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Abstract. Inequalities on eigenvalues of the Schrodinger operator are
re-examined in the case of spherically symmetric potentials. In particular, we
obtain:

1) A connection between the moments of order (n— 1)/2 of the eigenvalues
of a one-dimensional problem and the total number of bound states N,, in n

space dimensions;

ii) optimal bounds on the total number of bound states below a given
energy in one dimension;

iil) a lower bound on N, ;

iv) a self-contained proof of the inequality

d
N, <Co [ S (PIV] 2

for =20, n=3, leading to the optimal Cy,, C,;;

v) solutions of non-linear variation equations which lead, for n=7, to
counter examples to the conjecture that C,, is given either by the one-bound
state case or by the classic limit; at the same time a conjecture on the nodal
structure of the wave functions is disproved.

1. Introduction

There has been recently a great interest in bounds on the moments of the energy
levels of the form [1]
N v .
Y e’ =M, , [ dxx"" V(x| 2. (1)
j=1

Here e; denotes the eigenvalues of H= — 4+ V(x) defined on L*(RY, h=2m=1,
and |V|_ means the attractive part of V:|V|_= —V if V<0 and zero otherwise.
Notice that in our notation M, , is related to L,, of [1] by
M, ,=@2n"?/I(n/2))L,,, the proportionality factor being the surface of the n
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dimensional sphere. As an application of such a bound let us note the proof of the
stability of matter [2]. In [1], Lieb and Thirring proved Equation (1) for
y>max(0,1—n/2) and obtained the best possible constants in one dimension
M, =M for y=3,3,...) ! where M; , denotes the “classical value” for M,
defmed by

(Z |ej'ly)classicm: j d(zx;i)np |p2 + VP)— =M§.n j dxx”_ IIV(X)]?—+% (2)

J

so that M¢ , is given by (we denote Cl,=M; )
¢ _ I'y+1)

I n n\
21z
F(y+1+2) (2)

Furthermore they conjectured that there exists a unique critical value of y(=y,,)
such that

My,n=M;,n fOI' ’yzyc,n’ M'y,n:M;,n for yéyc,n’ (4)

©)

where le,n denotes the optimal constant in (1) for N=1. It has been proved that
Ye1=3; it was conjectured (by numerical experiments) that y,,=1.165 and
7,3 =0.8627.

The problem of finding the best possible M, , remains open, and deserves some
interest. For instance, if a bound similar to (4) holds for y=1, n=3, for non-
spherical symmetric ¥’s the bounds obtained in [2] on the ground state energy
of matter can be seriously improved. In fact, as we shall see, conjecture (4) has to be
modified, at least in spaces with dimension larger than 6.

For y=0 bounds like Equation (1) have been obtained by different methods
[3]: first, partial results were given by Simon [4] and Martin [5]; Rosenblum’s
method [6] gives no constants, Cwikel’s [7] is the most general one, and Lieb’s
approach [8] (using functional integrals) gives the best constants.

Here it will be shown that (for radial symmetric potentials) there exists a
connection between M, , and M,_, , ; in a sense to be made more precise below ;
in this way we add a proof of a finite bound on the number of bound states N,.
Furthermore bounds in one dimension imply a family of bounds in n dlmensnons
in this way we generalize our previously derived bounds of [9], where we obtained

2-I'(n)
r (g) =21

A procedure similar to that used in [9] gives us best possible bounds on the
number of bound states below some non-zero energy in one dimension. As an
amazing by-product we obtain a lower bound on N,.

In one dimension one can count the number of bound states using the nodal
theorem. For n dimensions it is known that the wave function of the m™ energy
state divides space at most into m disjoint nodal regions [10]. There are explicit
examples, with potentials possessing some symmetry, where the number of nodal

=S,. ©)

n

1o
M, =

! See however “Note Added in Proof”
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regions is less than m. However, a natural conjecture would be that small
perturbations (small in some norm) lead always to a potential having the property
that the m'™ state divides space indeed into m regions; so one expects the last case
to be the generic one. This would imply that the Sobolev constant (corresponding
to N=1) gives the best possible bound. However, we give examples of potentials
violating the “nodal theorem” in n=7 dimensions. These examples also disagree
with the semi-classical result. So it turns out that the conjecture (4) is violated for
y=0and n=7.

