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Abstract. The problem of uniqueness of monotone continuous linear
extensions of

2N

is solved. A characterization of a relativistic QFT in terms of finitely many
VEV's is derived. All results are illustrated by an explicit discussion of the
extension problem for special cases of T(4) = {1,0, T2, T3, T4}. This discussion
contains explicitly necessary and sufficient conditions on T(4} for the existence
of minimal extensions and some convenient sufficient conditions.

1. Introduction

This note continues the discussion of the problem of characterizing a relativistic
Quantum Field Theory by finitely many vacuum expectation values which we
started in [1].

While the first part contains
(i) an exposition of the problem (which is shown to be the problem of

monotone continuous linear extension with additional linear constraints),
(ii) a suggestion for constructing monotone continuous linear (m.c.l.)

extensions,
(iii) the definition and some discussion on the relevance of the notion of

minimal extensions,
(iv) necessary and sufficient conditions for the existence of minimal extensions,
(v) several applications to the simplest cases

this part concentrates on
(i) the problem of uniqueness of m.c.l. extension,

(ii) minimal extensions in relativistic QFT,
(iii) the characterization of a relativistic QFT by 7J4) = {1, T19 T2, T3, T4}

(notation as in 1).
The problem of uniqueness of m.c.l. extension is solved in the following way

(we use the notations of 1) : The notion of a m.c.l. functional to be 'uniquely
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determined by T(2N+1} = {1, Γ1?..., T2ΛΓ+1}" is introduced:and a criterium for this is
proven. The hypothesis of this criterium are conditions on T(2N + 2}

= {1, T1?..., T2N+2}. Thus a condition for the uniqueness of m.c.l. extension results.
Clearly there are only three possibilities for a given T(2N)eE'(2N}:

A. There may be more than one m.c.l. extension.

B. There is at most one m.c.l. extension.

C. There is no m.c.l. extension at all.
These possibilities are expressed in terms of T(2N) (Section 2). In this context

minimal extensions appear in a natural way: If we know that in Case B there is a
m.c.l. extension this then is a minimal extension. The statements concerning the
remarks on the relevance of minimal extensions in QFT (in Parti) are made
explicit by showing.

(i) To construct minimal extensions is the easiest way of constructing m.c.l.
extensions which are Poincare-covariant and satisfy the spectral condition
(Section 3).

(ii) If in Case B T(2N} satisfies the linear constraints of relativistic QFT and if
we know that T(2N) has a m.c.l. extension then it follows that this m.c.l. extension
automatically satisfies all linear constraints of relativistic QFT (Section 3).
As an application the extension problem for special cases of T(4} = {1,0, T2, T3, T4}
is discussed:

(i) necessary and sufficient conditions for the existence of minimal extensions
are derived.

(ii) Some classes of convenient sufficient conditions are presented .and then
(iii) some results on the structure of the ft-point-functionals of some m.c.l.

extension follow.
Our results show in particular that (at least for neutral fields) a

characterization of a relativistic QFT by finitely many vacuum expectation values
is possible!

2. On the Uniqueness of Monotone Continuous Linear Extension

The idea to answer the problem when a given functional T(2N} = {1, T l 5..., T2N}
eE'(2N} has at most one m.c.l. extension is as follows:

We prove a criterium which says when a m.c.l. functional TeE'+, i i§ "uniquely
determined" by T15 T2,..., T2 N_1. The hypotheses of this criterium are conditions
on {T1?..., T2N}. Thus a theorem on the uniqueness of m.c.l. extension of T(2N}

follows.
The main technical tool is a generalization of a well-known relation for Gram-

00

determinants. Given Te Y[ E'n, T(l) = l we may define a sequence of functions

x0Tn(xn)

Tn+1(x*®xn) (2.1)
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and we may characterize monotonicity of T by saying that all Gπ take only non-
negative real values. In terms of the canonical pre-Hilbertspace realization
VT = (ΦT(E\ < , >Γ) of a given TeE'+ 1 by the nuclear quotient map ΦΓ:£-»FΓ?

= φτ= £ φn such that ) = (Φτ(x),Φτ(y)yτ x,yeE the functions Gn have

the following realization as Gram-determinants

= det
0(*θ)» Φθ(*θ)>T ...

(2.2)

ρn(xnl Φ0(χ0)>τ ••• <φ»W»φ»W)

By assumption T(l)=l we know G0(x(0)) = 0 iff x0 = 0; define S0:

If zl 1 φ 0, we know

and thus

Δ2(x2):= inf {G2(x(1);x2)}
X(i)eSιf ^ '

is welldefined as a function z!2:E2-»IR+. In this way we proceed successively
defining

(2.3)

Δn+1(xn+1): = mf ^ {Gn+^

In order to have an interpretation of these functions An and in order to investigate
which possibilities are allowed, we introduce

Vn = Φ(£(n)) , J^ = Vn = closure of Va in ̂

jf = j^Γ=Fτ = completion of Fτ

gn:Jf-^J^n) orthogonal projection onto 3 f ( n } .

Evidently the following relation holds

(2.4)

(2.5)

Suppose /d v φO, v^n and calculate

G»-(- l(ίW, Xn+ l) = Gπ+ ̂ Φo^o). > Φ«W. 6A+ l(^n+ l))

(2.6)
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where Q^ = I — Qn. The appendix contains a formal proof of what is intuitively
clear

inf Gn+1(Φ0(x0),...,Φ,,(xπ);δA + 1(^+ι))=0 (2 7)
X(n)eSn

Therefore we get the following interpretation of the functions An, neN

Proposition 2.1. For a given TeF+,ι there are only two possibilities:
(A) A n φ 0, n = 0, 1 , 2, . . . , corresponding to

^»,9^(. + i ) . " = 0,1,2,....

(B) 77zere is Ne IN such that An + Q, n^N and An = Q, n^.N+1, corresponding to

C
••

Proo/. If /1 Π ΦO holds for all n = 0,l,2, ... we see by Equation (2.8) that
^(n)$^(W + i)5 n = 0,l,2, ... results. If on the other side we know ^(Λ)$^(w + i),
n = 0, 1,2, ... then we get immediately JnφO, n = 0, 1,2, ... by Equation (2.8). The
negation of the first possibility is that there is NeN and that ZJ Π ΦO, n^N and
AN+ΐ=Q. Then by Equation (2.8)

and thus

L

= Σ
J = l

{φ(N)(fec!V))}>/eNS^v being an orthonormal basis of Jf(N). The canonical GNS-*-
00

representation A = AT of E by linear operators on Vτ= (J Vn acts as a "shift"
n = 0

operator in Vτ :

Thus we have for all ΨeVnJ^f^, all xeE l 9 all %+i

because of ^(
Therefore



Vacuum Expectation Values. II 171

and thus

Similarly we get by induction

thus J^(M) = ̂ (N)9 M^N, follows.
That the relations Jf(0)C ...ζ^(N) = J4?(N+1} = ... = Jf for the Hilbertspace

imply those claimed for the functions Δn is immediate by Equation (2.8).

