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Abstract. By "causality of matter" one means its property not to admit
superluminal excitations, i.e. excitations that propagate faster than the vacuum
speed of light c. In discussing the propagation of small excitations, one has to
distinguish between phase velocities ω Jk, ( l ^ y ' ^ # = n u m b e r of dispersion
branches), group velocities dωjdk, a front velocity vf: = max lim {ωjk\ and

j k-+oo

the propagation speed vq: =(dp/dρ)112 of isotropic quasistatic (small) per-
turbations. We discuss some of their properties. In particular, the (maximal)
speed vs of small signals is not smaller than vf, and equals vf whenever the
dispersion branches ωfk) behave reasonably at infinity of the complex fc-plane.
In essence stronger conditions guarantee vq<vf (in which case vq^c would
imply superluminal behaviour).

1. Introduction

Superluminal propagation velocities of perturbations have already ,been discussed
by Sommerfeld and Brillouin [1,2] in application to ordinary matter governed by
Maxwell's equations, and have received renewed interest in the physics of matter
at extreme densities, e.g. in the cores of neutron stars, cf. [3-6]. Very often in the
literature one can find discussions of superluminal behaviour based on the velocity
(dp/do)112 which is directly formed from an equation of state p = p(ρ) = pressure as
a function of mass-energy density. Though at first sight unrelated, such a
procedure will receive some justification by our subsequent analysis (see in
particular Proposition 5).

It is our intention to discuss and relate the fundamental velocities introduced
in the abstract. To this end, our concern will be small excitations of an arbitrary
extended physical system. Here the assumption "small" stands synonymously for a
linearized spacetime dependence so that the solutions are superposable, and
harmonic plane waves form a basis of elementary solutions. (Soliton solutions are
disregarded.) Then "dispersion branches" ω^ωjji), (l^/rgg), govern the wave
vector dependence of (angular) frequencies. This assumption does not exclude
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statistical or quantized models: (even) a quantized iV-body system can be
(rigorously, cf. [7,8]) described by phase space functions whose small per-
turbations have a basis of harmonic plane waves (w.r.t. space and time).

In Section 2, we shall discuss the roles of a signal velocity, phase velocity and
group velocity, and the wave vector dependence of the Fourier transformed
perturbations. Four typical examples may serve to appreciate the generality of our
assumptions.

In Section 3, the front velocity vf will be (defined and) shown to equal vs for a
large class of physical models containing all the relativistic ones of which we are
aware. The class contains all models in which ω/k is a (power of a) generalized
susceptibility, like in electrodynamics. A counter example shows, however, that
not all physical models belong to this class. Note that whenever vf = vs holds,
causality means vf^c. We perform our analysis in wave number space (rather
than in frequency space) because we regard the initial value problem as more
transparent than the one-sided boundary value problem.

Finally, in Section 4, the Kramers-Kronig relations are applied in order to
prove vq < vf under stronger conditions (cum grano salis) than needed for the proof
of vf = vs.

2. Propagation of Small Signals

What is a signal? In a broad sense, we mean by a signal a localized excitation
propagating between two spacetime points. Clearly, a signal cannot be described
by analytic, or quasi-analytic [9] functions because they have infinite support, i.e.
are non-local. On the other hand, any departure from quasi-analytic behaviour
can be used as a signal, which vanishes for xΞ^O, say, but not for x<0. For
instance, a signal can be realized by the threshold-crossing of a field excitation and
of a finite number of its space-time derivatives. The maximum speed υs of a small
signal will be called "signal velocity". An algorithm to calculate υs needs some
preparatory analysis with which we begin now.