Conjecture (4) is also violated for y >0, sufficiently close to zero, n=7. On the
other hand, it may be completely correct in spaces with less dimensions and in
particular for n=3, where we have carried some numerical tests at y=0.8627 and
seen near saturation, within 1%, of (4) but no violation. On the basis of a partly
heuristic variational argument, we propose a new conjecture for the case y=0.

2. Bounds on N, and the One-dimensional Moment Problem

A) The first step involves a special counting of the number of negative energy
states for the Schrodinger operator in n dimensions

[-4+V()]w=ey. (6)

After introducing the reduced wave function [11]
1-n

wx)=r 2 ¥(rY(x/r)

(6) reduces to

l+—”_1 l+—n_3
d? 2 2

_217-'_ 2 +V({r) | x=ex, (7)
where the degeneracy of each level is determined by the number of harmonic
polynomials Y, of degree [ in n dimensions [11]:

n+l—1
] .

Here H, is the number of homogeneous polynomials of degree ! in n dimensions.

We want to exploit the node theorem for radial wave functions : the number of
bound states in a given angular momentum [/ will be equal to the number v, of
nodes of the zero energy solution of (7) multiplied by the degeneracy factor (8). If
we look at the zero energy solutions regular at the origin as a function of the
continuous parameter [ (following Regge), we obtain a series of values of I (not
necessarily integers)

D,=H,—-H,_,, le( ®)

Ly>l,—y>...>1, 20

for which the solution is also regular at infinity, and the corresponding number of
nodes is 0,1,..., vo— 1. We evidently have

w= Y 0=, o)
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where 0(x)=1, x=0, 8(x)=0 otherwise, and
[

N,= ZDvl Y LD= ZP([z]n)

(—2+D!(n—1+2])
(-1 :

(10)

P(lLn)=H, ,+H=

B) We want now to transform the problem into a pure one-dimensional
problem. Since we are interested only in zero energy solutions of (7) we can indeed
make the substitution

z=lnre(— oo, ), ¢=-L=. (2V)(2)=u() (11)
Ve

and look for the eigenvalues of the equation

dz
[— o 0002 (12

(z +”_2_2) . (13)

Now we may bound (10) by

sup (n—=24+[ND(n—14+2[1)

= (14)
(n—1)!([l])!<1+ nz;z)

NnéKa,HZIeilas K

a,n—

where we are allowed to include ¢;’s between zero and — (n—2/2)%, which preserves
the inequality. To get finite constants K, , we have to have 26 =2n— 1. If we now
bound the moment of the sum of the energy levels in (14) by the appropriate norm
of v with the right dimension (see Section 3)

© 1
Ylef' <M, | dz-loz)” 2 (15)

we obtain finally a family of bounds on N, (a+ % = g +oc>

N, < “j |2V12 V20, C,,=K,, M, <. (16)

C) To be able to exploit (15) and get bounds on N, we need bounds on
one-dimensional moments. In some cases optimal bounds are known as we
mentioned it already in the Introduction, for y=3, etc. Otherwise one could use
the technique presented in [2] starting from the Birman-Schwinger [12] trace
method to get a bound on N,(—a), where N,(— ) designates the number of bound
states in n dimensions with energy less than —a. In fact we can, by a straight-
forward extension of the methods of [9], derive a family of optimal upper bounds
for N,(— o).
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For the sake of completeness we shall discuss this question in the general
framework of [9]. In particular, in what follows, we do not need to assume
. spherical symmetry. In the course of our derivation some new bounds will appear,
not explicitly contained in [9] and [1].

Let Ve 2(R") and o =0 be given and let {y;,, ej}’;’ be the ordered set of bound
states and corresponding energies of the Schrodinger operator — 4 + V. Suppose j
is fixed so that e;+a 0. We write the corresponding Schrodinger equation in the
form

—Ayp;toyp;=—Vy,;+(e;+ay; . (17)

Let us call y; 1(0) the “nodal set” of the j™ eigenfunction. It is a closed set (y ;18
continuous!) that decomposes R" into n; disjoint open connected components
Q.x=1,...,n;:

9 2 H J

R"= Ql Q,.