Next we want to investigate the interpretation of Case (B) of Proposition (2.1)
in terms of 7^,neM By Equation (2.8) we have in this case QNΦN+ί = ΦN+1 and
thus

T2N+ 2(

= Σ
7=1

= Σ
7=1

where we defined

1), QNΦ
N+ ι

N+ l N + l

^ Σ Tv + ]V+1(/ιf ®%+1). (2.10)
v = 0

All the functional tN+1 j£E'N+1 are uniquely determined by

(ii) an orthonormal basis {Φ(N)(h{N})}jeNtVN of J^(jV).

Now any orthonormal basis oϊJ^(N) in VN is fixed by {T1? . . ., T2N} and according to
(2.9) and (2.10) the series

7 = 1

give the same result for any orthonormal basis {Φ(N)(h(N))}jew °f ^w Thus we see
that by Equation (2.9) and (2.10) T2N+2 is uniquely determined by {Tl5 ..., T2]V+1}.

We proceed by induction. Assume that for some me IN, m Ξ> 2 all the functionals
T2N + μ, μ^m, are uniquely determined by {T13 ..., T2N+1} in the sense of repeated
application of Equation (2.9) and (2.10). Then it is enough to show that T2N+m+ 1 is
uniquely determined by {T1? ..., T2N+m} in the above sense to conclude that
T2]V+m+1 is uniquely determined by {Tl5 ..., T2N+1} in the sense of repeated
application of (2.9) and (2.10). For all xN+meEN + m and all yN+1eEN+ί we have

T2N+ 1 +m(% + m® .VlV+ l) = <ΦN + m(XN + m)> ΦN+ l

= Σ tN
7=1
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where tN+mJeE'N+m is defined by

N

— LJ (2.10')

and thus depends on {TN + m,...,T2N+m} and the choice of the orthogonal basis
00

{Φ(N)(h(N)}jew of ̂ v) But aβain tne sum Σ tN+m j® **+1 jdoes not depend on the
7=1

special choice of such a basis. Therefore T2N+ ί +m is determined by {T15..., T2N+m}
in the sense of Equation (2.9') and (2.10'). So we define

Definition 2.2. We say that a m.c.l. functional T={1, T1? T29...}eE$Λ is "uniquely
determined" by

J ^ minimal,

if and only if all the functionals Tn, n^2N + 2 are determined by T(2N+1} in the
sense of repeated application of (2.9), (2.10), (2.9') and (2.10'), and our discussion
above shows

Theorem 2.3. A m.c.l. functional Te{l, T15 Γ2, ...}e£'+>1 is uniquely determined by
T(2N+1) = {T19..., T2N+1} if and only if ΛΓeN is minimal such that

Remark. It is clear which part of the statement of Theorem 2.3 is not trivial. The
other part is just a matter of definition (Definition 2.2).

By the way the hypotheses are formulated we see that Theorem 2.3 has an
immediate application to the extension problem. Suppose we are given
T ( 2 N } £ E f

( 2 N } , T(2N}(1)=1 such that 7^2JV)ί£+n£(2N)^0. Then we are free to define
for 0^

and

(2.11)TH(x>0 ... Γ2n(x*®xn), Ta+μ(x*®Xμ)

Tμ(x*)x0 ... Tn+μ(x*μ®xn), T2μ(x*μ®xμ)

= inf (2.12)

in the case of Avή=Q, v = l, ...,n. In terms of the canonical pre-Hilbertspace
realization VN = (Φ(N)(E(N)\ < * j ' )(jv>) °f ^(2N> according to [Theorem 2.1 I] we have
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the following interpretation of the functions A%:

=\\QΪΦμ(xμ}\\2

(NΓ (2.120

This prepares

Theorem 2.4. Given T(2N)eE'(2N} such that 7J2Λr)tE(2]V)n£+ ^0 we have to distinguish
the follomng cases :

(A) If Δn ή= 0, n = 1, . . ., N then T(2N) may have more than one m.c.l extension if
there is a m.c.l. extension at all there mil be in general uncountably many.

(B) If there is ne{l, ..., N- 1} such that

(i) z l v φO, v = l, ...,n and

(ii) 4J = 0, μ = n+l,...9N

then T(2N} has at most one m.c.l. extension.
(C) If N>2 and if there is rce {1, . . ., N - 2} such that

(i) Z ) V Φ O , v = l,...,n

(in) Zl£φ0 for some μe{n + 2, ...9N}

then T(2N) has no m.c.l. extension at all.

Proof. (A) In Section 4 we will show by example that in Case A there will be
uncountably many m.c.l. extensions if certain sufficient conditions guarantee the
existence of at least one minimal extension of T(2N).

(B) Suppose Te£"+)1 is any m.c.l. extension of T(2N}. Then according to (2.1)
and assumption (ii)

AT _ / |Γ(2ΛΓ)_Γ)

^n+l—^n+l — U

Therefore by Theorem 2.3 Γis uniquely determined by {T1? . . ., T2n+1}9 that is there
is at most one m.c.l. extension of T(2N}.

(C) If there would be a m.c.l. extension T of T(2N} we had a contradiction to
Proposition 2.1 which says in particular that A% = 0, n + 2^μ^N.

Corollary 2.5. // in Case (B) of Theorem 2.4 there is a m.c.l. extension Tof T(2N), this
is a minimal extension of T(2N) which is uniquely determined by {Tl5 ..., T2n+1}.

Proof. Suppose TeE'+>1 is an extension of T(2N). Then we get by (2.1)

By Theorem 2.3 we know that Tis uniquely determined by T(2n + 1} and Proposition
2.1 implies

The assumptions of (B) imply: ^(N) = ̂ (nγ Therefore the canonical partial
isometry J ' : 3?(N}-^ 3?τ is a unitary transformation of J^(N) onto ffl Ύ\ e.g. Tis a
minimal extension of T(2N).
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For illustration and further application we note :

Corollary 2.6. Given 7J4) = {1, T19 T2, T3, T4}eE'(4) define

T^ = T2-Tι®Tι9 T22 = T4-T2®T2, T12 = T3-

β2(x1,x2) = T22(x*(g)x2)T11(xf(8)x1)-|T12(x*(8)x2)|2

Then we have
a) //ΓuίxfφxJ^O V x j e E i , T 1 1 = NO and if

^2(x2):=inf{β(x1,x2)|T1 1(xf®x1) =

x2eE2

then T(4) may have more than one m.c.l. extension.
b) // T11 and Q2 are as in a) and if A2 = Q, then there is at most one m.c.l.

extension of 7J4).

c) There is no m.c.l. extension of 7J4) z/ one of the following conditions holds :
(i) TJ/x * ® Xj) < 0 /or some x;. εEj, 7 = 1 or j = 2

(ii) Tn=0 and Γ 2 2 ΦO, T2 2(xf®x2)^0
(iii) β2(xι,x2)<0 for some Xj eE^., 7 = 1,2.

Proo/ a) Note G2(x0,x1,x2) = |x0|
2g2(x1,Λ;2), thus Theorem 2.4 (A) applies.

b) Theorem 2.4 (B) applies.
c) Case (i) and (iii) imply that T(4} does not satisfy the necessary monotonicity

conditions. Theorem 2.4 (C) applies to case (ii).

3. Minimal Extensions in QFT

In order to be able to formulate the linear constraints of relativistic QFT we have
to assume in addition that Eί is a space of testfunctions on Minkowski-space
which has some further properties [such as the Schwartz-space <9^(IR4)].

(i) Ex allows Fourier-transformation such that localization in "coordinate"-
and "momentum-space" is possible.

