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Abstract. The problem of uniqueness of monotone continuous linear
extensions of

(ZN) ={1, Tp"-,TzN}eEEZN): HOE:I

is solved. A characterization of a relativistic QFT in terms of finitely many
VEV’s is derived. All results are illustrated by an explicit discussion of the
extension problem for special cases of Tj,,={1,0, T, Ty, T,}. This discussion
contains explicitly necessary and sufficient conditions on Ty, for the existence
of minimal extensions and some convenient sufficient conditions.

1. ‘ Introduction

This note continues the discussion of the problem of characterizing a relativistic
Quantum Field Theory by finitely many vacuum expectation values which we
started in [1].
While the first part contains
(i) an exposition of the problem (which is shown to be the problem of
monotone continuous linear extension with additional linear constraints),
(i) a suggestion for constructing monotone continuous linear (m.c.l.)
extensions,
(iii) the definition and some discussion on the relevance of the notion of
minimal extensions,
(iv) necessary and sufficient conditions for the existence of minimal extensions,
(v) several applications to the simplest cases;
this part concentrates on
(i) the problem of uniqueness of m.c.l. extension,
(i) minimal extensions in relativistic QFT,
(iii) the characterization of a relativistic QFT by T, ={1,T,,T,,T;, T,}
(notation as in 1).
The problem of uniqueness of m.c.l. extension is solved in the following way
(we use the notations of 1): The notion of a m.cl functional to be ‘uniquely
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determined by T,y 1, ={1, T}, ..., Tyy 4} is introduced and a criterium for this is
proven. The hypothesis of this criterium are conditions on Ty,
={L,Ty,..., T,y ,}. Thus a condition for the uniqueness of m.c.l. extension results.
Clearly there are only three possibilities for a given Tj,y,€ E{,y,:

A. There may be more than one m.c.l. extension.
B. There is at most one m.c.l. extension.

C. There is no m.c.l. extension at all.

These possibilities are expressed in terms of 7,y, (Section 2). In this context
minimal extensions appear in a natural way: If we know that in Case B there is a
m.c.l. extension this then is a minimal extension. The statements concerning the
remarks on the relevance of minimal extensions in QFT (in Part]) are made
explicit by showing.

(i) To construct minimal extensions is the easiest way of constructing m.c.l.
extensions which are Poincaré-covariant and satisfy the spectral condition
(Section 3).

(i) If in Case B T,y, satisfies the linear constraints of relativistic QFT and if
we know that T,y has a m.cl. extension then it follows that this m.c.l. extension
automatically satisfies all linear constraints of relativistic QFT (Section 3).

As an application the extension problem for special cases of T, ={1,0, T,, T3, T, }
is discussed :

(i) necessary and sufficient conditions for the existence of minimal extensions
are derived.

(i) Some classes of convenient sufficient conditions are presented and then

(iii) some results on the structure of the n-point-functionals of some m.cl
extension follow.

Our results show in particular that (at least for neutral fields) a
characterization of a relativistic QFT by finitely many vacuum expectation values
is possible!

2. On the Uniqueness of Monotone Continuous Linear Extension

The idea to answer the problem when a given functional T,y,={1,T;,..., T,5}
€ E{,y, has at most one m.c.l. extension is as follows:

We prove a criterium which says when a m.cl. functional Te E', , is “uniquely
determined” by T, T,, ..., T,5_ . The hypotheses of this criterium are conditions
on {T,,..., T,5}. Thus a theorem on the uniqueness of m.cl. extension of Tj,y,
‘follows.