We consider small excitations of a physical system which can be described (by
assumption) by a linear homogeneous system ί£ of equations for the Fourier
coefficients ga{k,ω;pv) of a finite number of excitations ( = varied physical
variables) fa(xμ;pv), where the index a— 1,...,/ counts independent components,
kμ : = (k, ω/c) is the wave-number 4-vector, xμ : = (x, ct) is the position 4-vector,
and pv stands for further independent parameters such as momentum variables of
phase space distributions which will not be mentioned in the sequel. Solvability of
5£ implies a dispersion relation D(k, ω) = 0, whose solutions ω = cύj(k), 1 Sj ύ g, are
called "dispersion branches". Solvability of the general Cauchy problem implies
that the number g of branches equals the order (in dt, or ω) of the system; e.g.
g = 2f for a second order system. For example, if the governing field equations are
differential equations then D(/c, ω) is the determinant of the Fourier transform of
the varied system, hence a polynomial in (k, ω), and ωfk) are its roots. But if they
are kinetic equations for phase space distribution functions, D(k, ω) ceases to be
rational. For isotropic, Lorentz invariant equations, D(k, ω) must be a function of
kμk

μ and kμu
μ where uμ is the center-of-mass 4-velocity, (because there are no

further Lorentz invariants).
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In any case, the general excitation fa(xμ) can be expanded (for any reasonable
model) as

fa(x, t ) = Σ ί dikcj{k)gaj{k)ei^-"'^ , (1)
j

where {gaj(k)} is a basis of normalized solution vectors of if, gaj belonging to
branch "/', and cβ) are suitable expansion coefficients. Here "generality" is
equivalent with the fact that fa(x, t) can take arbitrary initial (Cauchy) data:

fa(x90)=id3kΣcβ)gaβ)eik χ

9 (2)
j

Ux, o) = - i j d3k Σ cβ)ωβ)gaβyk-*, (3)
j

i.e. that Equations (2) and (3) can be inverted: The solution cβ), or rather cβa p is
of the form

caβ): =cβ)gaβ)= ίd*xla j(x;k)e- ί k χ, (4)

where the laj(x k) are linear in the initial data fa(x\ fa(x) with rational coefficients
in gaβ), coβ), homogeneous of degree zero in the gaj and of degree zero or minus
one in the ω . All that matters is the fact that the jc-support of the laj(x k) equals
that of the initial data, and that their /c-dependence is implicit via a rational
dependence on the coefficients of i f and on ωβ). This ^-dependence is algebraic if
if depends algebraically on k. If so, the caβ) in Equation (4) grow (at most) like
exp{ + Im(/c) x0} for /c->oo in the complex fc-plane, where k : =(/c2) 1 / 2, and where
x0 is a bound on the x-support in /c-direction. This growth property will be needed
below, and will be made an assumption in case if does not depend algebraically
on k.

From now on we restrict considerations to one component / of the (small)
perturbation fa{xμ), and write Equations (1) and (4) as:

f(x,t)= IPkΣfβ^'*-**™. (5)
j

Here fβ) is the Fourier amplitude of t h e / h excited mode, whose phase and group
velocity are ωjk and dωjdk respectively. Despite its great importance for
practical purposes, the group velocity cannot be used for a rigorous discussion of
propagation speeds: it has only approximate character, and loses its meaning in
domains of strong dispersion. This can be seen by remembering that a wave group
propagates with dω Jdk iff ω^ in the exponent of Equation (5) can be approximated
by its Taylor series up to the first term, i.e. iff higher order terms can be neglected.
They can certainly not be neglected in domains of anomalous dispersion where
\dω Jdk\ exceeds c even within everyday applications of Maxwell's theory.

Next we reduce the 3-dim problem to that in one space dimension by
restricting considerations to the propagation along one straight line through the
(arbitrarily chosen) origin of space coordinates, spanned by the unit vector e.
Writing k= :k e + k±, x: =x e, we obtain from Equation (5)

7 f c > i ( k N - - ^ ι i ' ^ w (6)
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which is of the form:

co

g{x,t) = \dH J άkg{k,\)έ^-^ m , (7)
— oo

where ί stands short for {k±j). Thus the 3-dim problem differs from that in one
space dimension formally by having a continuous number of dispersion branches
ω(k /) rather than a finite number of branches ωfk).