(ii) The Poincare-group G = P+ acts linearly and continuously on E1 by *-
automorphisms. This action then induces the canonical action ocg of G on E by
^-automorphisms of E.

Then it is well-known [2] how to formulate the linear constraints of QFT in
terms of a monotone continuous linear functional TeE + t l such that the *-
representation A — AT of £ associated with T(via GiVS-construction) describes a
relativistic quantum field: Γhas to vanish on a suitable subspace /££, e.g.

Te/°gF with /° =

where we have used the following notation :



Vacuum Expectation Values. II 175

7° denotes the annihilator of the subspace Iζ=E in E'.

IΣ = E (EΣ*E) = spectral ideal

L = E L2 E = locality ideal

x = Fourier transform of x; Σ a closed subset of the forward lightcone V+9

OEΣ;

x*2 = {x(Q)y0,x*yί9...,x*y „,...}

(x*yn)(£i> •••>£,>) = ί x(a)yn(ξί-a,...9ξn-a)d4a
R4

L2 = {xί (x) x2 — x2® x1εE2\xjεE1, suppx1 and suppx2 are spacelike
separated}.

In this section we want to discuss the problem of constructing m.c.l. extensions
Tof a given T(2n)eE(2Ή}r\IQ which have the further property that they vanish on
/ = /Gu/Σu/L, e.g. we are looking for extensions in E'+ 1n/°. Now the additional
constraint for an extension TeE'+Λ to vanish on / is rather strong so that in
general it is very hard to do the construction of such an extension. Therefore we
suggest the following strategy (compare Section 2 of /) :

1) Construct first minimal extensions which are G-co variant and satisfy the
spectral condition.

2) Then, if necessary construct local extension of the minimal extensions of
Step 1 in a way that respects G-covariance and spectral conditions.

Remark, (a) The example of the generalized free field as discussed in / shows that
this construction procedure for extensions in E'+ 1n/° works in principle.

(b) As we will see in a moment Step 1 is not too hard.
(c) We will isolate the cases in which Step 1
(i) already yields an extension in E+ 1n/°

(ii) only yields an extension in E+^n/^n/^, which is not local.
At the moment we do not know to do Step 2 explicitly in the general case.

(d) In particular we will show that for a certain class of functional
T(2N)EE'(2N^IQ there are only two possibilities:

(i) T(2N} has no m.c.l. extension at all,
(ii) T(2N] has an extension in E+^n/0.

To start we analyze the consequences of the additional constraint T(2N}eE'(2N}nIQ :
Monotonicity T(2N}^Q implies the canonical pre-Hilbertspace realization

Vye£ ( J V _ 2 )

of T(2N} according to [Theorem 2. la, I and Proposition 2.3a, I]. If we assume in
addition that 7^2N) satisfies the linear constraints of QFT we get
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Proposition 3.1. Suppose 7J2]V) = {1, T19 T2, ...T2N}eEf^2N^ satisfies monotonicity :

W£<2Jv>n£+^° (3-1)
and the linear constraints of QFT:

T(2N)eE'(2N)nI°. (3.2)

Then in addition to the statement of [Proposition 2. 3 a, /] we have
(a) There exists a strongly continuous representation U = UT(2N) of G by unitary

operators on 3J?(N} = VN such that
(i) U(g)Φ(N)(x) = Φ(N}(*βx) \/gεG Vxe£ ( N ).

(ii) U(g)A(N_1)(x)U(gΓ1^A(N_1](xg) on VN_2, Vxe^ V0eG.
(iii) The self-adjoint generator P = Pυof the space-time translation group in this

representation has its spectrum σ(P) contained in Σ.
(b) If N^3 and if xί®x2 — x2®

xιe^2 then

(c) // in addition the inequality

}(x* xy2 (3.3)

£(N_1)? Vye£( jv+1), q^N+ί) some continuous seminorm on E(N+1) holds the
symmetric linear extension A(N):E1-+L(VN_1,VN) of A(N_ί) according to
[Proposition 2.3 b, /] satisfies

(i) U(g)A(N)(x)U(dΓ1=A

(N^g) on V N _ , \/xεE
(ϋ) [^(xi), ̂ (^2)] 1^^-2 = 0, if N^2 and

Proof, (a) The assumption T(2N}eE'(2N}nI^. easily implies that U(g) defined on

U(g)Φ(N}(x):=Φ(N}(agx)

is a unitary operator on the pre-Hilbertspace VN which satisfies (a) (ii). The
remaining part then follows by standard arguments. The equation

shows that ^2N)e£(2N)n^ implies (a) (iii).
(b) If JV^3 we have for all j;eE(]V_3), all xeE(JV) and all xjeE1 :

<Φ(JV)(X), LA(N- l ) ( X l l A(N- l)(x2J]Φ

Therefore b) follows from T(2N}eEf

(2N)r^I^.
(c) If the additional continuity property (3.3) holds Proposition 2.3b of [I]

applies and the properties of the extension A(N}:E1-^L(VN_1, VN) follow as above.

By Theorem 2.4 we know which possibilities can occur for a given T(2N}e E'(2N),
T(2N)^Q. In order to distinguish the case where we need the additional continuity
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property (3.3) and where not, we do the further distinction

(B2) 4.ΦO, O^rc^M, Me{l,...,N-2}, ^ = 0,

By Proposition 2.1 the Hilbertspace 34f(N} has the following structure

«^(0) Φ < (̂ 1 ) Φ Φ ^(M) = ̂ (ΛT)

in Case Bx and Case B2. Therefore Proposition 3.1 tells us that A(N_l} is densely
defined in J4?(N} in Case B2. If in addition to (3.1) and (3.2) inequality (3.3) holds we
know to construct A(N):Eί-*L(VN_1, VN) which is then densely defined in ̂ N) in
Case B!. That is in Case E1 and Case B2 the problem of extending A(N_ί)

respectively A(N) to a proper subspace of 3Ί?(N) disappears. This allows to prove :

Theorem 3.2. A functional ^2]V)e E'(2N} which satisfies (3.1), (3.2) and in addition

(α) (BJ and (3.3) or

(β) B2

has at most one m.c.l. extension TeE'+tl; and in case of existence of such an
extension this is a minimal extension which satisfies the linear constraints of QFT:

Proof, a) The first statement is just Theorem 2.4(B). Suppose TeE r

+>1 is an
extension of T(2Nγ By Corollary 2.5 we know that Tis a minimal extension of 7^2]V)

which is uniquely determined by 7J2M+1), M^N—1. Thus we may assume that T
has a pre-Hilbertspace realization T(x'%) = (Φ(x)9 Φ(y)> such that Φ\E(N) = Φ(N)

7w = <.,->(JV) (3.4)

where VN = (Φ(N)(E(N)\ < , >(JV)) is the canonical pre-Hilbertspace realization of
T(2N)

b) First we prove G-invariance : We proceed by induction using the notation
of Section 2

= Σ <φ2N-M(V2N-M\U(g)Φ(Mβ{M))y^U(g)Φ(Mβ{M^

= Σ
7=1

By linearity and continuity of T2N+1 and of ag the in variance of T2N+1 follows.
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Assume that all T2N + μ, I r g μ ^ m are G-invariant. Then we get for T2N + m+ί:

^2N + m+ l(CCg(X2N + m~M® XM+ l))= \Φ2N + m-M(a

g

X2N+ m~ M)> ^M+l(agXM+ l ) )

00

= Σ <#2N + m-M(VC?* + m-M)^(M^

= ΔJ ^2JV + m)(X2]V + m-M '^(M))T(2N)(&(M)'XM+l)

j = l

= 72N + m + ι(*2N + ,n-M®*M + ι) V x v e E v , v = M+l,2N + m-M.