The main technical tool is a generalization of a well-known relation for Gram-

determinants. Given Te [] E,, T(1)=1 we may define a sequence of functions
n=0

G,,:E(n)E@) E,—»C,n=0,1,2,... by

XoXo XoTi(xy)... Xo T(x,)

Ti(xT)xo TH(xF®x;)... T, (xf®x,)

G (x ) =det 2.1)

Tn(xf)xo Tn+ 1(x,’f®x1)...T2,,(xj®x,,)
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and we may characterize monotonicity of T by saying that all G, take only non-
negative real values. In terms of the canonical pre-Hilbertspace realization
VT=(<15T(E) {-,->r) of a given TeE', | by the nuclear quotient map @,:E—V,

=@, = Z @, such that T(x*-y) =< P(x), Pr(y)> 1 X, Yy E the functions G, have
the followmg realization as Gram-determinants
Gn(')—c(n)) = Gn( 0(x0)7 tero dsn(xn)) :

(Do(x), Po(Xo)p -+ {Po(X0), PulX,)p
=det : : (2.2)
<¢n(xn)a @0(X0)>T LR <qsn(xn)3 ¢n(xn)>T

By assumption T(1) 1 we know Gy(x)=0 iff x,=0; define §;:={x,,
€E)|Go(x0) = [xo*=1}+0 and 4, :E, >R, by

4 1(x1)= E(é)l)lein;'o {G1(>_C(0) 5 Xl)}

If A4, %0, we know
Si= {5(1)€E(1)|G1(>_¢(1))= 1}=+0
and thus

Ay(x,): = x(ill;let.‘sl {Gz(lc(n ;X))

is welldefined as a function 4,:E,—R,. In this way we proceed successively
defining

S, = {)_C(n)eE(n)lGn(D—c(n)) =1} (2.3)

An+ l(xn+ 1) L= x(inr)let.;‘ {Gn+ 1(')—c(n) 5 X+ 1)} .

In order to have an interpretation of these functions 4, and in order to investigate
which possibilities are allowed, we introduce

V,=®E,), H,=V,=closureof V, in #;

- . (24)
H =Hp=Vy=completion of V; ;
Q,: H —H,, orthogonal projection onto .
Evidently the following relation holds
HEH ey n=0,1,2,.... (2.5

Suppose 4,0, v=<n and calculate

G, 1()—€(n)’ Xy 1) = CA;n+ (Po(xg), s Dlx,), 0, D4 1(X,4 1))
+ Gn(lc(n)) [l QrJ{(anr 1 (%04 1)“2 (2.6)
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where Q =1—Q,. The appendix contains a formal proof of what is intuitively
clear

inf Gn+ 1( O(XO)’ Tt ¢n(xn) ; Qn¢n+ 1(xn+ 1)) =0 . (27)

x(n)eS

Therefore we get the following interpretation of the functions 4,, ne N

Ay (%1 1) =105 P 1 (%, )2 (2.8)
Proposition 2.1. For a given TeE', ; there are only two possibilities :

(A) 4,%0,n=0,1,2,..., corresponding to

Ho s H 1y, n=0,1,2,....

(B) Thereis Ne Nsuch that A,4£0,n<N and 4,=0,n= N + 1, corresponding to

%mgﬁﬁmg g%m:%@ﬂ): =

Proof If A4,%=0 holds for all n=0,1,2,... we sece by Equation (2.8) that
H, Jf(nﬂ), n=0,1,2,... results. If on the other side we know éﬁn)gjf(nﬂ),

(n) +

n=0,1,2,... then we get immediately 4,+0, n=0,1,2,... by Equation (2.8). The
negation of the first possibility is that there is Ne N and that 4,40, n<N and
Ay, 1 =0. Then by Equation (2.8)

QDN+ 1(EN+ 1)&%1\])

and thus

¢N+1(XN+1)=LEI}_1w Prixyii)s  Xne1€Ey g

Vo (xXye1) Z <@(N)(h(N)) Dy (Xys1) ‘p(N)(h(N))e Vv

{P By} ;en € Vy being an orthonormal basis of #{y). The canonical GNS-x-
representation A=A, of E by linear operators on V,= U V, acts as a “shift”
operator in V: "

Py a(Xx@xy1 ) =AX)Py 1y (Xysy),  XEE, Xy €Ey,,.
Thus we have for all YeVn#y,, all xeE, all xy,,€Ey, :