The @, are called “nodal regions”. It is well known [10] that for the ground state
v }(0)=0, ie., n, =1. Because of the orthogonality of the 'S, we have n; 22 for
Jj>1. A famous theorem due to Courant [10] tells us that n; <j in more than one
dimension and n;=j for n=1.

After these preliminary remarks we multiply (17) with y; and integrate over
any Q,. Since y; vanishes on 0Q, the first term on the left may be integrated by
parts. If we drop the last term on the right-hand side, we obtain, because of
e;+a =0 the series of inequalities

Jax[(Vy)? +opi1< — [ d'xVy}
Q5 Q,
< [ dorf Ve P <PV, P, - (18)
2

In the last step we have used the Holder inequality with any p=1, p~'4+¢~ '=1.
| II, denotes the usual I norm with respect to the Lebesgue measure over R", the
index x denotes the corresponding norm over €2,, r=|x| and £ is an appropriately
chosen real number. In order that the inequality be meaningful, ||r~#y?|| o Must
be < oo at least for all pe P, which gives the first necessary condition on f3:

B-g<n. (19)

We divide the inequality (18) by 1|r‘ﬁtpf ll,,. and we denote what we obtain on the
far left by F(X,,), X, = the characteristic function of Q,, where F is the functional

7)1 + el
- . 20
771, 29
If we suppose that the infimum of this functional taken over all pe Z(R") is a
strictly positive number wu(x), then, as will be shown presently, this number is
necessarily of the forn u(e)=a"°u(1), § =0, and (18) becomes, after summing over
all ,

F(y)=

—D
O [ dxp?V P, y20. 1)

n.<
J o jn
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This is the inequality we wanted to derive.

It remains to be seen under what conditions x> 0. For this purpose we take a
fixed we 2, and minimize the function (0, c0)e o— F(y,), where p,(x) =y(x/0). This
function is of the form A¢*+ Ba® and we obtain

F(p)za' ~S(y)
17?13 w1 ~°

W= gy, .
provided
1/n
== =0=1. 2
0<2(p+[3) ([ (23)
We see that indeed
0=1-60=20 and y=(1-60)p=0. (24)

From Equation (17) we get also the equation
e;= {j’ d"x[(Py;)? +Vy? } {f d”xtpf}‘l
2, oM

and if we submit the right-hand side to manipulations similar to (18), we obtain the
inequality

le;I” = [ dxif’vie,  y=(1-0pz0 (23)

u—P()
nj R'l
(compare with [1]), where pu(1) is the infimum of the same “Sobolev functional”
S(y) defined by Equation (22).
If n>1, the simple argument presented in [9] shows that the condition

B>0 (26)

is also necessary in order to have u>0. If the inequalities (19), (23), and (26) are
respected, one can show by a slight generalization of the proof in [9] that the
infimum of the functional S is attained by a spherically symmetric decreasing
positive function y(r) satisfying the corresponding variational equation

—Ap+ap—br P2~ 1=0 (27)

with a,b two positive constants if #<1, and a=0, b>0 in the case =1. In the
latter case, which was treated in [9] for n=3, Equation (27) can be solved
analytically and the numbers u explicitly computed. Incidentally, these numbers
give a lower bound for the general case, as can be seen by applying to S(y) the
Holder inequality

Ir= P2, < Ir P25, 1?1170, art=1-@p)~" .
If we make the “natural” conjecture mentioned in the Introduction, namely

that in a generic potential n;=j, we may replace n; in inequality (21) by
N _,(V)=total number of bound states with e < —a. This is certainly always true if

- —a
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the right-hand side is <2, but it is certainly false in general in the case of n=>7
dimensions, as shown by counter examples in the last section of this paper. It is
again always true in the one-dimensional case. For n=1, f=0 we encounter a
functional (20) which was treated in [9], so that

N, (- oc)_( ():p__ [ dx|V(x)+(1— )2,

_ (=1 -I'2p)
P22 pPT¥(p)

(28)
0<t<1, p=1

[starting from Equation (17) we have subdivided « into two parts and included the
part (1—t)a, 0<t<1, into the potential]. For t=1 this is nothing but the
inequality

C,
T I S IRV (29)
l

[+
of [9] for the total number of bound states of angular momentum [ in a central
potential V(r). Equation (28) is obtained from (29) by replacing (I+ (n—2)/2)? by «,
r2V(r) by V(x) where x =Inr. [Strictly speaking, (29) was derived only for n=3, but
the generalization to n=3 is trivial.]