As above G-invariance of T2N+m+l follows and thus

c) Proof of the spectral condition: Because of the G-invariance of TeE'+ 1 the
Hilbertspace Jjfτ of the canonical pre-Hilbertspace realization of T carries a
strongly continuous unitary representation Uτ of G. But T being a minimal
extension of T(2N) we know that the canonical isometry J:^f(N)-^>^τ is a unitary
map onto fflΎ. Therefore Uτ(g) = JU(g}J~l and thus T satisfies the spectral
condition because U = UT(2N) does according to Proposition 3.1a(iii).

d) Proof of locality : In case (α) of our assumptions we know that A(N)(x) is
J V - 1

®ndensely defined on Q)N~Φ(N}\ @ E f n \ , A(N) according to Proposition 3.1c. To
\n = 0 /

prove locality of T we use the fact that T is a minimal extension of T(2N}, e.g. T is
defined in terms of a linear function A : E1-^L(^A, @A) such that

(i) ®Ng2A

(ii) A(x)* r &A = A(x*)\ &A

(iii) A(x) \@N = A(N)(x)\2N.

This follows from Proposition 2.5 of [I]. Locality of T(2N} implies (M = N— 1):

Properties (i), (ii), (iii) above therefore imply

LA(xl),A(x2)'] r ̂  = 0 V x 1 ® x 2 - x 2 ® x 1 e L 2 .

Then we use symmetry of A again. For all φe&N, all ψe<£A and all X j ® x 2

— x 2 ®x 1 eL 2 we get:

<Φ, [^(xj, A(x2)-]Ψy = <[A(xf ), X(x?)](p, φ> =0

thus

[X(x!),>l(x2)] Γ ̂ 4-0 V x 1 ® x 2 - x 2 ® x 1 e L 2 .

In Case B2 we know that already A(N_^(x) is densely defined on S^N_i

/N-2 \

=--Φ(N)\ @ E f n therefore we can proceed as above to prove locality. Thus in

both cases TεE'+
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Remarks, (a) The essential idea of the proof of Theorem 3.2 is contained in
Corollary 2.6 of [I]. Indeed the ideas used in the proof of Theorem 2.7 of [I]
could be used to give another proof of Theorem 3.2.

(b) In Case A of Theorem 2.4 where one expects more than one m.c.l. extension
to exist under appropriate assumptions it is much harder to find conditions which
imply the existence of an extension in E'+ 1 n/°. In particular, one wants to isolate
conditions on T(2N}eE'(2N}nI°, T(2N}^0 which ensure that in Case A there is at
most one extension in E'+ 1 n/°.

(c) Theorem 3,2 answers the question whether it is possible to characterize a
relativistic quantum field theory in terms of finitely many vacuum expectation
values or not.

Theorem 3.2 says that in principle it is possible.

4. Applications to the Extension Problem for 2^={1, Γ19 T2, Γ3, Γ4}

In this section we want to discuss the problem of monotone continuous linear
extension for particular cases of a given functional

7J4) = {l,0,Γ2,Γ3,T4}eJε;4) such that 7^4)r£(4)n£+ ^0. (4.1)

We restrict our discussion to the case of T(4) because
(i) most of the new problems (compared to the extension problem for T(2))

appear already in this case (compare Theorem 2.4 and the discussion at the end of
Section 3 of I)

(ii) we think that for applications to QFT, in particular in connection with the
construction of nontrίvial models for QFT knowing a fairly complete answer to
this extension problem would be of some importance.

The assumption 7^ =0 is no restriction. If we know how to treat the case (4.1)
we also know how to treat the case

S(4} = {l9Sl9S29S39S4}εE'(4)9 S(4)£0, 5,ΦO. (4.1')

Denoting ί(4) = {1, S15 Sf 2, Sf 3, Sf 4} and using the ©-product of [2] we can solve
the equations (t(4)®T(4))n = Sn n= 1,2, 3,4 for Tn to get

+ S1®(S,-Sfi-Sl®(S2-Sf2))}.

Thus if Te E'+ ί is a m.c.l. extension of this T(4) then t®TeE'+ 1?

ί = {l,S l 9Sf 2,Sf' 3, ...}e£ + ;1, is a m.c.l. extension of S(4) = (t ® T)(4). Note that
according to Corollary 2.6 this teE'+ 1 is the unique m.c.l. extension of

At first we investigate the canonical pre-Hilbertspace realization of T(4} in more
detail. This prepares all further considerations.

Proposition 4.1. // T(4)eE'(4} satisfies (4.1) the canonical pre-Hilbertspace realization
F2 = (Φ(2)(£(2)), < , >(2)) of T(4} according to TlΊeorem 2.1 and Proposition 2.3 of[Y]
has the following structure:

a) Structure of the Hilbertspace:
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The completion J^(2) = V2 of V2 has an orthogonal decomposition

which results from a natural orthogonal decomposition of Φ(2) = Φ0 + Φ1 +Φ2 :

j^0 = (CΦ0 Φ0 — Φ(2)(l) ^ =Φ1(E1) = closure in V2

Q. = orthogonal projection of Jf(2) onto J^ , 7 = 0, 1

all xeE2

) = closure in V2.
b) Realization by linear operators :
α) There are linear functions A^E^tf^^ ((/') = (01), (10) welldefined by

/or α// xe£ l5 α// ^e^ SMC/I ίftαί
(i) M

(ii) M
(iii) X1

(iv) T2

/or α// x,y in Ev

β) TTzere is a linear function A11 :Eί—>L(Φ1(E1),Jtf'ί) welldefined byA11(x)Φ1(y)
= Φl(x®y) = Q1Φ2(x®y) all x,yεE^ such that

(i) q_\(x®y)= MιιWΦι(y)|lι is a continuous seminorm on E f 2

(ii)
(iii)

- <Φ0,

/or α// x, )>,

c) Structure of the four-point-functional :

T4 = T4° + Tl + T2 with the definitions T4° = T2®T2

T^®^®^®*^-^^^ all Xj
T2(z® w) - <Φ2(z*), Φ2(w)>2 α// z,

d) Uniqueness of m.c.L extension:

There is at most one m.c.L extension if T4

2 = 0, e.g. if Φ2 = 0.

Proof, a) ̂  -0 implies ΦolΦ^), therefore ̂ 1̂ . By definition of Φ1

2 i = l,2
Φ2(z) = T2(z)Φ0®Φ1

2(z)®Φ2(z) for all zeE2 and thus J^lJf^O, 1.
b) oc) Clearly for all xeE1 ^410(x) and ^401(x) are welldefined linear operators

as indicated and in addition x->,410(x), A01(x) are linear functions. Furthermore
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By definition of the adjoint for operators with respect to different spaces the
symmetry relation A10(x)* = A01(x*) is immediate as well as the relations
expressing T2 in terms of A10 and A01.