(W, Py (X @ Xy 1 1)) = CAXM)Y, Dy iy (Xy 14))
Jim CAG)P, ¥y 1))

I

= gljlolo (Y, AX) Y (x4 1)>
=0

because of A(X)¥ (xy.1)€ H )
Therefore

Py (x®@xys)e(VOH ) =Hy,, x€E;, Xy, €Ey,;.
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and thus

¢N+2(EN+2)g%N)’ QIJ\?@N+2( N+2) {0}
Similarly we get by induction

Py (Eyi )y,  v=34...

thus 7y, = # ), M 2 N, follows.
That the relations #)$...¢#y=H(y+1,=...=H for the Hilbertspace
imply those claimed for the functions 4, is immediate by Equation (2.8).

Next we want to investigate the interpretation of Case (B) of Proposition (2.1)
in terms of T,,ne N. By Equation (2.8) we have in this case Qy®,,, =@y, and
thus

Tons 2w+ 1®Yya 1) =Py 1 (X5 1 1), Py 1 v 1

=Py (N4 1) ONPrys 1 v

Z Py 1 (x4 1)s @(N)( (N))> <‘1§(N)(h(zv)) Dy (Vs

8

Z (tN+1 J®tN+1 _])(XN+1®yN+ ) (2.9)

where we defined
Iy 1,j(xN+ )i= <¢'(N)(h{1v))s Dy (Xys1))

N
= Z T 1 (B*®@xy 1) (2.10)

v=0

All the functionals ty. , ;€ Ey ., are uniquely determined by

(1) {TN+1’ e T2N+l} s
(ii) an orthonormal basis {® y,(hiy)} ;enC Vi of Hy, .

Now any orthonormal basis of #{y, in Vy is fixed by {7, ..., T, 5} and according to
(2.9) and (2.10) the series

o0
%
2 i1, Ot
j=1

give the same result for any orthonormal basis {®y,(h{y,)} ;on Of #{y,. Thus we see
that by Equation (2.9) and (2.10) T, , is uniquely determined by {7}, ..., Ty .}
We proceed by induction. Assume that for some me N, m=2 all the functlonals
Ton +,» w=m, are uniquely determined by {T;, ..., T,y .} in the sense of repeated
application of Equation (2.9) and (2.10). Then it is enough to show that T,y .. is
uniquely determined by {T,,..., T,y,,} in the above sense to conclude that
Tyn+ms1 18 uniquely determined by {Ti,...,T,y,,} in the sense of repeated
application of (2.9) and (2.10). For all xy,,€Ey,,, and all yy, ,eEy_., we have

Donet+mXnem@Yns 1) =Py X4 Py 1 Vs 1)
=Pyt XK 1mh QNP 1 U+ 1)

0

= Z t;\kl+m,j(xN+m)tN+ l,j(yN+ 1) (2.9)

i=1
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where ty.,, ;€Ey.,, is defined by
IN+m, j(xN )= <‘D(N)(h{1v))a Dy s Xy m)

N
= 7—:}+N+m(h{;*®xN+m) (210’)
=0

v

and thus depends on {Ty.,,..., Thy+ms and the choice of the orthogonal basis

{D)(Bx)} je Of #,y,- But again the sum ) %, ;®ty, ;does not depend on the
ji=1

special choice of such a basis. Therefore T,y ; .,, is determined by {7}, ..., Ton 1}

in the sense of Equation (2.9) and (2.10). So we define

Definition 2.2. We say that a m.cl. functional T={1, T}, T,, ...} E* | is “uniquely

determined” by

Ton+1y={LTy,-.., Toyrq}, N minimal,

if and only if all the functionals 7,, n=2N +2 are determined by T,y ,, in the
sense of repeated application of (2.9), (2.10), (2.9) and (2.10"), and our discussion
above shows

Theorem 2.3. A m.c.l. functional Te{1,T,,T,,...}€E', , is uniquely determined by
Ton+1y={Ty, ..., Ty} if and only if Ne N is minimal such that

Ayy1(xyy )= infdet

X0Xg > s XoTyy 1 (xy4y) }

: : =0
E ®

G)';f(zzc)(fv‘)ﬁz’l Ty 15 10%0s s Ty 2 (X541 ®Xy 4 1)

Xy, €EN,

Remark. 1t is clear which part of the statement of Theorem 2.3 is not trivial. The
other part is just a matter of definition (Definition 2.2).