Inequality (28) is always better than inequality (2.8) of [2] except in the limiting
case p=1 where they coincide. For p— oo the improvement is a factor e/2.

From (28) one gets by integration non-optimal inequalities on the moments of
the eigenvalues in one dimension:

(=

Dled’< . inlg Z(y,m) | dz|V(2)"?

(m—1)""'T2m)yy"* Iy + 3 —m)

zZ = ; p 3
0= = S~ )+ ) m— 73 + T—my 5 0
Typical values obtained in this way are
M, 1269 for m=1049,
’ (1)

M, <0870 for m=1.128
while the exact answer is M, ; =3/16=0.1875.

3. Discussion, Examples

A) Let us concentrate on the celebrated bound a2 =0, n=3, or the total number of
bound states in three dimensions. Straightforward application of the technique
described in the previous section leads to the inequality

M0,3§K1,3'M1,1=4‘M1,1 (32)
[the maximum in (14) is reached for /=0] or, equivalently,

C0,3=4'M1,1 . (33)
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Inequality (32) agrees perfectly with the conjecture (4) in the sense that if M ,
is given by the one-bound state inequality, the upper bound on M, ; in (32)
coincides with the one-bound state inequality in three dimensions
M, ;=16/(3]/31)=0.980. So inequality (32) is optimal in a certain way.

However, if we do not want to make any assumption we have to use the result
of Subsection 2C to control M, ,. A brutal application of (31) and (32) would lead
to

M, ,<5076=5.18-M} , . (34)

However, a more sophisticated approach allows some improvement. We write
the number of bound states as

N;= Z ([li] + 1)2 = Z ([li] + %)2 + Z([lz] + %)

L] (35)

=Z([li]+%)2+%vo+ Z Vi s

where v, is the number of bound states with angular momentum k without the
multiplicity factor. Replacing v, and v, by the bounds of [9] [Eq. (39)] and using

Qk+ 129 M} 5 [ drr?|VIE (36)
0

we get

7.1:2.

1
N,< (1.295— it

) M [ dr2Vl
0

=2279-M} , [ dr? [V . (37)

This particular boun?i is not quite as good as the bound obtained by Lieb [§] in
which the coefficient in (37) is replaced by 1.49. However, as we shall see the
situation is not the same in higher dimensions.

B) Strangely enough the connection between one dimension and n dimensions,
when combined with the first Faddeev-Zakharov [13] sum rule for one dimension,
leads to a lower bound for the number of bound states in two dimensional
. potentials. The first two sum rules are given by

- Of dzV(z)=4 Y le]* + Of dkT(k) , (38)
? dzV(z) =£ Y lef* —4 Of dkk*T(k) , (39)
T(k)= %mu —R?), (40)

where R <1 denotes the reflection coefficient, and T <0. From (38) we get a lower
bound of the form

Slefiz—4 [ azv(z) (41
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Table 1. Bounds on sup (N,,/j dxx”“‘]Vl”’z)
14 0

N Mg Example/S, Example/Cl, Lopt Bound/S, Bound/CI,

1 1 1 0 1

3 1 1 0 228

4 1 1 0 1

6 1 1 0 1.12

4 1.36 2 142

10 8 1.24 5 1.28
12 13 1.18 10 1.21
14 20 1.15 16 1.16
16 28 1.12 23 1.14
18 37 1.11 32 .12
20 47 1.09 42 1.10

which we may combine with (14), taking the inf(J) instead of the sup(l). For n=2
we need not worry about the constraint |e;| = (n—2)%/4 and obtain

N,z —1{dmr). 42)

This confirms the known fact that in two dimensions a purely attractive
potential has always bound states.
C) In higher even dimensions, i.e., n=4,6, etc...., we can exploit the fact that to
get N,, we need the moments of order 3, 3, etc.... in one dimension. The second
Faddeev sum rule (39) allows to get the best possible bound for the moment of
order 3 leading (by using [14]) to

N, <F% [dr V)2 . (43)
0

This is the best possible result which is saturated by the one-bound state
condition. It agrees with conjecture (4).

