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Abstract. It is shown that the usual axioms of one-particle Quantum
Mechanics can be implemented with projection operators belonging to the
exceptional Jordan algebra J^ over real octonions. Certain lemmas on these
projection operators are proved by elementary means. Use is made of the
Moufang projective plane. It is shown that this plane can be orthocomplement-
ed and that there exists a unique probability function. The result of successive,
compatible experiments is shown not to depend on the order in which they are
performed, in spite of the non-associativity of octonion multiplication. The
algebra of observables and the action of the exceptional group F4 is studied, as
well as a possible relation with the color group SU(3) and quark confinement.

1. Introduction

Following Jordan's formulation [1] of Quantum Mechanics in terms of anti-
commutators, Jordan, von Neumann and Wigner (JNW) [2] showed that all
realizations of Quantum Mechanics in terms of anti-commutators (Jordan pro-
duct) are equivalent to realizations in terms of commutators (Lie product) except
in the case of 3 x 3 Hermitian octonionic matrices which form the exceptional
Jordan algebra. Since this one possible generalization via the Jordan formulation
was found too narrow for explaining the then observed nuclear phenomena this
approach was abandoned. However, Jordan algebras have since been extensively
studied by the mathematicians who established some deep connections between
the exceptional Lie groups and the exceptional Jordan algebra [3, 4].

After the sixties octonions made their appearance in physics again. Pais,
Gamba and others tried to relate the octonions to various internal symmetry
schemes in elementary particle physics [5, 6] Goldstine, Horwitz, and Biedenharn
studied a Clifford algebra made of octonionic multiplication operators [7].

Gϋnaydin and Gϋrsey suggested the extension of the underlying field of
Quantum Mechanics from complex numbers to the octonion algebra in order to
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explain the charge space properties of elementary particles on a fundamental level
[8-13]. They showed that space-time groups like the Poincare group can be
unitarily implemented on an octonionic space with complex scalar products. The
space-time symmetries and quantum mechanical considerations then select out an
SU(3) subgroup of the automorphism group G2 of octonions as an intrinsic exact
symmetry group of the space, which they identified with the color SU(3) group of
Gell-Mann and Fritzsch [14]. By taking octonionic quark fields, making the
ansatz that the non-associative and non-commutative components of the space be
unobservable, they could give an algebraic explanation of the observability of
color singlet states only, and the unobservability of quarks and other colored
states.

In this paper we answer the following question: is it possible to implement the
usual axioms of quantum mechanics with objects belonging to a Jordan algebra?
It turns out that this is not possible with the usual Hubert space formulation of
Quantum Mechanics, because the octonion algebra is non associative. So one has
to go to a more abstract level [15], starting with the concept of proposition (yes-no
experiment). Propositions correspond in the usual case to projection operators,
and the structure of the propositional system of Quantum Mechanics is equivalent
to the structure of an orthocomplemented projective geometry. At this point one
finds the link with octonions. Ruth Moufang [16] has constructed a projective
plane coordinated by octonions, and which turns out to be non-Desarguian.

Our aim in this paper is to study the quantum mechanical properties of this
non-Desarguian geometry by using Jordan's formulation of it in terms of the
exceptional Jordan algebra [17, 18]. We show that it can be orthocomplemented
and that there exists a unique probability function satisfying Gleason's axioms.
Successive compatible experiments yield a result which is independent of the order
in which they are performed. Hence, on the one-particle level all the axioms of
Quantum Mechanics are fullfilled. We further study the action of the automor-
phism group of the Moufang plane on states and the structure of the algebra of
observables.

Physical interpretation of the octonionic Quantum Mechanics poses many
problems. An important problem has to do with the possible product states, which
is crucial for the algebraic explanation of the unobservability of colored states.
Main-difficulty stems from the fact that all irreducible projective geometries of
dimension greater than two are Desarguian. One possible way out is to have an
imbedding of Desarguian subgeometries. Another possibility is to imbed this
projective geometry into a non-irreducible higher geometry. In any case, we hope
that the study of these problems may shed further light into the problem of
unobservability of colored states.