We conclude this section with four examples of dispersion relations D(k,ω) = 0.
For an unquantized, multicomponent, cold, magnetized plasma, D reads [10]:

+ nflnlin2-{ε++e_)/2] (8)

with

n : = ck/ω, ε0 : = 1 - £(ωjω)2, ε± : = 1 - £ω^/ω(ω + Ωa),

where the index a numbers different components, ωa, Ωa are the plasma and gyro
frequencies respectively, and where the indices II, J_ denote parallel and per-
pendicular components w.r.t. the magnetic field. If the latter vanishes, D simplifies
to D = ε(ε — n2)2, with ε: = ε o = ε ± . In any case, D = D(k,ω2) = 0 leads to algebraic
dispersion branches ±ωj(k). The latter are real for real fc, have no infinities for
complex, finite k, and vanish at most at k = 0.

For a warm, one-component, non-magnetized plasma, the Vlasov equation
leads to [11]:

co

D = ί+{nω2

p/c2k2) j dβf'(β)/(ί-nβ) for Im(«)<0, (9)
— co

where f(β): =mcjcl 2p 1 /0(mcjS,j)1) is the effective unperturbed velocity distri-
bution density in fc-direction, pLl.k, ωp = plasma frequency, and where f0 is
normalized such that \d3pf0(p) = l. As a result, n(k) is no longer algebraic.

Thirdly, water surface waves have the (only) dispersion branch [12]

ω(k) = {gk tanh(fcft)[l + k2σ/ρg]}1/2, (10)

where g = gravity acceleration, ft = water height, and σ/ρ is the specific surface
tension. Note that ω(k) has an essential singularity at complex fc=oo, and that
n{k): =ck/ω->0 or oo for σφO or σ = 0 respectively. This example will show that
our results below do not all follow from first physical principles.

A fourth example is the non-relativistic heat conduction equation. Its disper-
sion branch ω~k2 has vf = oo, manifesting an unrealistic description in the limit as
fe->oo.

3. Front Velocity and Signal Velocity

Equation (6) suggests that the velocity

1;̂ .:= sup Re lim [ω/fe,,,ftj_)/fc,,],(Λreal)5 (11)
j , k± k\ i -* co
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may control the propagation speed (in ^-direction) of small excitations of an
extended physical system because the Fourier transform of a (non-analytic!) signal
must have essential contributions from large wave numbers. We call it the "front
velocity", and prove that vf equals the signal velocity υs if a certain number of
reasonable assumptions are satisfied. Though all plausible physical models have a
finite υf, it helps to know that vf = vs holds more generally. We therefore start with

Proposition 1. vf = vs holds for vf=co.

Proof. Remember first that the Fourier transform f(k) of a function of compact
support f(x) is regular analytic for complex k, and behaves exponentially at
complex infinity:

f(k) = J d*xf{x)e~ikx ~ eIm<*'*o> (12)

for |Im(/ojt0)|->oo; i.e. |/ | grows exponentially, or shrinks exponentially to zero,
depending on the sign of Im (k xQ). Now the spatial Fourier transform e(k t) of
f(x9t) [Eq. (5)] is of the form e(k t): = £/)(fc)exp {- iωβ)t} where

j

f.(k) = §d3xlj(x;k) is a linear combination of functions of the form (12) with
rational coefficients in gaj{k\ ωβi). e(k ί) cannot be the Fourier transform of a
function of compact support if one of the ωjk is unbounded for real k: the ω {k)
would have to be analytic (because e and fj have this property), and their
imaginary parts would have to be bounded by C \k\ near complex infinity
[because of the exponential growth law in Equation (12) which has to hold
identically in t and for all initial data of compact support]. But an unbounded real
part of cθj/ku for real k implies an imaginary part of ωj that grows faster than |fcj
for complex fc ->oo, as can be found from Cauchy's integral theorem for regular
analytic functions'applied to a suitable contour near oo. As a result, f(x, t) cannot
be of compact support for t > 0, even when the initial data at ί = 0 vanish outside
some finite domain. This means an infinite signal velocity. •

For the sake of illumination we offer yet another proof which works when
ω~ka. In this case, a point source g(x, 0) = δ{x), g(x,0) = 0, gives rise to a signal
g(x,t) = x~3h(xa/t\ and the curves of constant x3g(x,t) are given by xa = Ct.
Whenever α > 1 and h(y) is non-zero in a neighbourhood of y = oo (which it has to
be according to the preceding proof), such £-shape signals spread with arbitrary
speed (as C-»oo). But even without this knowledge, their speed at f = + 0 can be
seen to be infinite for α > 1. D