Lieb and Thirring [2] have been able to prove that the higher moments, of
order 3, 7, etc., in one dimension are bounded by the “classical” value. The bounds
thus obtained are presented in Table 1 and compared to the one-particle bound S,
for n<6 and the classical bound for n= 8, Cl,. The bounds are always larger than
S, and CI,. Furthermore for n= 7 the maximum of the right-hand side of Equation
(14) is reached for an [ value which differs from zero. We shall see in the next
section that indeed for n>6 the upper bound on N, is necessarily above the
classical bound.

D) In three dimensions we can also get an optimal result on C, ; using the sum
rule (39)

NaéZ(li+%)3~81llp(—UJLDi

(I+37
=3 [dm vz . (44)
0

This agrees with the one-bound state inequality obtained in [9].
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4. The Variational Approach. Examples and Conjectures

To get the best possible C, , and in particular C, ,= M, ,, one can try a variational
method. We can set the problem in the following terms. Given N, we can look for
the infimum of

[ dr =1V (45)
0

when the number of bound states in n dimensions is larger or equal to N,. To
reduce the problem to a problem of minimum and to be able to write Lagrange
variation equations it is necessary to prove first the existence of an absolute
minimum.

It is indeed possible to prove the existence of an absolute minimum of (45) for
given N,, using the methods developed in Appendix B of [9], provided one adds
the following artificial boundary conditions: the domain of definition of the
Hamiltonian is defined to be ¢ <|x| <R and the wave functions vanish at |x| =¢ and
|x|=R. The bound states are defined to be states with energy <0. Eventually one
can let ¢-0 and R— c0.

We shall not give the details of the proofs because, as we shall see, we shall not
be able to carry out this program completely and use it only as a guide.

For the sake of generality let us assume that the existence of a minimum is
established also in the class of non-spherically symmetric potentials V(x)= —|V(x)|
for the region Q= {¢<|x|<R} with Dirichlet boundary conditions—we believe
this to be true also, although we have not tried to prove it explicitly. Let {wj,ej}’l"
be the corresponding eigenfunctions with non-positive eigenvalues.

Our first remark is that at least one of the energies e; must be equal to zero. For
if all e;>0, we multiply ¥ by A and decreasing 4 from unity we increase
continuously the energies of all the levels by the Feynman-Hellman theorem,
decreasing thereby the integral (45), which is contradictory to our assumption.
Therefore,

—4yp;—[Vlp;=0 for jeJ, (46)

where J is a non-empty subset of {1,..., N}.

We look now at a neighbouring potential V'=V +¢g, where ¢ varies in a
neighbourhood of zero and ge 2(Q) is fixed. The energy levels will vary according
to the so-called Feynman-Hellman formula

0
Se;=— [ d'xd|VIy?/ [ d"xy?, 5=é; L (47)

For every choice of g such that de; <0 for all jeJ, we must have 6 | |V["*20, for
otherwise (45) would not be minimal. As in the theory of Lagrange multipliers we
conclude that

S{IVP==Y K¢,

JjedJ
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identically for all ge (), where K; are some non-negative constants. Comparing
the integrands, we obtain

_ n
M= (Zewips a=75 (48)
jeJ

with ¢; some non-negative constants. Among these at least one is strictly positive,
because the Dirichlet operator — 4, has notoriously strictly positive eigenvalues
for any bounded Q, which would contradict our assumptions. By changing the
normalization of the y ;s and comparing with (46), we find that the minimizing V is
of the form

M 5\ ¢t n
V==Y v} 4= 2>0, (49)
j=1

where the {i,} satisfy the system of non-linear differential equations

M q—1
j=1

and the boundary condition y,|,, =0. Here it is understood that some of the p,’s—
but not all—may be identically zero. For the sake of convenience—see the
Appendix—the constant A was not normalized to 1.
We note that (50) are the variational equations corresponding to stationary
points of the functional
L
q

Fo-{| f(w,-)zal"x} i (f w,f)qd"x}_ (51)

and that at these stationary points F(y)= V| ,, p=n/2, where V is defined by (49).
Thus (51) and (50) are the natural generalization of the functional (20) and the
corresponding variational Equation (27) for the one-bound state problem (for the
case f=0, p=n/2, a=0). It is also easy to see that the infimum of (51) is equal to
that of (20) (all y; equal to zero except one).