Before we begin our study of the octonion Quantum Mechanics we should
stress the fact that the mathematics underlying our work has long been thoroughly
developed by the mathematicians. The lemmas we use or prove may be found in
the mathematical literature in some form or other. Our purpose is to reformulate
these results in a physicists' language and lay the ground for future work on the
subject.
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2. Octonions and the Exceptional Jordan Algebra

Real octonion algebra (D is an 8-dimensional division algebra whose elements can
in general be decomposed as

(2.1)
A=ί

where r0 and TA are real numbers, e0 is the identity element and eA are the seven
imaginary units which obey the multiplication rule

C = l

ηABC are totally anti-symmetric and their non-vanishing components, apart from
permutations, are [9]

The octonion algebra is not associative, but it satisfies a weaker property, namely
alternativity, which implies that the associator (01? O2, 03) of any 3 octonions is an
alternating function of its arguments :

(01,02,03)Ξ(0102)03-01(0203) = (θ3,01,02)=-(02 901,03). (2.4)

As a consequence of this property one has

(O.O^^O ,(0,0^, (O^O^O^Cg (2.5)

and the Moufang identity

(0102)(0301) = 01(0203)01. (2.6)

The conjugate octonion is defined by

_ 7

0 = r0eϋ- £ rΛeΛ (2.7)
A=ί

and the real bilinear product by [19]

(01,02) = i(0102 + 0201) (2.8)

which induces the usual octonionic norm

n(0) = (0,0) = 00 = 00
(2.9)

n(0102) = n(01)n(02)

and has the invariance group 0(8).
The real exceptional Jordan algebra J® is a Jordan algebra whose elements are

the 3 x 3 hermitian real octonionic matrices

(2.10)
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where αf are real numbers and Oί are real octonions. These matrices form an
intrinsically non-associative algebra under the Jordan product

J1"J2=^JίJ2+J2J1), (2.11)

where J±J2 is th£ usual matrix product, and satisfy the Jordan identity:

(VJJoJ^VtVJ^ (2.12)

In the classic work of Jordan et al. [2], it was shown that the algebra J3 is the only
Jordan algebra which has no realizations in terms of associative matrices. A one-
dimensional projection operator P is a Jordan matrix which satisfies the
conditions

p2 = pΰp = p. trP = l. (2.13)

Any one-dimensional projection operator P belonging to J3 can be brought to the
following form [17]

' a\(άbc) laa ab_ ac\
= \ b\ = \ba bb bc\ (2.14)

c/ \ca cb cc/

where α, έ>, c are octonions, one of them being pure real, and satisfy

l. (2.15)

Following Freudenthal [20] one can define the following X product among the
Jordan matrices

J1 xJ2 = J1°J2-±J1trJ2-%J2tτJί+%I(tτJιtτJ2-tτJ1J2)9 (2.16)

where / is the 3 x 3 identity matrix.
For Jordan matrices on real octonions one has the property that if J x J = 0

then J is a scalar multiple of a projection operator i.e.

J x j = 0=>J2 = 17; tτJ = λ, (2.17)

where λ is a non-zero real number if J φ 0.
Using the X product one can define a completely symmetric trίlinear form :

3) (2.18)

which induces the determinental form i.e.

)3. (2.19)

3. Group Theoretic Properties of J^

The exceptional Jordan algebra has, as the automorphism group, the exceptional
group F4 [4]. The 52 infinitesimal anti-hermitian generators D of F4 act as
derivations of J3 i.e. they satisfy the property:

(3.1)
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for any elements J1? J2 of J3. This implies that the derivations annihilate the
identity matrix :

The 26 traceless Jordan matrices form the basis vectors for an irreducible
representation of F4. F4 can also be uniquely characterized as the simultaneous
invariance group of the quadratic and cubic forms of J3 i.e. as the invariance
group of

(J1,J2) = trJ 1oJ 2 (3.2)

and of

[J1,J2,J3]-tr(J1xJ2)oJ3.