We now treat the more interesting case of an asymptotically dispersion-free
theory:

Proposition 2. vf = vs holds for vf<oo if:
A) the dispersion relation D(k,ω) = 0 is analytic;
B) (Oj/k has a limit for complex fc ->oo (not just for real k )
C) Im(ω.)-*0 for real |fcj->oo;
D) for Cauchy data of compact support, the Fourier amplitudes laj(x k) in

Equation (4) grow less than exponentially for complex k ->oo (x fixed)
E) the Cauchy problem for the excitations is uniquely solvable.

Before we proceed to the proof, let us explain why we consider assumptions
A)-E) physically reasonable: The analyticity assumption A) is natural even
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though it loses its direct interpretation for very large k it holds for all models of
interest, and is an unavoidable tool in most proofs. Regularity assumption B) (at
infinity) seems natural at least for relativistic models and follows if k /ω} is a
(power of a) generalized susceptibility, like in electrodynamics [14] but counter
example (10) of water surface waves shows that it does not follow from first
principles alone. Assumption C) should hold for every realistic physical system:
the imaginary part of ω describes damping, and damping should go to zero for
frequencies above all resonances of a system. Morever, C) follows from B) plus the
space reflection symmetry F) discussed below. Even more so, assumption E) looks
like a law of nature. Only assumption D) is ad hoc and unpleasant. It is
automatically satisfied for all systems deriving from differential equations, as
mentioned below Equation (4), and may well hold generally for realistic systems. A
violation of assumption D) would imply vs=co because f(x91) would not be of
compact support for £>0 (see proof of Proposition 1), hence vq<vs in this case.

Proof of Proposition 2. i) It has to be shown (first) that vf^vs. This means that the
solution g(x, ή in Equation (7) vanishes for all points x = xe whose spatial distance
from the initial support at ί = 0 is larger than vft. It suffices to show that the
integral over k vanishes for these points, which are characterized by

±Im[Mx-x 0 )-ω( fc ,/ ) ί ] > 0 for all I and large |Im(fc)|, (13)

where x 0 is a bound on the support of the initial data. But this condition and
assumptions A)-D) guarantee that the path of integration from ~ oo to oo over k
can be closed in the upper or lower complex fc-half-plane, depending on the sign of

The integral therefore vanishes iff the sum of possible residues plus contour
integrals around branch cuts vanishes in the respective half-plane. Residues could
result from zeros in the denominator determinants of the laj(x k) in Equation (4).
These would, however, give rise to non-trivial solutions of i f for zero initial data,
in contradiction to assumption E). Contour integrals would result from poles
and/or branch cuts of ω(fe, I). In such cases, the path of integration in the complex
/c-plane could be chosen to deviate from the real axis by some detour above or
below all of the (finite number of) poles and/or branch points. Such detouring
would not change the initial data at t = 0, whose Fourier transforms [of shape (4)
and (12)] are regular for all k (only the sums over j enter). And it could not change
the value of the integral for finite t either because the integral solves i f for any
path, and takes the correct initial data for any finite excursion from the real axis,
hence solves the Cauchy problem and is thereby unique [ass. E)]. It will be argued
below, however, that such irregularities of the Fourier amplitudes are even ruled
out by assumption E).

In any case, we have shown that g{x,t) vanishes whenever condition (13) is
satisfied. It can be rewritten as: \Δx/At\>\lm(ojj)/lm(k)\ for large |Im(fc)|.
Assumptions B) and C) imply that forming the imaginary part is not necessary, so
that the right hand side can be replaced by vf from Definition (11), and vs^vf is
proven.

ii) A demonstration of vs ^ vf for 0 < vf < oo asks for a detailed evaluation of
Fourier integrals, with the result that small signals can propagate with any speed
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smaller than vf. Such an evaluation has been performed in [1,2]. Suffice it to
remark that for large wave numbers, the theory gets dispersion-free, with
vf = phase velocity = group velocity, so that vs = vf is plausible without detailed
calculation. D

Proposition 2 implies that no small signal can propagate if vf = 0 [and condi-
tions A)-E) are satisfied]: an initial excitation stays where it is. We are not aware of
any realistic model with this property, but if such existed, it would probably develop
discontinuities at the edges of the support which would have to be treated by the
full non-linear theory, and would most likely admit (large) signals with ^ s > 0 . Note
that example (10) with σ = 0 has 1^ = 0, but violates condition B). One finds υs= oo
for this model, along the same lines as in the proof of Proposition 1.