If we restrict ourselves to the class of spherically symmetric potentials, then any
zero-energy solution is necessarily of the form

V; =R, (1Y,,(x/7)

with at most one R, in each angular momentum [, but with m running over all
“magnetic quantum numbers” pertaining to this [ Also there is only a finite
number of angular momenta for which we can have bound states in the
minimizing potential due to the case p=n/2 of the inequality (29). If we normalize
the spherical harmonies so that

¥ ¥/ =1
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and use the “logarithmic variables” (11), we get from (49) and (50) for the
minimizing potential v(z)=(r*V)(z) the equation

L qg—1
U=—A<Z qﬁf) , q=nn—-2, >0, (52)
1=0

where the functions {¢,}} satisfy the set of non-linear equations
n—2 2 L q—1
—¢;’+(I+T) (;5,—/1(2(1)1.2) ¢,=0, 1=0,....L (53)
i=0

and the boundary condition ¢,(z,) =¢,(z,)=0, [=0,..., L, where z, =Ing, z, =InR.
Here it is again understood that some ¢,—but not all-—may be identically equal to
zero. It is also clear that these equations may be obtained directly within the
framework of the restricted problem.

In what follows we shall discuss in some detail the spherically-symmetric case.

a) The Case of Only One Zero Energy State with Angular Momentum L
at the Minimum

The system (53) reduces to the single differential equation

n—2
2

2 nt2
—¢g+<L+ ) br— (¢ —2=0. (54)

The solutions of this equation are known and actually discussed for the special
case n=3 in Appendix B of [9]. The point is that (54) admits a first integral :

2

n—

2 n
n—2 2 =const (55)

N e

)
=2 (4,)

from which solutions can be constructed. In the case of ¢e—0, R— o0, ie., of the
infinite interval in z, there is only a one-parameter family of solutions vanishing for
|z|— o0 such that the “potential” is

n—2

2
2 ) 2 +n—2
P [COSh (ﬁ) . (Z—ZO

The parameter z,, expresses the translation invariance of Equation (54). If, instead
of taking an infinite interval one takes a finite interval, corresponding to >0,
R < o0, Equation (56) admits a sequence of periodic solutions given by elliptic
functions. A solution with v; —1 zeros between loge and logR will correspond to
v, bound states with angular momentum L counted without the multiplicity
factor. For v, <log(R/e) this solution can be approximated by superpositions of
solutions of the type (56) with
loge 1 1 R 3
Zy— ogs=2—v: og—, ~—

n<L+ -2

Vit =p=— (56)

lo Retc
%, g8
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Since the case of v, bound states with angular momentum L differs from v, =1
only by an over-all factor and by small corrections it is enough to treat the latter
case.

To count the number of bound states for the potential of Equation (56), we
may use Equation (10). The angular momenta /; for which zero energy states
appear can be obtained from the known eigenvalues of

> B*(—1) )

T g |00 o= =Pl

m=0,1,2,..., (57)
where m has to be less or equal to A— 1. Comparing (57) to (56) gives

n 2L

So it is easy but tedious to count all bound states and compare them to S, for n <7
and to Cl, for n=8. For n=3 and 4 only one zero-energy state appears (/;=L) and
we obtain

N, (L+1) N, QL+1)(L+2)

L e 1, T AL+ v >

where I, and I, are special cases of
I,= | dzfv]? - (60)

The conclusion from (59) is that the optimum is obtained if all bound states have
angular momentum zero, which corresponds to the fact that the sup in Equation
(14) is obtained for /=0. For n=>5 and 6 one arrives at the same conclusion but has
to distinguish between two different cases and obtains eventually two contri-
butions. For n=7 on the other hand, one obtains already a violation of the
conjecture (4) (for A=0) on which we will comment next.

b) The Case of m Zero-Energy States

Unfortunately there is no reason why zero-energy bound states of the minimizing
potential should appear only in one angular momentum. In the general case we
may have zero-energy states for a certain number of different angular momenta
and we must investigate the system of differential Equations (53).