The derivations can be represented by the action of two traceless Jordan matrices
X, Yon J\\

(3.3)

where the RHS is the associator

(X,J,Y) = (XoJ)oY-χ0(j0γ}, (3.4)

The derivations satisfy the following commutation relations :

DχιYW. (3.5)

The automorphisms of the 2 x 2 Jordan matrices form an SO(9) subgroup of F4.
There are three of them in F4. If we denote the elements X, Y of J3 as

(3.6)
X2 X,

then the generators of the SO(9) subgroup leaving the indempotent £3 invariant
are given by

The other SO(9) subgroups' generators can be obtained by a cyclic permutation of
1,2,3.

Each SO(9) subgroup has an SO(8) subgroup that leaves the diagonal terms
invariant. However, the 3 SO(8) subgroups' actions are not independent of each
other. These 3 actions are related via the principle of triality [21]. The principle of
triality states that given an action d1 of SO(8) on the octonion algebra Θ then there
exist actions d2 and J3, unique up to a sign, which satisfy the property

(3.8



74 M. Gϋnaydin et al.

and there is a cyclic symmetry of the actions dv d2, d3. The global action of the
SO(8) subgroup on ,73 can then be written as:

SO(8): J-> (d303) α2 (d^) . (3.9)

The infinitesimal generators of SO(8) satisfy the principle of local triality
(sometimes called infinitesimal triality) :

(3.10)

where Df belongs to the Lie algebra of SO(8). An example of triality action, which
we shall use later, is given by

d1=Lβ d2=Ra d3=L,R-a, (3.11)

where a is a unit octonion and La and Ra stand for multiplication from the left and
the right by the octonion a.

We now prove four lemmas which we shall need in the following [22]. They all
apply to one-dimensional projection operator P.

Lemma 1. There exists always a transformation belonging to F4 which brings P
given by (2.14) to the form E1 (see (3.6)).

Lemma 2. Given P1? P2, P3 such that P1°P2=P2°P3=P3°P1 =0 then there exists
always a transformation of F4 which brings them to the form £15 E2, E3.

Lemma 3. Given any two P1 and P2 then there exists always a transformation ofF4

which brings them into a real form.

Lemma 4. trP1 °P2 =0 implies P1 °P2 =0. For the proof of Lemma ί , we start with
the general form (2.14) for P. Consider the SO(9) rotation

* Γ (3.12)

2[n(α5)]1/2 _ n(d) - n(b)

n(a) + n(b) ~ n(a) + n(b) '

One then gets, using (3.3)

n(a] > ^'31

Now, perform the SO(9) rotation

(cS)31. (3.13)

ca

.^n (3 14)
sin φ - - 2[n(c)(n(α) + n(6))] 1/2/[π

cos φ = — [n(c) — n(a) — n(b)~]/[n(a) + n(b) + n(c)]1/2
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The result is

With an appropriate permutation of indices and letters one could also get E2 and E3.

To prove Lemma 2 we first bring P1 to the form E1 leaving P2 in the general
form (2.14). Then

Eί°P2 =Q implies α^O, hence the most general form for P2 is
P2 = bbE2 + ccE3 + (bc)23 with bb + cc = l. The transformation -R23(φ) obtained
from (3.12) by the cyclic permutation l->2->3 and a-*b-+c brings P2 to the form
E2, while leaving E3 invariant. It is then obvious that the only P3 that satisfies

For Lemma 3 we bring P1 to the form £3 with P2 given by (2.14). The SO(9)
rotation R12(φ) given by (3.12) brings P2 to the form (3.13). An SO(8) rotation via
the triality action given by (3.11):

d1=L0 d2=R0 d3=L0R0

ac
with 0 chosen as , / _ l 1 / < 7 brings P9 into a real form.