In the proof of Proposition 2, we allowed for the possible existence of
singularities of the Fourier amplitudes.

Kk):=Σfβ)e-^k)t (14)
j

in the complex fc-plane. Such singularities are, however, ruled out by assumption
E): Whereas the function k(ω) can have poles (and branch points) in the complex
co-plane, cf. [2], the functions ω;(fe) are finite in the whole complex fc-plane, and
their possible branches are such that e(k) is unbranched in the complex fc-plane.
(For instance, when ω^ have branch points but ω2 are unbranched, e is an even
function of the ωr) Such an asymmetry between k and ω mirrors the asymmetry
between boundary value problems and the initial value problem, apart from the
fact that fc-space is in general 3-dimensional. We prove

Proposition 3. Assumptions A) and E) of Proposition 2 imply the regularity in the
complex k-plane of the Fourier amplitudes e(k), Equation (14), occurring in Equations
(5) or (7), for all initial data of compact support. In particular, ωfik) are finite for all
complex k.

Proof. According to our discussion under Equation (12), the Fourier amplitudes of
the (localized) initial data are everywhere regular. Compared with them, the
Fourier amplitudes e(k) [in Eq. (14)] at £>0 involve the exponential factors
exp {— iωβ)t}, which moreover separate the terms belonging to different branches
j . Quite generally, if an e(k) had an irregularity with non-vanishing contour
integral around it, one could construct different solutions for a given Cauchy
problem by once choosing the path of integration in Equation (7) along the real fc-
axis, another time by pushing it beyond the irregularity (compare proof of
Proposition 2). Condition E) rules out that such non-vanishing contour integrals
can occur. But this implies the absence of any irregularity of e(k) because the
contour integrals vanish for all (regular) Fourier transforms ffk) of functions with
compact support. At the same time, it forbids the presence of poles of ω (k): such
poles would e.g. show up as residues in the repeated time derivatives of e(k) at t = 0,
again in conflict with assumption (E). D

For the sake of completeness, we finally mention the (trivial) inequality

Proposition 4. vf ^ vs.

It can be verified by combining Proposition 1 with the second part of the proof of
Proposition 2.
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4. dp/dρ and Dispersion Branches

For an isotropic equation of state p = p(ρ), {dp/dρ)112 is the propagation speed of

quasistatic small perturbations. It will therefore coincide with Re lim (ω /fc) for

some j , namely with the low-frequency-limit v(0) of the phase velocity of some
longitudinal mode (or dispersion branch). In order for this limit to be finite, k must
tend to zero as well, so that:

υq:= (dp/dρ)^2 = Re\im (ωj/k)= :v/0) (15)

for some j .
So far, vq looks unrelated to υs9 and to discussions of causality. As pointed out

by Ruderman [4], however, the Kramers-Kronig relations establish a relationship.
They can be applied to certain analytic functions which are regular in the upper
half-plane and have a finite limit at infinity (in this half-plane). A candidate for
such a function is n(ω) a comparison of n(0) with n(oo) will give the desired result.
Note that the function ωfk) cannot be used in the Kramers-Kronig relation
because it tends to have branch points in both /c-half-planes. Also, the analytic
continuation of one branch ω f̂c) generally includes several branches of which all
but the "highest" end in a resonance. In other words: the analytic function (Dj(k)
tends to be multivalued whereas its inverse fe(ω) tends to be singlevalued in the
upper ω-half-plane for each polarization state. [Typically, on the real ω-axis,
Refc(ω) is similar to tanω for not too large |ω|, and to Cω for large |ω|.] In order
to get a finite limit for |ω|->oo, one has to pass from fc(ω) to n(ω).