β) Assume Φί(y) = Q, yeEl9 then because of the consistency relations for Φ(2)

Thus Alί(x) is a welldefined linear operator Φ1(E1)-^J^1 and

therefore q\ is a continuous seminorm on E f 2 . The symmetry relation T3* = T3

easily yields Aίl(x)*\Φ1(Eί) = Aίί(x*)\Φ1(E1) and thus the relations expressing T3

in terms of Aoί, A10, and A1{.
c) The orthogonal decomposition of Φ2 according to part a) and the

definitions above easily yield the decomposition of T4 as indicated.
d) This is implied by Corollary 2.6.

The previous results are applied to the following special cases of T(4}eE'(4}:
(a) 7J4) = {1,0,Γ2,Γ3,Γ4} A2 = 0 (Theorem 4.2)
(b) 7J3) = {1,0, T2, T3} (Corollary 4.3-4.5)
(c) 7J4) = {1,0, 7^,0,7;} z!2φO (Proposition 4.6, Theorem 4.7, Corollary

4.8-4.9)
In Part I the case of a given T(2} = {1, T1? T2} has been treated (completely with

respect to m.c.l. extensions) thus by Theorem 2.4 the only missing possibility of a
given T(N}£E'(N}, N^4, is the case

(d) 7J4) = {1,0,Γ2,T3,Γ4} T 3ΦO and z! 2 Φθ.
By the following discussion we will see why Case (d) causes additional technical

difficulties concerning domain questions of the associated operators (compare
remark b) of Section 5).

Case (c) is the simplest example (different from T(2}) where one expects more
than one m.c.l. extension to exist. Case (b) is an example where one fixes a minimal
extension (here of 7J2) = {1,0, T2}) by fixing the next possible n-point-functional.
This illustrates Corollary 2.6 and Theorem 2.7 of I. After all Case (a) represents a
nontrivial example of a functional which has at most one m.c.l. extension and thus
illustrates Theorem 2.4 and Theorem 3.2.

If we assume in addition to (4.1) that

J 2 =0 e.g. T4

2 = 0 (4.2)

holds we know that there is at most one m.c.l. extension of 7J4) and there is a m.c.l.
extension if and only if A(1) :E1-^L(Vί, V2)

as specified according to Proposition 4.1 has a symmetric linear extension
A\E^L(βA^^ which has the properties listed in Proposition 2.5 of I. The
properties of A01(x) and ^410W as specified in Proposition 4.1 imply that this is the
case if and only if Aίl:Eί^L(Φί(E1),^)

1) has a symmetric linear extension
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ί,^χii\ Φ1(£1)g^ju and this in turn can be expressed by a
corresponding chain of inequalities (Kn k) for T3 (Theorem 2.7 of I). These
inequalities read in this case

Σ Σ Σ - Σ w®3^ι®

\μ 2 =l

v ^,-2=1 μ m~3 m μ™~2 μ™~2 m m I n\
(4.4)

for all x, xJ.,j;J.eE1 and m = n—l,n and n = 2,3,..., where {Φι(^7 )}7 6]N is an
orthonormal basis of ̂  and pn; n = 2, 3, ... are continuous seminorms on Ef"
such that p2(z) = ̂ (z) = (T4

1(z*(x)z))1/2 for ze£2.
This essentially leads to

Theorem 4.2. // T(4}eE'(4} satisfies (4.1) αrcd (4.2) then
a) 7J4) /zαs exactly one monotone continuous linear extension TeE'+tί if and only

if the inequalities (4.4) hold with the specification given above.
b) // T(4} satisfies (4.1), (4.2) and (4.4) the structure of the n-poίnt-functional Tn of

the m.c.L extension is as follows:

n _ 3(x4(x) . . . <g) xj

2)T2(xn_1®xn)

(4.5)

= ^3

/or all xjEE1.

Proof. Assume first that all vectors

are welldefined in J^^^^SJ^. Because of (4.3) we get the following recursion
relations for the components φj

n, j = 0, 1 in j^0 and ̂  of these vectors :

(4.6)
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By induction on n it follows for all n ̂  3 :

π) = 4^Cχ^

(x1)...Ά11(xn_l)Φ1(xJ. (4.7)

The special structure of Equation (4.6) and (4.7) (precisely the fact that in φ\ there
is only one term of highest possible degree in A^(x^) implies: A(lyE^L(V^ V2)
has a symmetric linear extension A:E1-^L(2A9^A) which satisfies (i)-(iv) of
Proposition 2.5 of I if and only if

has a symmetric linear extension

with corresponding properties.
Thus by Theorem 2.7 1 and Theorem 2.4 (B) part a) follows. Then Equation

(4.5) is an easy consequence of (4.6) and (4.7). This proves b).

Corollary 4.3. Suppose 7J3) = {1,0, T2, T3}e£[3) satisfies
(i) T2(x*®x1)^0 all X^E!, T 2 ΦO,

(iii) \T3(xΐ®x2)\^(T2(xΐ®x1))ll2q2(x2) all XjEEj9 j=l,2
q2 some continuous seminorm on E2.

a) // T3 satisfies in addition the inequalities (4.4) with p2 = q2 then 7J2) has
exactly one minimal extension whose ^-point-functional is T3.

b) The ^-point-functional T4 of any m.c.L extension of 7J3) satisfies

T4(zf(g)z2)-|T2(z2)|2- T3(zf®/z.)T3(/zJ*(g)z2)^T4

2(z*(x)z2)^0 (4.8)
7=1

for all z2eE2 and all {hj}JGNCE1 such that T2(hf®h) = δir

Proof. By assumption (i) 7J2) = {1,0, T2} is monotone on E(2). Therefore T(2} has a
canonical pre-Hilbertspace realization V1 =(Φ(1)(E(1)), < , >(1)) and the associated
Hilbertspace ^1} = Vi has the orthogonal decomposition J^^Jf^SJ^ as in
Proposition 4.1. Assumption (iii) implies T3(x1(x)x2) = <Φ1(x1), Φ2(x2)>1 for all
XjtEj, 7 = 1,2 with some continuous linear function Φ2:£2-^Jf1 and by
assumption (ii) we know

for all xjeE1. This implies that a strongly continuous linear function
Aίί:E1-^L(Φί(E1\Jίfί) is welldefined by A11(x)Φ^(y) = Φ\(x®y) x^eE^

Furthermore there are linear functions Aij:El ^L(^j,J^i) (ij) = (01) and (10)
according to Proposition 4.1 there is a linear function A(l} :E1 ->L(F1? J^(1)) of the
form (4.3) as in Theorem 4.2. The first statement then follows from Theorem 4.2.

Suppose TeE'+>1 is an extension of T(3). Then by Corollary 2.6
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and Tis uniquely determined by 7^3) if and only if z!2=0. But

A2(x2) = (T4-T2®T2)(x*2®x2)

II.Φ2(*2)llί ̂  Σ <*2(*2), <W>1<<W> <2>2(*2)>1
7=1

for any orthonormal system {Φ .̂)}̂  in Φ^E^ and all x 2eE 2; therefore by
definition of T4

2 according to Proposition 4.1 the inequalities (4.8) result; and the
first inequality becomes an equality iff {Φ .̂)}̂  is an orthonormal basis of J^.