\n(ac)\ !

For Lemma 4, first consider an F4 transformation that brings P1 into the form
El with P2 being of the general form (2.14). Then from (3.16) we have

therefore ϊrEl°P2 = Q implies a — 0 and thus Eί°P2 = Q.

Lemma 5. Any element of J3 can be brought to the diagonal form by an F4

transformation.

Consider a general element X of J3 as given by (3.6) then by the triality action

|*3| |*3| \X3\ \X3\

it is brought to the form

/«! W

A Ί = ι*?ι «?
\ 2 i

Then by a simple real rotation this can be brought to the form

Again via the triality action this can be brought to the form

0 x'2
f'

*2 KΓ

\x''f \x"\ a'



76 M. Gϋnaydin et al.

Now under the rotation

TX3T~1=X4,

/I 0 0\
where T= 0 , with R being the real rotation matrix that diagonalizes

\» R ;
(,1, «'). we find
\KI «3 /

/ α' L — sinax;2 cosax^
Z4= — sinax;2 a^ 0

\cosax^ 0 a;3

Then by the triality action

|χ'2 I |χ2 I |χ2

X4 is brought to a real symmetric matrix which can always be diagonalized by a
real rotation matrix. QED.

4. The Moufang Projective Plane

The representation theorem for projective spaces states that projective spaces of
dimension n>2 can be represented by vector spaces over a skew field [23]. If the
underlying division ring is commutative then Pappus-Pascal-theorem holds. The
Desargues' theorem follows from the projective axioms for n>2.

One example of a non-Desarguian projective plane (n = 2) was given by
Moufang [16]. She gave an affine coordination of this geometry in terms of
octonions and showed that the harmonic lock incidence theorem (which is a
weaker theorem than Desargues' theorem) is satisfied as a consequence of the
alternativity of the underlying octonion algebra.

Jordan gave a construction of the Moufang plane in terms of the idempotents
of Jl [17]. The first rigorous study of the Moufang plane and its automorphism
group was given by Freudenthal [24]. Below we shall use Jordan's method in our
study of the Moufang plane and follow the work of Freudenthal [20], Springer
[25], and the excellent review of Jacobson [3].

A projective plane is defined as a set of elements called points and a collection
of subsets of points called lines such that the three following axioms are satisfied.

G = Moufang plane

1) Any two distinct points are contained in one and only one line.
2) The intersection of any two distinct lines is one point.
3) There exist four points no three of which are in the same line:

as an immediate consequence, we can prove
4) Given three distinct lines which intersect in three points, the line defined by

two other points of two of these lines intersects the third one.
5) Any line contains at least three points.
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If we take 1), 4), and 5) as axioms we define an irreducible projective geometry.
As a matter of fact, by 2) such a projective geometry is a plane. A linear variety is a
subset of points such that, each time it contains two points, it contains the line
defined by this two points. Here, for the projective plane the linear varieties are the
void set, the points, the lines and plane itself.

Up to a real factor, one-dimensional projection operators (or irreducible
idempotents) are given by the condition

PxP-0. (4.1)

As points in the plane we shall take the equivalence class P satisfying (4.1) and as a
representative of this class take a P satisfying the trace condition

t rP=l . (4.2)

A line in this plane will be represented by a two-dimensional projection operator /

I2 = l\ trl = 2 (4.3)

A point P is said to be contained in the line / if and only if

Pol = p or Po(/-/) = 0. (4.4)

To prove that axioms 1, 2, and 3 are satisfied, one first needs to show that for P1

and P2 different one-dimensional projection operators,

P "% (4.5)

is a one-dimensional projection operator. This can be simply done by considering
the case P1 =E1 and P2 general and extending it to the general case. Or else, one
can use the identity

2(J1 x Jj) x ( J2 x J2) + 4(J1 x J2) x ( J1 x J2)

= (J1xJ1,J2)J2 + (J1,J2xJ2)J1. (4.6)

It then follows that

is a two-dimensional projection operator and hence a line. The points Pί and P2

lay on the line /1 2 since

and

To show that 112 is the only line through P1 and P2, one needs:
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Lemma 6. // Pί and P2 are different one-dimensional projectors then the projector

P3 satisfies Pι°P3 = P2°P?> — 0 tf and on^y tf PI zs a multiple of P1 xP2.

