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Abstract. Iterates of maps in the family /(x, y) = (y +1 — Ax2, Bx) (see [1]) are
investigated. Characteristic exponents C = lim (l/π)log \\dfn(p)\\ are estimated

" n —*• oo

numerically. Further numerical investigations indicate that finite Cp>0 cor-
responds to a strange attractor. When C values are calculated for B fixed and A
in an interval, one finds dispersed among C > 0 values many small subίntervals
for which 0>C. On each such subinterval there appear to be attractors of
period k, 2k, 4k,... the period doubling as A increases. Many different values of
k have been observed. A theorem is proved for A>0, 1>B>0 describing an
explicit compact set K (depending on A and B) such that all non-divergent
asymptotic behavior takes place in K.

1. Introduction

Let / be a mapping of R™ to Rm defining a "time evolution" pn = f ( p n _ 1 ) . By
sensitive dependence on initial condition we mean that for qQ near p0 the distance
llp π — qn\\ is growing rapidly as n increases (cf. Ruelle [4,5]).

If / is differentiable, we can define this concept as follows: denote fn = f°... °f,
i.e. the n-th iterate of / and let dfn(p) be the derivative of /" at p, i.e. the m x m
matrix (dff/dXj). Then / has sensitive dependence on initial condition for a set U if
for each pe U

1) the set {fn(p) n = 0,1,...} is bounded
2) nlim(l/n)logy/n(p)ll=Cp>0.

In this paper we present the results of numerical experiments performed on a
particular family of diffeomorphisms mapping R2 to jR2. This family was discussed
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Fig. 1. Rectangles and their images 5=0.3

by Henon in [I]1. The numerical experiments which will be discussed in the
present work appear to indicate that characteristic exponents exist for the Henon
family of maps and for other polynomial maps as well, and that the value of Cp is
determined by an "attractor" asymptotically approached by iterates of p.

Throughout Sections 2-6 we shall only consider maps for which A > 0 and
1 >J3>0. We shall have a few remarks to make about other A and B values in
Section 1.

2. Some General Properties of the Maps /(#, j)=(j + l— Ax2,Bx)

In order to visualize the action of one of these maps, note that vertical lines are
mapped to horizontal lines, while (for A>0) horizontal lines map to parabolas
opening to the left. Each / for which v4>0, 1 >J3>0 has two fixed points

_(£-!)+|/(l-£)2

~ 2A
= Bx.

One of these x coordinates is negative and the other is positive. Denote the
negative x value by — r. In Figure 1 are displayed rectangles with vertices
( + r, ±Br) and the images under / of these rectangles when B = Q3 and ^4 = 0.3,
0.98, 1.12, and 1.35 respectively.

1 Henon pointed out that the maps f ( x , y ) = (y+l— Ax2,Bx) where A and B are parameters, model
important properties of a Poincare map for a three dimensional Lorenz flow studied numerically by
Pomeau in 1976. Namely, there is stretching in one direction, an area is folded over itself, and the
Jacobian of the mapping is constant (here equal to — B everywhere). Furthermore, these maps are a
canonical form for the most general quadratic maps of R2 to R2 having constant Jacobian. Henon
devoted a great deal of attention to the map for which β = 0.3 and A — \A
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/ — 2Ax 1\
The derivative of / is . If we calculate the absolute values of the

eigenvalues of the derivative, the smaller is always less than 1, but the larger is,
respectively <, =, or >1 depending on whether |x| is <, =, or >(1 — B)/2A.

3. Divergent and Non-Divergent Points

Before discussing the numerical results, it might be of value to have an overall
picture of the iteration of /(x, y) = (y +1 — Ax2,Bx). Proofs of the following
observations appear in Appendix I.
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Fig. 3. Non divergent points for A = IA and 5 = 0.3

Fig. 4. Schematic picture of connected non divergent set

Throughout this section we assume that
Let us call a point (x0,y0) divergent if Jim fn(χ^yQ)=:(- oo, - oo). The set of

divergent points can in fact be described explicitly. Let

It is easy to show that /(Q) C Q and that, further, the set of all divergent points is
oo

the open connected set D= (J f~n(Q). Moreover, one can construct a compact
n = 0

set K bounded by a polygon (depending on A and E) such that if (x0,y0) is not
divergent, then there is an rc0>0 such that fn(x0,y0)(=K for all n>nQ. In order to
study the asymptotic behavior of a given /, it suffices to examine iterates of points
in the intersection of K with the complement of D. This intersection is a compact
/-invariant set.
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Fig. 5. A Non divergent points for A = 2.6577 and 5 = 0.3. B A = 2.6511 and 5 = 0.3; detail near left
point in orbit. C A = 2.6511 and 5 = 0.3; detail near center point in orbit. D ,4 = 2.6577 and 5 = 0.3;
detail near right point in orbit

The shaded regions in Figures 2A-D are parts of the sets of non-divergent
points for B — 0.3 and ^4 = 0.3, 0.65, 1.12, and 1.4. The fixed points are marked in
the figure by circles. Figure 3 is a more detailed picture for B = Q3 and A = IA.
These pictures are somewhat misleading however, and in Figure 4 we have drawn
a picture which is distorted with respect to scale, but which gives a truer idea of
how the shape develops. (One can prove that the boundary of D contains the stable
manifold through the left fixed point. This winds around quite a bit.) In Figure 5 A
we display a portion of the rather wilder looking non-divergent set for B = Q3 and
A = 2.6577, where / has a period 3 attractor.