By the way the hypotheses are formulated we see that Theorem 2.3 has an
immediate application to the extension problem. Suppose we are given

TomeEqny Tion(1)=1 such that T,y E.NE,y5 =0. Then we are free to define

for 0Sn<u=<N
XoXos v iofz(xn), J?OT(xu)
Gk %) =det| T (x)%0 - T ®x,), T, f6F®x,) (2.11)
T(x¥)xg ... Ty (x¥®x,), T,,(xF®x,)
and

Ai(x,)=inf {G(x.; x,} (2.12)
X(n)ESn

in the case of 4,+0, v=1,...,n. In terms of the canonical pre-Hilbertspace

realization Vy=(®y)(Ew), <+, D) of T(,, according to [Theorem 2.1 ;1] we have
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the following interpretation of the functions 4*:
A5(x,) =125 @, (x,) Gy, - (2.12)
This prepares

Theorem 2.4. Given Tj,y € E,, such that T,y T E;y0E . 20 we have to distinguish

the following cases :

(A) If 4,#0,n=1,...,N then Ty, may have more than one m.c.l. extension, if
there is a m.c.l. extension at all there will be in general uncountably many.
(B) If there is ne{l,...,N—1} such that

(i 4,%£0, v=1,...,n and
(i) 44=0, wu=n+1,..,N

then Ty, has at most one m.c.l. extension.
(C) If N>2 and if there is ne{l,...,N —2} such that

@@ 4,%0, v=1,..,n
(i) 4,.,=0
(iii) 44%0 for some pe{n+2,...,N}

then Ti,y, has no m.c.l. extension at all.

Proof. (A) In Section 4 we will show by example that in Case A there will be
uncountably many m.c.l. extensions if certain sufficient conditions guarantee the
existence of at least one minimal extension of Ty, y,.

(B) Suppose TeE, , is any m.c.l. extension of 7,y,. Then according to (2.1)
and assumption (ii)

AnT+ 1 =A:lev)=0-
Therefore by Theorem 2.3 T'is uniquely determined by {T}, ..., T, }, that is there
is at most one m.c.l. extension of T, y,.

(C) If there would be a m.c.l. extension T of 7y, we had a contradiction to
Proposition 2.1 which says in particular that 4*=0, n+2<u=<N.

Corollary 2.5. If in Case (B) of Theorem 2.4 there is a m.c.l. extension T of Ti5n), this
is a minimal extension of Ty, which is uniquely determined by {T,,...,T,,, {}.

Proof. Suppose TeE', ; is an extension of Tj,y,. Then we get by (2.1)
A%, =A% =0,
By Theorem 2.3 we know that T'is uniquely determined by T,, . ;, and Proposition
2.1 implies
Hop=H.
The assumptions of (B) imply: #y,=#,. Therefore the canonical partial

isometry J:#y,—~# is a unitary transformation of #y, onto #';; eg. Tis a
minimal extension of T,y
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For illustration and further application we note:
Corollary 2.6. Given T, ={1, Ty, T,, Ty, T,} € E{,, define

T,,=T,-T1QT,, T,,=T,-T,8T,, T,,=T,—-T,®1T,

0,(x1,%,) =T, (x3®x,)T, ,(x¥®x,) — | T, ,(x*®x,)|*.