It is enough to prove the lemma for P3 = E15 Pί and P2 being of the general
form (2.14). Then P^P^^O (i = l,2) implies

Direct computation gives Pl xP 2 proportional to £x. The converse has already
been proven above. Therefore, axiom 1 is satisfied.

The intersection of two lines I — P1 and / — P2 is the point

P x P
p» = (4 8)

which, by the same arguments, can be shown to be unique. Hence, axiom 2 is
satisfied. To prove axiom 3, consider the following four points

with P4 being given by the general formula (2.14). The line lκ passing through
points £. and E is given by

E x E
1- = Ek = I - lk i , j, fc in cyclic order . (4.9)

trEf x EJ

The points Ek and P4 do not lay on the line lk since

Thus, there exist four points, no three of which lay on the same line. Such a
projective plane constructed with Jordan matrices is called a Moufang plane.

Let us now show that this projective plane is effectively non-Desarguian. First
let us recall that Desargues' theorem states that given two triangles ABC and
A'B'C' such that the lines AA', BB\ and CCf intersect at a common point 0, then
the intersection points of the lines AB and A'B\ BC and B'C, AC and AC all lay
on a straight line.

We now give an explicit non-Desarguian configuration. For this consider the
three lines

13=I-E3; '23

£3 =

0 0 0\ /O 0 0\
0 0 0; £ 2 = 0 1 0
0 0 I / \0 0 0

( 0 0 0
0 sin2$ — sin 0 Co;
0 -sinθcosθ cos2θ



Octonionic Quantum Mechanics 79

These three lines intersect at the point represented by the idempotent El since

Now take two points on each line

Graphically, we have

The line passing through points PA and QB is represented by I — LPQ;
LpQ = PA x QB/tϊPA x QB and intersection point of the lines 1PQ and 1P,Q, is the point
(up to a trace factor)

Similarly for the points B, C, B', C and A, C, A', C one finds

Now Desargues' theorem would require that the points 515 S2, and ,S3 lay on a
straight line, which in our notation is equivalent to the condition
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Let us now show that this condition does not in general hold for this Moufang
plane. As the points in our plane consider the idempotents

1 1 -e2 0\
P, = - e2 1 O P ,

A rj 1 2 A
L \0 0 O/

! / 1 0 e?\ρ =- o o o QI
2U 0 I/

-j / 1 — COS0£6

Rc=- cos0β6 cos20
\sinθeβ cos 0 sin 0

, [ 1 — cos0£5

R = - COS 02. COS20
2 1\sιn0e5 cos 0 sin 0

! 1 -βl

- -\e 1
' 2 \0 0

1 1 0
,,= - 0 0' 9 12\-e3 o

— sin0£6\
cos 0 sin 0

sin20 /

— sin0e5\
cos 0 sin 0 .

sin20 /

0^
0

°y
\

£3
0
1

/

After some long and tedious calculation, one finds that

1 2 2
1 2' 3 219

This shows the existence of non-Desargian configurations in the Moufang plane.