Figures 5B-D show neighborhoods of the three points of the attracting or-
bit (0.0104..., -0.2039 ...)->(0.7957)..., 0.0031...)-»(-0.6798 ...,0.2387 ...).
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Slightly larger values of A for which there appear to exist strange attractors have
similar looking non-divergent sets.

4. The Characteristic Exponents

Suppose that / has an attracting orbit of period fe. The eigenvalues of dfk are the
same for any p in the orbit, and an easy calculation shows that for almost any
vector t;Φθ, \\dfn(p)v\\ grows like MeCn where M is some constant and C = (log|/l|)/fc
with λ the eigenvalue of dfk of greatest absolute value. (\λ\ < 1 since fk has an
attracting fixed point.) Almost all points asymptotically approaching this attractor
will haved the same characteristic exponent C<0.

In contrast, for B = Q3 and A = 1.4, Henon numerically generated what
appears to be a "strange" attractor (locally it appears that it could be a segment
crossed with a Cantor set) by plotting thousands of iterates oΐp = (0,0)2 (see Fig. 6).
The characteristic exponent corresponding to this attractor is approximately 0.42.

5. Relationship between Characteristic Exponents and A Values

The characteristic exponents of f ( x , y ) = (y+l — Ax2,Bx) are studied here by
holding the parameter B fixed, and tabulating values of C versus several hundred
values of A.
2 This example is especially interesting because Henon found a compact connected region V
containing the attractor, with f ( V ) C V . One may speculate as to whether there is a unique attractor for
this map, which is equal to P| f"(V). If this were so, the attractor would be a compact connected set

n ^ O
containing the closure of the unstable manifold through the right fixed point (which lies in V). I
performed an experiment in which thousands of distinct points in the region K for this map were
subjected to iteration, and each appeared to produce the same attractor, making the above conjecture
somewhat convincing
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Fig. 7

For small A, of course, one does not need a computer to see what is going on
for ,4 = 0, all points in the plane converge to (i/(\-B\B/(\-B)} which is the
unique fixed point of/. When A <(3/4)(l - B)2, the right fixed point of / lies in the
region \x\<(\—B)/2A where both eigenvalues of the derivative have absolute
value less than 1 and this point is attracting. When ,4 = (3/4)(l-£)2 the larger
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eigenvalue has absolute value 1 and a bifurcation takes place with a period two
attracting orbit being created. A period two orbit continues to attract until
A = (l — J3)2 + (l + J3)2/4, where a period four attracting orbit appears.

As A increases, further bifurcations create attracting orbits of periods 8, 16,...
over a succession of intervals which have been determined numerically. (The size
of these intervals appears to decrease geometrically.)

Perhaps a word should be included here about the method of computing C
values. An initial point (x0» ^o) an^ initial vector are chosen, and are iterated by /
and df respectively several thousand times, so as to allow the point to "approach"
its asymptotic behavior. Now we let v be a unit vector having the direction of the
current vector image, and calculate C~(l/π)log \\dfnv\\ (using the natural loga-
rithm) for large values of rc3. When the point has been pulled toward a periodic
attractor, convergence to the corresponding C<0 has been rapid. When C>0 we
have sensitive dependence on initial condition, and even with the greatest of care,
round off errors are inherent in the calculations. Nonetheless, one seems to follow
a kind of "average" orbit around an attractor and consistent values of C with three
digit agreement were calculated even after 500000 iterations, taken from a variety
of initial values.

In Figure 7A we see a plot of C versus A for B fixed at 0.3 and 0 rg A < 1.42. The
first positive C value occurs at ^4 = 1.058048 . . . . To the right of this A, although
many C>0 appear, one also finds a scattering of subintervals on which C<0, each
such C corresponding to a periodic attractor. [The fact that a period 7 attractor
occurred for A = 1.3 was noted earlier by Parisi (private communication).] To the
right of an A value having C<0 and an attracting orbit of period fe, it appears
numerically that on an open interval of increasing A values there will be a series of
bifurcations to attracting orbits of periods 2k, 4k, 8 / c . . . .

Furthermore, for almost any A interval chosen at random within
(1.058,... ,4.2) a computer search resulted in a subinterval on which C<0 and
there existed a periodic attractor, suggesting that such attractors may be densely
scattered throughout the interval.

For A = 1.0752 the extremely interesting phenomenon of two distinct attrac-
tors was observed, one of period 24, and the other (with C~0.1) apparently
strange4.