In principle we should find all solutions of (53) with boundary conditions
¢{Z)=¢(—Z)=0 and study the limit Z— oo. By different methods (explained in
the Appendix) we found solutions to (53) with boundary conditions at infinity
(which means zero energy). In all cases the potential turns out to be of the shape of
(56). On the one hand we did not finish completely this program, on the other
hand, with the help of these examples, we were able to check the conjecture (4) for
y=0. For the solutions of (53) one can sum up the bound states as before and
obtains:

(N) 1 2" Y n+m—2)!(n+2m-2)

o cn 7 ’ (61)
1 Cl, [(n+2m—2)(n+2m_4)]i(n_1)!

n
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where m denotes the number of equations in (53). The result of the optimization in
m together with our bounds is given in Table 1. For 3=<n =<7 we have to compare
(61) to the Sobolev constants S,. For n =7 our examples violate the Sobolev bound
which would result if the nodal theorem were true. We believe that the numbers
obtained from (61) after optimization in m are the best possible. So the new
conjecture is that up to n=6 the Sobolev constants will be the best possible. For
higher n the best answer will be given by the optimizing m of (61) and for n— oo the
classical value will be reached.

To test the conjecture that M, , =M 5 we calculated the eigenvalues of the
potential

AA—1)
ch*cr

Vir)=— (62)
and compared the y, moment with the appropriate norm of V. The conjectured
inequality turns out to be nearly saturated for different coupling constants
corresponding to the cases of different angular momentum contributions (see
Fig. 1).

Appendix

Here we would like to show ways of getting solutions of systems of equations like
(53). We may include the angular depending parts and even count states differing
only by magnetic quantum numbers separately. In this way we arrive at the system

2

M n—2
—Awi—i(le,-lz) v;=0, i=1L.,M. (A1)
Jj=1
A stereographic projection to the n dimensional sphere imbedded into R**1:
1—r? 2x; , v,
éO_I—-l-—TE, é"_l—i-—rz’ l—l,...,n, r —izzlxi (A2)
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transforms the » dimensional Laplacian into the angular momentum operator on
the sphere [14]:

n—2
14+72\? 14+72\"3 2 nn—2)\(14+r>\2
(=) T e =
P=L,*, |,=—if £+i€ —. (A.4)
aff H af a aéﬂ B aéa
Defining new wave functions
14+r2\ 7
6= ( 5 ) Y, (A.5)
(A.1) turns into the non-linear system of equations on the sphere
2
2 M .
[IZ w2 —l( > lx,(é)lz) 1&=0 } =1, M. (A.6)
Comparing (A.6) with the eigenvalue equation for I? in n dimensions
Y= p(p+1—1)Yp, p=0, 1, ... (A7)

and observing that the generalized spherical harmonics fulfil the completeness
relation

S Yot =1 (A8)
(the sum runs over all magnetic quantum numbers), we find solutions for special
values of the coupling constant A:

i n+2§4—2.n+212\/1—4’ Me123 .. A9)

We obtained the same solutions by a different method. This time we started
directly with the system (53):

¢”+(l+ )45 /I(Z¢> ) 2¢ =0. (A.10)
For i=1 I, =0 the solution to (A.10) is well known
c
= —"2=z" (A.11)
(chz) 2

Assuming that solutions to the coupled systems are polynomials in ¢, and
d¢,,/dz to the potential A¢()"~ > we may start with the ansatz

m d¢ n
l (n) — Zcm ld)(n) or ¢1 n) — de 1¢(n) ! ¢ ) (A12)
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In both cases one gets recurrence relations for the coefficients; the overall
constants for the wave functions are fixed by the subsidiary condition

2 ¢im= - (A.13)

By the uniqueness theorem for linear systems of differential equations it is evident
that solutions obtained by the last procedure are identical to those obtained from

(A7),
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Note Added in Proof
Recently we have been informed that M. Aizenman and E. Lieb (unpublished) have proven
M,,=M;, forall y=3/2.

With the help of this result one can improve our bounds for odd dimensions (n=5).