5. Orthocomplementation of the Moufang Plane

A projective plane is orthocomplemented if on it there exists an involution on the
linear varieties which reverses the order of inclusion and maps each point to a line
outside this point. Existence of such involutions over the Moufang plane has long
been established [26] and thoroughly studied [27]. The simplest such involution is
to associate with each projector P the projector

F = J-P. (5.1)

If P is one dimensional (tr P = 1), then / — P is of dimension 2 and represents a line.
This involution reverses the order of inclusion since if P°/ = P then

A linear variety is by definition orthogonal to another if the orthocomplement
of one contains the other. Two points P1 and P2 are orthogonal if and only if

(5.2)

In this case

(5.3)
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and

112=P1+P2. (5.4)

The third point orthogonal to Pί and P2 is just (/ — P1 — P2), which is the
orthocomplement of the line / 1 2. We remark that for any orthogonal linear
varieties /1 and 12 we have the simple formula for their union

I^l2 = l, + l2. (5.5)

Having now at our disposal an orthocomplemented projective geometry, we can
construct a quantum mechanical system of propositions, satisfying all axioms, as
shown in Ref. [15]. As in [15], two propositions /1 and 12 are compatible if and
only if (/ 1n/ 2)u(/ 1n/ /

2) = /1 i.e. if ίx can be written as the sum of two projectors, one
in 12 and one in Ϊ2

l1=Pί+P2 with Pίol2=P1
(5.6)

P 2 o/ 2 = 0.

In §6 we show the existence of a unique probability function and in §7 the theory
of measurements and observables is discussed.

The automorphism group of the orthocomplemented Moufang plane is again
F4 [3]. Indeed, since F4 preserves the Jordan product and the Freudenthal
product, F4 transforms points into points, lines into lines and orthogonal linear
varieties into orthogonal linear varieties.

6. The Probability Function

We now show that given any one-dimensional projector P, there exists a unique
probability function

) leG (6.1)

satisfying Gleason's axioms [28]

1) o^w;(/)gι (6.2)
2) Wp(P) = l (6.3)

3) Wp(l1vl2) = Wp(l1}+Wp(l2)
(6.4)

l i l^eG.

To prove (6.2), we first choose for / a point Q. Since trP°Q is invariant under
F4, we consider P in the form Eί and Q general given by (2.14). Then trP°<2
= |α|2^l. Next, for / = / '-Q, trP°/ = l-|α|2^0.

To prove (6.4), we remark that according to (5.5), W^(/ 1u/ 2) = tr(P°(/1 + /2))
= t r ( P l ί ) + tτ(Pl2)=Wp(lι)+Wp(l2). On the other hand, such a function is unique
i.e. if a real function on G satisfies (6.2)-(6.4) it is identical with the one given by the
trace. To prove this, let us first make two remarks

1) Due to the condition (6.4) the function Wp(l) is completely defined by its
values on the points.
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2) The restriction of Wp to the real subplane defined by the real 3 x 3
projection operators is a state on this plane and by Gleason theorem it is unique
and given by the trace. This is indeed the case since the orthogonality condition
p0Q = 0 (Jordan product) restricted to real 3 x 3 projectors is identical with PQ = 0
(ordinary matrix product).

Suppose there exists a point Q such that Wp(Q) is different from tr(PQ). Lemma
3 of §3 shows that by an automorphism of F4, we can choose P ana Q real. Then
by the second remark, we will have a contradiction and by the first remark the
uniqueness is proven.

7. Measurements and Observables

We consider here ideal measurements of the first kind [15] which are simply called
measurements in usual text-books. We show that the result of two successive,
compatible experiments does not depend on the order in which they are
performed, in spite of the non-associativity of octonions.