Remark, (a) The conditions on T(4} expressed by inequalities (4.4) which are
necessary and sufficient for the existence of a m.c.l. extension of T(4} are essentially
no help in testing a given functional. But these conditions give hints for the
construction of the most general two, three- and four-point-functionals which
have at least minimal extensions and thus hopefully a lot of other extensions.

(b) In particular these conditions lead to some classes of more convenient
conditions for the existence of (minimal) m.c.l. extensions. We discuss the simplest
cases, but it is clear that they should work more general.

Corollary 4.4. Suppose 7J3) = {1,0, T2, T3}eE[3) satisfies
(i) T2Φθ,T2(x*(x)x1)^0 for all x^E^

(ii) Γ3* = T3

(iii) |T3(x*®x2(x)x3)|^(T2(x*(g)x1))1/2p1(x2)(T2(x*(x)x3))1/2

for all x eEl and pl some continuous seminorm on E1.

Then we have
a) 7J2) = {1,0, T2} has exactly one minimal extension which is fixed by T3.
b) There are a lot of non-minimal extensions of T(2). The case which is most easily

described is the following type of extensions : Let J^0 and ̂  be as in Corollary 4.3
assume Jf2 to be any separable Hilbertspace and assume that A^'.E^&fflp JfJ) are
linear functions such that

(i) Ai{x)*=Aji(x*)9

(ii) xh^H^l.^x)!!^ is a continuous seminorm on E1 for (i/) = (12), (21), (22)

(iii) 0 ^(2)(E1)...^(2)(£1)Φ0 is total in 3ff(2) = 3^Q®^®3^2
n = 0

/ 0 A01(x) 0 \

Aw(x)=U10(x) A^x) A12(x)\ all xeE,. (4.9)

\ 0 A21(x) A22 I

Then a non-minimal m.c.l. extension of T(3) is defined by

Tn(Xl <8> . . . ®xa) = <Φ0, Am(Xί). . .A(2,(xn)Φoy^ (4.9')

for all x eEl and n=l,2, ____



Vacuum Expectation Values. II 185

Proof. Using the same notation as in Corollary 4.3 we have T2(x(g) j;) = <yl10(x)Φ0,
AίQ(y)ΦQ\ and Ts(x*®z®y) = (A^(x}Φ^Aμ(z)A^(y)ΦQ\ for all x,
The more restrictive continuity assumption (iii) implies

thus in this case it is easy to extend All to give Ά11 E^-^^^^^) such that
\\A11(x)\\^pί(x). J^(Jf1?Jf2) denotes as usual the space of bounded linear
operators from the Hilbertspace J^ into the Hilbertspace Jf2.

Therefore

defines a minimal extension of T(2) which is also a m.c.l. extension of T(3) such that
T4

2 = 0 (Proposition 2.5, 1), thus (Corollary 2.6 of I and Proposition 4.1) it is the
minimal extension of T(2} which is fixed by T3. This proves a).

To prove b) note that the assumptions above imply that formula (4.9) defines a
linear function v4(2) : E^J^Jf^, Jf(2)) such that 4(2)(x)*=4(2)(x*) and
χκ>||,4(2)(χ)|| is a continuous seminorm on E±. Therefore a m.c.l. functional T on E
is welldefined by (4.9'). It is clearly an extension of T(3).

Remark, (a) It is evident how to generalize part b) of Corollary 4.4 to include the
case A(2)\E^L(@(2γ3>(2^A(2}(x) not necessarily bounded in Jf(2), @(2)

= ̂ 00^0^2 a dense subspace ofjf ( 2 ).
(b) The most general estimate each T3 e E3 has to satisfy is

z) for all x^y.zeE,

where p1? p2, p3 are continuous seminorms on E^. If T3 is symmetric, e.g. T3* = T3 it
is no restriction to assume an estimate of the form

Thus we are left with three possibilities for a given 7J3) = {1,0, T2, T3} such (i) and
(ii) of Corollary 4.4 hold :

(α) p1(x)^«1(x) = (T2(x*®x))1/2 ]
(β) PιW^ιM,PιΦ4ι Γ for all xeEj .
(γ) pί and ^t are not comparable]

The first case is covered by Corollary 4.4. The second case however seems to be of
more interest for applications in QFT. But it is harder to analyze. In [3] a special
case oΐpί ^.qί and pΓ1(0) = ̂ f^1(0) and pίή^q1 is realized in the construction of a
relativistic quantum field with control of the dynamics. A generalization along
these lines seems to be possible.

We propose another kind of conditions on T(3) which imply the existence of the
minimal extension of T(2} which is fixed by T3 but which are more involved than
those of Corollary 4.4. The idea simply is that according to Proposition 2.5 of I we
get such an extension if Aίί(x) as specified in the proof of Corollary 4.3 maps
Φ E into Φ E ) f o r a l l
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Corollary 4.5. Assume 7J3)e£{3) satisfies the conditions (i), (ii), (iii) of Corollary 4.3
and in addition the following estimate:

ι|£ sup |Γ2(yf®z)|. (4.10)Λ V Λ
x,yeEi y1,...,yn€Eί zeEi

2
j= !,...,«

Then 7^2) has exactly one minimal extension which is fixed by T3 and which is
characterized in terms of a continuous linear map

f : (E1 ® E15 q2)^(Eί9 qj such that

) for all x,y,zeE, (4.11)

q2 is the continuous seminorm of condition (iii) of Corollary 4.3 and ql is defined as
usual (q,(x) = (T2(x*®x)}ll2\

Proof. We begin as in Corollary 4.3. Using the notation of the proof of Corollary
4.3 we have according to inequality (4.10):

K^ίx^ΦMΦ^
n

thus P| Ker/ygKer/ if we denote the linear functional on Φ^(E^
j=ι

Φ1(z)h><Φ1(yj), Φl(z)}l by /., respectively

Φ^(z)^A^(x*)Φ^y\Φ^z)\ b y / .

n

This implies /= ^ α^ , α7 eC and therefore
j=ι

^11(x*)Φι(y)= Σ ^Φ1(yJ.) = Φ 1 ( Σ δ^e.Φiίfii)
j=ι \ j = ι /

because Φ^(E^ is dense in 2tfv. So we see that (4.10) characterizes the statement

Thus there is some function /0 :£x x E1^Eί such that >!11(x)Φ1(3;) = Φ1(/0(x5 3;)).
The linearity of A{1 and Φx imply that /0 is a bilinear function modg^O) and we
may assume that /0 is indeed a bilinear function E1 x E1 ->EX and is thus given in
terms of a linear function f'.E^^E^E^ e.g. ^!II(X)ΦI(J;) = ΦI(/(Λ:®);)). By
definition of the norms

the continuity properties of / follow. The relation

implies (4.11). Therefore there is a linear function A(1}:E1-^L(V1, FJ such that

ΛυM* f Vι=A(i)(x*ϊ ϊ Fι and P»(^ι® •-• ®^J=M(i)(^ι)- -^(i)WΦoll^ ( 1 )

 are
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continuous seminorms on Ef n. This function A(1) yields the minimal extension of
T(2} which is fixed by T3.

The content of the second part of this section is a discussion of the extension
problem in Case A of Theorem 2.4. So we try to construct m.c.l. extensions of

IJ4) = {1,0, Γ2,0, T4}eE(4) such that

, T2 2(x*®x2)^0 for all x^Ej9 j=l,2 (4.12)

Corollary 2.6 implies T(4) ϊ E(4)r\E + ̂ 0 and z!2φO. Our main interest will be to
construct first minimal extensions.