Proposition 5. vq<vf^ vs holds if the dispersion relation D(k, ω) = 0 satisfies assump-
tions A) and B) of Proposition 2, and if moreover:

F) ω(k) satisfies the symmetry relation —ω*( — k*) = ω(k) (where we have
dropped the index j , and a star denotes complex conjugation)

G) Im(ω(fc))^0 holds for real k;
H) n (ω): =ck /ω is regular in the upper complex ω-half-plane, including the

real axis.

For a better understanding of the assumptions, note that B) and F) imply C), so
that only conditions D) and E) of Proposition 2 can be spared. Of these, D) may be
automatically satisfied whereas E) is fulfilled by every reasonable physical model.
The assumptions of Proposition 2 are therefore more or less contained in those of
the present one.

Concerning the physical significance of conditions F)-H) we mention that F) is
the (analytic continuation of the) symmetry under space reflection: invariant speed
and damping. Note that relation (8) is expressed in the rest system of the medium
its Lorentz invariant form can be found e.g. in [13]. Condition G) excludes anti-
damping, a property satisfied at least for excitations from the ground state which
ought to be stable. Not equally transparent is condition H): it holds if n{ω) is a
(power of a) generalized susceptibility, like in electrodynamics [14]. And it is
plausible: poles of n(ω) mean resonances of the system which should be damped
(rather than anti-damped), hence occur for negative imaginary part of ω;
moreover, single-valuedness of n(ω) in a neighbourhood of the real axis means a
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well-defined propagation speed and damping rate (of that mode). Note that
assumption H) cannot be derived from conditions A)-G): The (probably unre-
alistic) dispersion relation

n2 = 1 + ω2/[(ω + iα)2 - Ω2] (16)

satisfies A)-F) and even G) for α < 0 but has its (unbounded) branch points in the
upper ω-half-plane. [It is of the form of example (8) with imaginary gyro frequency
(op = ίω0, i.e. corresponds to negative particle masses, and to negative damping for
α < 0.] Condition H) is therefore independent and crucial for our proof of vq < vf. It
is expected to hold at least in the rest system of the medium.

Proof of Proposition 5. In view of Proposition 4, the proof reduces to that oϊvq<vf,
or u(0)<ι;(oo), or n(0)>n(oo).

For an analytic function f(z) in the upper half-plane which is regular on the
real axis and vanishes at infinity, Cauchy's integral theorem in the upper half-plane
implies [15, 14]:

Λ z-x ί z-x

where j- denotes Cauchy's principal value, and C is a contour in the upper half-
plane that encloses all possible singularities and branch cuts of f(z). Taking the
real part and adding i Imf(x) leads to the (generalized) Hubert relation

(in

where "ΪO" stands short for "lim(ϊε) as e^> +0" .
If, moreover, f(z) satisfies /*( —z*) = /(z), Im/(z) vanishes at the origin, and

/(0) can be formally subtracted:

Again using /*( —z*) = /(z), we obtain a (generalized) Kramers-Kronig relation
[15] by re-expressing the integral from — oo to 0 as an integral from 0 to oo and
adding:

where, unfortunately, nothing can be said in general about ./(oo). If, however, /(z)
is regular in the upper half-plane, J>(x) vanishes, and we get in particular

(21)
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We now verify that n(ω) — n(oo) satisfies all the assumptions made about /(z),
because Imrc(oo) vanishes [conditions B) and F)]. In addition, we find I m φ ) ^ 0
for ω ^ 0 as a consequence of G), because the map k-^ω sends the real axis into the
lower half-plane and therefore its inverse ω->k sends the real ω-axis into the upper
fc-half-plane, and correspondingly for ω->n. We therefore obtain from Equation
(21):

c[ιΓHoo)-ϋ~Hθ)] = Re[w(oo^^ (22)
jc-^oo Tί 0 y(y — 1)

Under realistic conditions, lmn(ω) does not vanish identically for ω>0, and we
get v(oo)>t;(0) as claimed. D
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