We first consider a physical system in the state P (one-dimensional projection
operator) and we measure the proposition / (yes-no experiment). Suppose the
result of the experiment is the answer yes (the value one). What is then the final
state after the measurement? The problem is only non-trivial if I is a line.
According to reference [29], the final state is the point

(7.1)

where /', the orthocomplement of /, is a point. Pu/' is the line

P v /'ι - ' - - > - L (7 2)

Then the intersection of the lines / and / is the point I' x L. Normalizing, we get the
final state

P. ''** = r * ( f * o (73)f tr(ί'xL) tr(/ 'x(Px/ ')) ' '

Using Equation (2.16) and the fact that the free Jordan algebra with two
generators (here P and /') is special, i.e. equivalent to a matrix algebra over an
associative field with Jordan product [4], one finds

tr((Po/')o/') = trP°ί', (7.4)

tr((P x /') x /')= i(l -trPof), (7.5)

(P x /') x /' = (Po/')(/'-/)+ ̂ (P- /' trPo/'). (7.6)

The probability to get the answer yes if one measures the proposition / on a system
in state P is

tτP°l. (7.7)
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Suppose now we measure l± on the initial state P1 and get the state Ph. Then
we measure the compatible [see Eq. (5.6)] observable 12. The probability to get the
answer yes for l± and yes for 12 is tr(PZ l°/2)tr(Po/1). Therefore, we must have

/ 1 )tr(Po/ 2 ). (7.8)

From Equation (7.3) we have

where 1^=1 — l
Then

= l-4(l-trP/'1Γ
1tr[(Px /;)»(/; χ/' 2

The compatibility of ίx and 12 implies I'^ΐ2—^, hence

,,,!,,

t r P o ( / /

1 x ( / /

1 x / /

2 ) ) = i t r P o / /

2 .

Thus, we find

trPZl o/ 2 = l - (1 _ trPo/Ί)" x trP°Γ2

= (l-trPo/ /

1)- 1(l-trPo/ /

1-trPo/ /

2). (7.9)

Since tr(P/1) = trPo(/-/'1) = l-trP/'1, we get the result

Since the right-hand-side is symmetric in l\ and /2, we have

) = 2trPo(Γ x / ' ) . (711)

Note that the point 2l\ x Ϊ2 is just the intersection of the lines /1 and /2, as expected.
What (7.11) implies is that the probability of successive, compatible experi-

ments is independent of the order of the measurements. This is a somewhat
surprizing result in view of the nonassociative nature of the octonion product.

We now come to the question of observables [30]. First, each projection
operator defines an observable. In general, in the Moufang plane, an observable is
defined by three one-dimensional projections. They can always be brought by an
^-transformation to the form £1? E2, and £3 (Lemma 2). The question arises if
any Jordan matrix can be written as a linear superposition of three mutually
orthogonal one-dimensional projection operators and interpreted as an observ-
able. The answer is yes, since any element of J^ can be diagonalized by an F4-
transformation (Lemma 5).

In order to get a Schrodinger equation, we need a time evolution operator.
This should transform orthogonal states into orthogonal states and hence belong
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to the automorphism group of the orthocomplemented Moufang plane, which is
F4. Some generator in the Lie algebra of F4 will play the role of the Hamiltonian.

The subalgebra of complex Jordan matrices can be used to construct a
Desarguian projective subgeometry of the Moufang geometry. The corresponding
Quantum Mechanics can be realized in a three-dimensional Hubert space. The
subgroup of F4 which leaves the complex subgeometry invariant is SU (3)c. Jordan
matrices whose elements comprise the six remaining octonionic units transform as
3 and 3 under SU(3)C. More precisely, under the maximal subgroup SU(3)C x SU(3)
the representation 26 of F4 reduces as

26 = (3C,3)®(3C,3)0(1C,8). (7.12)

Hence, it is tempting to identify SU(3)C with the color group, complex Jordan
matrices with lepton states [18,31], and the other with quark and antiquark states
(note that a projection operator belongs to the reducible representation
27 = 2601). Since a non-Desarguian projective plane cannot be embedded in a
irreducible projective geometry of higher dimension, this would mean that quarks
have no space properties, these latter requiring an infinite dimensional geometry.
On the other hand, the lepton subgeometry can hopefully be embedded in a
consistent way in such an infinite geometry. However, the definition of a consistent
tensor product of quark states is still an open problem.
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