By Proposition 4.1 it is evident that in the case J 2 Φ O we should take into
account a further condition on T(4} which is obviously necessary for the existence
of at least one m.c.l. extension; in this case this condition reads (compare
Proposition 2.3b) of I)

|T4(x*®x3)|^(T2(x*®x1))^2^3(x3) (4.13)

for all XjξEj, j= 1, 3 g'3 some continuous seminorm on £3. An easy consequence
of (4. 13) is that

q3(x3) = wp{\T*(x*®x3)\'9xeEi9qι(x) = ί} (4.14)

defines a continuous seminorm on E3, where according to Proposition (4.1)
T4 = T22 = T4—T2®T2 and consequently

I T4

2(x* (x) x2 (x) x3 (x) x4)| ̂  <31(x1)g3(x2 ® x3 ® x4

and thus (4.14). This allows to go beyond the results of Proposition 4.1 to get

Proposition 4.6. Suppose T(4)e£'(4) satisfies (4.12) and (4.13). Then in addition to the
results of Proposition 4.1 the following holds :

(a) Aιl=Q,e.g.Ti=Q
(b) There are linear functions

and

welldefined by

A2ί(x)Φ1(y) = Φ2(x^y), Al2(x) \ Φ2(E2) = A2l(x*r I Φ2(E2)

such that for all xjeE1

T2(Xl ® ... ®x4) = <^21(xJ)Φ1(x?)M2i(x3)Φι(x4)>2
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and for all x,yeE1 and all zeE2

Proof. By Definition (4.14) \T£(x:![®x3)\^q1(x1)q3(x3)9 XjeEj9 j = l,3. Therefore
there is a linear function

Φ\\E^^ such that T2(

T22(x* ®*2)^0 for all x2eE2 implies T£2 = T22. Thus we get by Proposition 4.1
for all xjeEί

ΦiίxJX (4 15)
Then it is immediate that (x,yeEί9 zeE2)

A21(x)Φ1(y) = Φ2(x®y), A12(x)Φ2(z) = Φ\(x®z) (4.16)

are welldefined and have the properties claimed in Proposition 4.6.

Proposition 4.6 shows in particular that 7^4) is realized in terms of any linear
function A(2} : E1 -+L(@(2)9 3?(2}\

of the form

o ΛiM o
A(2}(x)=Aw(x) 0 ^12(x) (4.17)

0 A2ί(x) A22(x)

where ^422 is any linear function E1

In order to get a minimal extension of 7J4) a linear function y422 :
has to be specified such that the resulting ^4(2):£1-^L(^(2), J^(2)) has
a symmetric linear extension Ά(2}:E1-+L(@I(2),@z(2)) which satisfies (i)-(iv)
of Proposition 2.5 in I. Here we propose to discuss the case A22 = Q. This has the
advantage that we can apply Theorem 2.7 of I directly to get necessary and
sufficient conditions on T(4} alone to have minimal extensions in terms of a linear
function Ά(2) : E^-*L(βz^ ^I(2) °f tne f°rm

/ 0 Λ01(x) 0 \

A(2)(x)=\Aίo(x) 0 I12W . (4.18)

\ o Ά21(x) o /
By Proposition 4.6 the operators A01(x) and Aίo(x) in (4.18) have the same
properties as those_in (4.3). Therefore we proceed similar. Suppose first that all
vectors A^x^) ... Ά(2}(xn)Φ0, x^E^ ?ιeNare welldefined in J^(2). The orthogonal
decomposition of J^(2) = ̂ Q®^®^2 yields

(4.19)

The components φ^j of these vectors satisfy the following recursion relations

^+l(^l®.-.®^+l) = ̂ Ol(^l)^(^2® - ®^+l)

"

Λ (4.20)



Vacuum Expectation Values. II 189

and thus by induction on n

<PΪn+l(Xl® •"®^2n+ί} = Aί2(xΐ)Ά21(x2)...A21(x2n)Φ1(x2n+1)

+ A12(xί)Ά21(x2)...Ά21(x2n_2)Φ1(x2n_1)T2(x2n®x2n + ί)+ ...

+ Φ1(x1)T2n(x2®...®x2n+1) all X j € E l 9 π = 0, 1,2, ... . (4.21)

<P2n+l=92n+l=<P2n=° 71 = 0,1,2,...

)-^01(x1)φ^_1(x2(x)...(x)Λ;2n) (4.21')

These equations show: If A(2} has a symmetric linear extension of the form (4.18)
which satisfies (i)-(iv) of Proposition 2.5,1 then

21W 0

has a symmetric linear extension A \E^L(β^ @Ά) such that (i)-(iv) of Proposition
2.5, I hold with obvious modifications and Φ 1 ( E 1 ) ξ & Φ 2 ( E 1 ® E 1 ) £ @ j [ Q j t f ' 1 ® J ' ί f 2 .
Conversely if such a function A exists the Equations (4.21) and (4.2Γ)
imply the existence of a function Ά(2} :Eλ -+L(@τ . @j } and this function An,r J (/,) i v ^-(2y Ά(2y (•£)

then satisfies the conditions (i)-(iv) as above. By [Theorem 2.7,1] such a
symmetric linear function A exists if and only if the following chains of inequalities
hold which result from the inequalities (Knk) of [Theorem 2.7,1] by inserting an
orthonormal basis (Φ^hj)}^ of ̂  and an orthonormal basis {Φ2(ft?)}J.eN of J^2:

00 ( 00 / / OO

ί-^ I ί-^ I \ *—^ 4" ^Ή ~*~ *• ^M *Ή -"- ^2n — 1

/= 1 l v ι = 1 \ \ V 2 n - 1= 1

.μι=l

Σ ^4%2

2!,_2®
n - ι = l /

P2n+ι(3 ;ι® ®};2n+ι)P2,+3(^*®^ι® ^2tt + 2)5 n = 0,l,2,... (4.22a)
00 ί 00 / 00 / 00

Σ Σ Σ - Σ
J = l lvι = l \ V 2 = 1 \V2n-2=

f ® h2

Vι)T2(h2

Vι ®x*



190 E. Bruning

^P2n()/1®...®^2>2n + 2(x*®x1®...®x2 n + 1), n = l,2,3,... (4.22b)

for all XjX^j^.eEi pn are continuous seminorms on E f n such that Pj = qj9

j= 1 , 2 , 3 ; qj are the seminorms of Proposition 4.6.
As in the previous case the meaning of these inequalities (4.22) is that the

extension

fvΛ Π
2 1 \ /

is determined by the matrix-representation of

A( \ ί ° ^"W
A(X)=\A21M 0

with respect to an orthonormal basis of 3^1®J4f2 in the domain of A(x).
To summarize we formulate the analogue of Theorem 4.2:

Theorem 4.7. a) // T(4} = {1,0, T2,0, T4}eE'+tl satisfies (4.12) and (4.13) then T(4} has
a minimal extension TeE'+>ί which is determined by 7J4) in the sense that all the
functional^ Tn,n^5, can be calculated in terms of a matrix-representation of A(2}(x],
Equation (4.18), if and only if all the inequalities (4.22) hold.

b) // T(4} satisfies (4.12), (4.13), (4.22) the structure of the n-point-functionals Tn

of the minimal extension which is determined by 7J4) is as follows:

^2 == ^2 ^2n + 1 = 0 W = 0, 1, 2, . . .

