uv)*

so TUTV = TUV for u, v in J^M.
Let A be the collection of non-empty, weak-operator closed convex sets K of A

satisfying

I) Tu(K)gK (ue*/u)9

and

2)
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For w i n j/", IIT M (0)II = UF(φ*ll ^ \\V\\, Tu(Q)eΛ, and

so the weak-operator closure of the convex hull of {7^(0) :ve^/u} is a member of A,
and A is non-empty.

Order zl by inclusion. Using the fact that weak-operator closed bounded sets in
A are weak-operator compact [since A is weak-operator closed in 3$(H,K)~], we
can easily see that each chain in A has a lower bound, namely the intersection of all
members of the chain. So by Zorn's lemma, A has a minimal element K0.

Iϊx,yeKQ and ue^u

π(u)(x - 3>)M* = Tu(x) - Tu(y)e K0 - K0 ,

so KQ — KQ is invariant under the mappings

for each t/e,£/u.
Firstly assume that j/ is a finite, countably-decomposable von Neumann

algebra and therefore has a faithful tracial state τ. Define an inner product <.,.>τ

on /L by

This is well-defined by Lemma 2(i). We write

i l x ! τ = <x,x> τ

1 / 2 (xeΛ).

We want to show that K 0 — K0 — (0), so conversely assume that there is a non-zero
c = a — b with α, b in K0. Let

If xeK 0, the weak-operator closure of the convex hull of {Tu(x):ues/u} is a
member of zJ and contained in K0 (by the invariance of K0 relative to the Tu\ so by
minimality it must be equal to X0. So taking χ=±(a + b) and ίr;>0 we can find a

U such that

> / — ε .

Since II 7;(α)iiτ^ A, l i T u ( b ) i l τ ^ Λ , by the parallelogram law,

= 2λε-ε2

since i(T» + Tu(b)) =
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But on the other hand

= τ(u(a-b)*(a-b)u*)

= τ((a — b)*(a — b)) (since τ is tracial)

so letting £—»0 we get \\a — foll^=0 and a — b = c = Q (since τ is faithful), a con-
tradiction. Hence K0 — K0 = {0}, and KQ consists of a single point V say. Since K0

is invariant under each Tu,

and rearranging

V(u) = Vu-π(u)V (wej^M).

But .£/" linearly generates j/, so

F(α) = Fα - π(fl) F (α e ̂ /) .

Note that by construction i Fl l 5Ξ l l F l i and Fe/L
Now let j/ be any semifinite von Neumann algebra. For a countably-

decomposable finite projection e in s# define

by

Ve(eae) — π(e)V(eae)e .

is a finite countably-decomposable von Neumann algebra, so by the first half
of the proof there is a Veeπ(e}Λe with II Ve\\ ^ I I Fjl ^ II V\\ and

Ve(eae) = Feeαe — π(^e) Fe (α e jtf) .

Now let (έ?α)αe/ be an increasing directed set of finite countably decomposable
projections with supremum 1 (see corresponding proof in [2] for a proof of the
existence of such a net). Then for each αe/ there is a Vy_ = Ve with UFj ! ^11 Fll and

Also F xeπ(eα)Λeα£Λ By the weak-operator compactness of bounded sets in A we
can find a cofinal convergent subset of (ί^)αg/, and so we may assume that (Fα)αe/ is
weak-operator convergent to an element F in A with II Fll ^11 Fll (the subnet of
projections has supremum 1 since it is cofinal).

If /J^α, eβ^eΛ so

VeΛ(eβaeβ) = Vxeβaeβ - π(eβaeβ)VΛ (αe d} .

Letting α-^oc and noting that Ve^(eβaeβ) = π(e0,)V(eβaeβ)e0ί-+V(eβaeβ) in the weak-
operator topology, we get

V(eβaeβ) = Veβaeβ - π(eβaeβ) V (ae j/) .
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Now let /J-»oo, so eβaeβ converges to a ultraweakly and in the weak-operator
topology (the two topologies coincide on bounded sets); then using the norm-
ality of π and K

V(a) = lim V(eβaeβ)

= lim [ Veβaeβ - π(eβaeβ)V~]
β

= Va — π(a)V (αej/)

as required.
We can now easily deduce the main result of the paper.

Theorem 4. Every complete normal dissipation on a semi-finite von Neumann algebra
is inner.

Proof. With the same notation as before, put

θ(a)=V*π(a)V ( a e s f ) .

By Lemma 2 $(X)C.j/ and by [10] θ is completely positive. A straightforward
calculation gives

dyθ(a, b} = (Va* - π(a*)V)*(Vb - π(b)V)

= V(a*)*V(b)

so

d(y _ yθ)(0, b) = d,(α, b) - d.,θ(a, b) = 0 (a, b e d) ,

that is, y — Λ/0 is a derivation on j?/. But every derivation on a von Neumann
algebra is inner, so y is inner.

Note. If 3$ is a non-hyperfinite type III von Neumann algebra we do not know
whether every complete normal dissipation on .5$ is inner. However Christensen
has proved in [1] that if <stf is considered as a weakly-closed subalgebra of &(H\
containing the identity on //, and V\.$tf-+$(H) is a derivation, then there is a

such that

V(a)=Va-aV (ae<tf).

Using this result we can easily deduce that if π:s/-+3$(K] is a normal
^-representation of s/ on a Hubert space K and V:£/-+33(H,K) is a derivation
(where &(H, K) is an j/-module in the obvious way), then there is a Ve &(H, K) such
that

V(a) = Va-π(a)V
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[consider 3$(H,K) as a submodule of &(H®K) in the obvious way]. Combining
this result with Proposition 1 we obtain the following:

If y is a complete normal dissipation on a type III von Neumann algebra
..s/£ J'(jFί) then there is a completely positive map θ:<s/-+&(H) such that yθ is a
complete normal dissipation on s# and y — yθ is a derivation on stf (which is
therefore inner).
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