For A E (1.42, 2.6575) it has not been possible to compute any C values or find
any attractors. All starting choices appear to diverge, causing one to suppose that
either no attractors exist or that the area of non divergent points is so attenuated
that the inaccuracies inherent in computer calculations perturb orbits out of the
region possibly one has a zero dimensional non-wandering set here.

However a new interval of interesting values was found as follows. Noting the
special significance of the appearance of the first period three orbit for mappings of
intervals (see [2]), we used numerical methods to find the smallest value of A

3 A single value of C was generally calculated by iterating / and df 3000 times and then using an
additional 3000 iterates for the actual averaging. As a check, many longer iterations, up to 500000, were
used to determine whether C was indeed a stable value for a particular attractor. Both the GEM system
and the Yale IBM 370 were used in these calculations, all of which were performed in double precision
4 According to the result of Newhouse [3], one should not be surprised at finding infinitely many
periodic attractors for some of these maps
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(£ = 0.3) for which a period three orbit occurs, namely ^4 = 2.6575.... On
(2.6575,..., 2.67336 ...) we first find attracting orbits of period 3, 6, 12,... and then
at about A = 2.668 we begin to find values of C>0, although again negative C
values corresponding to more periodic attractors are dispersed through the
interval (see Fig. 7B). To the right of this interval it has not been possible to
calculate any C values or find any attractors.
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Fig. 9

In Figure 8 A C is plotted versus A for .4 in the interval (0,1.45) and for B = 0.2.
The behavior is similar to that observed in Figure 7A. (There is a period 3
attractor at A = 2.322222213 and a second interval of C values can be calculated
for A in an interval to the right of this point.)

6. Strange Attractors

Given values of A, B, and p yielding C >0, one can plot the iterates of p in order to
observe the asymptotic behavior. In the figures generated for this paper the first
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3000 iterates are not plotted in order to avoid extraneous, non-asymptotic values.
For each case for which the experimental plot was generated, a figure that could be
a "strange" attractor developed detailed sections concentrating on a small region
near the attractor showed a characteristic pattern of many layers of line segments
(cf. Henon [1] for A = 1A and B = Q3). Also to be noted is the way in which these
attractors straddle the regions in which the larger absolute value of eigenvalue for
df ta'kes on values <, = and > 1. [Recall that the value is 1 when x = (i — B)/2A.^
Figures 9A-D display attractors for £ = 0.3 and ,4 = 1.075, 1.12, 1.15, and 1.31.

7. Some Further Calculations

Negative values of B also yield interesting non-divergent sets, attractors, and
characteristic exponents. In Figure 8B, values of C have been plotted for Ae(Q,2.1)
and £=-0.3 using the initial value (x0,j;0) = (0.72,-0.014). Again, strange
attractors appear to correspond to C > 0.

The family of functions g(x,y) = (y+ 1 - Ax3 + Dx, Bx) also produced similar
results for fixed positive B and D. Stable values of C were calculated for 5 = 0.3,
D = 1.0, and yle(0,0.61). One can obtain a graph quite similar to Figure 7A in
appearance.

Appendix I

In the following, assume that f(x,y) = (y+l — Ax2,Bx) and v4>0, 1>£>0. Let s

be the negative solution of Ax2 + x -1 = 0 i.e. s = (- 1 - }/l + 4A)/2A. Also, denote

(χι,yι)=f(χ<»yol (*w>:ϋ=/w(χo>3>0)
Lemma 1. Let Q = {(x,y)\x<s,y<0}. Then f(Q)CQ. Further, if (x0,y0)eQ then

Proof. We have y1=Bx0<0. If XQ = S — c then x1 =y0 + l — Ax%<l—
-As2-(l+]/l+4A)c-Ac2<s-2c-Ac2.

Remark. If χ<Zs, y<0 or x<s, y^O then /%x,j;)-^(- oo, - oo).

Lemma 2. Let Mu = {(x,y)\x<u,y<Bu + B}. If u^(l+2B)/(l-B), then
f(Mu)CMu_B.

Proof. Let (x0,y0)eMu. Then x1 =y0 + l-AxQ <y0 +
y1=BxQ<Bu<Bu + B-B2.

Corollary. Let m = (l+ 2B)/(ί - B). Given (x, y) there exists nQ such that fn(x, y)eMm

for all n^.nQ.

We shall now show that there are regions jR t and R2 such that f(Rl)CQ,
f2(R2)CQ and K = Mm — (Q(jR1uR2) is compact. Thus all points either even-
tually map to Q and stay there, or else stay in K. Once a point leaves K, it will map
to Q and never return.



260 S. D. Feit

y=Bm+B

K

Lemma 3. (Region RJ. If y0^Bm + B and x0<- ]/(Bm + B+ί-s)/A then

Proof. Since x0<ΰ, y1<0 and xί <Bm+B+ l-(Bm + B+l-s) = s.

Lemma 4. (Region R2). If xQ^m and y0<-l- ]/(l+Bm — s)/A then

Proof. x1<- \/(l+Bm-s)/A,
Jrl-(l+Bm-s) = s.

^Bm, hence y2<Q and x2=yί + l-Ax2

1<Bm
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