7=1

α// X^E! and j = 2,3,....

Proo/ Part a) has been proven above. The Equations (4.21) and (4.2Γ) then imply
the relations (4.23) and thus b) is proven.

Concerning the usefulness of the conditions (4.22) the same remarks as those
following Theorem 4.2 apply. Therefore we proceed similar and discuss the
corresponding cases of sufficient conditions on T(4} to have m.c.l. extensions.

Corollary 4.8. // 7J4) = {1,0, T2,0, Γ4} satisfies (4.12) and

|T4

2(x1®x2®x3®x4)|^g1(x*)p1(x2)p1(x3)^1(x4) all xJeE1 (4.24)

where p1 is some continuous seminorm on El and ̂ 1(x) = (T2(x*®x))1/2, then T(4} has
a minimal extension which is determined by T(4} in terms of the bounded linear
operators

A01(x) 0

0 -42ι(x)

according to Proposition 4.6.
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T(4) has a lot of non minimal extensions. Those which are most easily described
can be specified in terms of some linear function

J 3̂ is any separable Hilbertspace and for all xejE^

0 A01(x) 0 0 \

A10(x) 0 Al2(x) 0 \

0 A21(x) A22(x) A23(x) I

0 0 A32(x) A33(x)l

Jiff) are such that Aίj(x}* = Ajt(x*) and x'^> \\Aij(x}\\ij, i,je{2,3} are

CO

continuous seminorms on Eλ and such that J^0u \J /1(3)(£1)...^.(3)(£I)Φ0 is total in

Proo/ One has to start with Proposition 4.6 and then to proceed essentially in the
same way as in the proof of Corollary 4.4.

Remark, (a) An immediate translation of remark (a) following Corollary 4.4
applies.

(b) By definition of the topology on £4, each T4

2e£4, T4

2* = T4

2, admits an
estimate

\ T l ( x ΐ ® x 2 ® x 3 ® x 4 ) \ ^ p 1 ( x f ) σ 1 ( x 2 ) σ ί ( x 3 ) P l ( x 4 ) all x^E,.

p{ and σ1 are continuous seminorms on E±. That is for a given T(4)

-{1,0, Γ2,0, T2®T2 + T*}EE[4} such that (4.12) holds there are only three
possibilities:

(α) p1(x)^^1(x) = (T2(x*®x))1/2 1

(β) PιM^4ιM, P i Φ ^ i [ for all xeJ^.
(γ) PJ, and ^r1 are not comparable]

Again the first case is covered by Corollary 4.8. Concerning the second possibility
remark (b) following Corollary 4.4 applies.

The analogue of Corollary 4.5 is

Corollary 4.9. // T(4)eE'(4} satisfies (4.12), (4.13) and the following estimate

?;2(*ι® ®*4)i^ SUP ι^(^®χ4)i (4.26)

then T(4} has a minimal extension which is determined by T(4] and this extension is
characterized in terms of a continuous linear function f:(Eί®E1,q3)-+(E1,q1\ q3 as
in (4.14), such that

z) = T2(x®f(y®z}) for all x,yeE^ zeE2. (4.27)
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Proof. According to Proposition 4.6 T(4) is realized in terms of Aoi, Alo and
A2ί:E1-+L(Φ1(Eί),Φ2(E1®Eί)) and Al2\El-^L(Φ2(E2\^l\ And inequality
(4.26) characterizes the fact that

Indeed by (4.26) we know

\<Aί2(x*)Φ2(x*®x*)9Φί(xjyι\£ sup
je{l...n

and thus

Then we can proceed as in the proof of Corollary 4.5 and the minimal
extension of T(4) results from the fact that the range of A12(El) is contained in the
domain of A21(E1) such that the formulae (4.23) apply to define this minimal
extension.

5. Conclusions and Further Problems

a) The problem of uniqueness of extensions of T(2N}e E'(2N} in E'+ t has been solved
(Theorem 2.4). But the associated Hilbertspace has not the structure one expects in
general in QFT (Proposition 2.1, CaseB). For instance Fock-space has a structure
which corresponds to case A of Proposition 2.1 and in this case one expects to
have more than one extension in E'+ 1 (Theorem 2.4A). Therefore in Case A the
problem of uniqueness of extensions in E'+ s l n/ 0 arises.

b) It has been shown that the concept of minimal extensions leads to necessary
and sufficient conditions on T(2N} for the existence of (at least a minimal) an
extension in E'+>1 (Theorem 2.7 of I, Theorem 4.2, Theorem 4.7) and in a
favourable situation it thus allows to construct many extensions in E'+ 1 and in
special cases in E'+ 1nl°. The problem which is still open is the question whether
each extension in E'+ 1 (or at least each extension in E'+ 1r^I°] can be constructed
via minimal extensions or not. This corresponds roughly to the problem whether
each "field" A:Eί^L(^A,^A) has a representation as a Jacobi-matrix or not.

c) The discussion of extensions in E'+ 1 of T(4} supports to distinguish several
types of extensions (extensions of T(2N} which are in some sense "generated by
T(2N" and which are not) besides the minimal and non minimal extensions. One
would like to have a precise definition of these notions.

d) We have shown that it is possible to characterize a relativistic QFT in terms
of finitely many FEFs. Collecting the various results we obtain in particular:

Theorem. Each 7J4) = {1,0, T2, T3, T4}e£[4) such that
(i) T ( 4 )r£ ( 4 )n£+^0,

(h) T 2 ΦO,
(iii) Al(4) = Q,
(iv) T(4)eE;4)n/°,
(v) 7J4) satisfies any of the sufficient conditions for the existence of a m.c.L

extension as discussed in Section 4



Vacuum Expectation Values. II 193

characterizes exactly one relatίvistίc QFT (For deβniteness we assume here

Appendix

This appendix contains a proof of Equation (2.7). Using the notation of Section 2
we want to show :
If J .ΦO, ;=!,..., n, then for all xn + 1e£n + 1

inf{Gn + 1(Φ 0(x 0),...,Φπ(xJ;βnΦn + 1(xπ + 1));(x 0 ϊx l J..,χπ)eSπ}=0.

If φj = Φ(n)(h(n))£Φ(n)(E(n)),jeNis any orthonormal basis of J^(n} then

00

HβA+ ι(*B + 1)ll 2= Σ !<<?,•, *„+!(*„+ 1)>!2

J = l

Thus given xn+leEn+l and ε>0 there is me N such that

Σ |<<P^B+1(xB+1)>|2<e
j — m+ 1

Sn spans J^(n) therefore we may define

[A] denotes the closed subspace generated by the set A in J^(n). Furthermore we
denote by P^ the orthogonal projection onto the subspace spanned by

Φ0(x0), ...,Φw(xπ). Then for x(n)eFm we obtain P = P = projection onto
[{φ1? ..., φm}]. The rules for determinants yield

= G,,(Φ0(X0), . . ., Φn(xn)

This implies the following chain of inequalities respectively equalities :

= l|JP
±eA+1(^+1)iί2= Σ \<φpΦn+1(xn+1}'>\2<ε

j = m+l

and thus proves Equation (2.7).
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