Then we have
a) If T, (xf®x)20 Vx;eE;, T, #0 andif
Q,(xy,x,)=0 VxeE;, j=1,2

and
A5(xy): =inf{Q(x, x,)I Ty, (xF @x () =1}£0
x,eE,

then T,y may have more than one m.c.l. extension.
b) If T,, and Q, are as in a) and if 4,=0, then there is at most one m.cl.
extension of Ty,

c) There is no m.c.l. extension of T, if one of the following conditions holds :
(i) T(xf®x)<0 forsome x,eE;, j=1 or j=2

(@) T;;=0 and T,,*0, T,,(x3®x,)=0

(ii)) Q,(xy,x,)<0 for some x;eE;, j=1,2.

Proof. a) Note G,(x,,x;,X,)=|x,>Q,(x,, X,), thus Theorem 2.4 (A) applies.

b) Theorem 2.4 (B) applies.

¢) Case (i) and (iii) imply that T, does not satisfy the necessary monotonicity
conditions. Theorem 2.4 (C) applies to case (ii).

3. Minimal Extensions in QFT

In order to be able to formulate the linear constraints of relativistic QFT we have
to assume in addition that E, is a space of testfunctions on Minkowski-space
which has some further properties [such as the Schwartz-space & (IR*)].

(i) E, allows Fourier-transformation such that localization in “coordinate”-
and “momentum-space” is possible.

(i) The Poincaré-group G=P, acts linearly and continuously on E; by -
automorphisms. This action then induces the canonical action o, of G on E by
s-automorphisms of E.

Then it is well-known [2] how to formulate the linear constraints of QFT in
terms of a monotone continuous linear functional TeE’, ; such that the x-
representation 4= A, of E associated with T (via GNS-construction) describes a
relativistic quantum field: T has to vanish on a suitable subspace ICE, e.g.

Tel°CE with I°=I2nINI}

where we have used the following notation:
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I° denotes the annihilator of the subspace ICE in E'.
Is={y=x—o,x|xeE,geG}

I,=E-(Ey+E)=spectral ideal

I, =E-L,-E=locality ideal
E;={xeE,|suppXCX°=R*2}

%=Fourier transform of x; X a closed subset of the forward lightcone V,,
0eX;

xxY ={X(0)y g, X5V 1, o0y X5V, .}

(xxy,) (& oo &)= x(a)yn({1 —a,..., ¢ —ayd*a

R4

Ly={x;®x,—x,®@x,€E,|x;eE;, suppx, and suppx, are spacelike
separated}.

In this section we want to discuss the problem of constructing m.c.l. extensions
T of a given T, € E{,5,n1° which have the further property that they vanish on
I=1I;0I;UI, e.g we are looking for extensions in E', ;nI°. Now the additional
constraint for an extension TeE’, ; to vanish on I is rather strong so that in
general it is very hard to do the construction of such an extension. Therefore we
suggest the following strategy (compare Section 2 of I):

1) Construct first minimal extensions which are G-covariant and satisfy the
spectral condition.

2) Then, if necessary construct local extension of the minimal extensions of
Step 1 in a way that respects G-covariance and spectral conditions.

Remark. (a) The example of the generalized free field as discussed in I shows that
this construction procedure for extensions in E’, ;nI° works in principle.
(b) As we will see in a moment Step 1 is not too hard.
(c) We will isolate the cases in which Step 1
(i) already yields an extension in E, ;nI°
(i) only yields an extension in E, ; nIgNIY, which is not local.
At the moment we do not know to do Step 2 explicitly in the general case.
(d) In particular we will show that for a certain class of functionals
T,x € E{,5,n1° there are only two possibilities :
(i) 1,5, has no m.cl. extension at all,
(ii) 7Tj,y, has an extension in E', ;NI°.

To start we analyze the consequences of the additional constraint Tj,y,€ E, 5, 1°:
Monotonicity 7,y,=0 implies the canonical pre-Hilbertspace realization

Toomy(x* - 1) =L Pw)(X), D))y X, YEEq,
Ay 1yX)Pw () =P(x-y) YxEE, VyeEy_,

of T,,y, according to [Theorem 2.1a, I and Proposition 2.3a, I]. If we assume in
addition that T, , satisfies the linear constraints of QFT we get
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Proposition 3.1. Suppose T,y ={1, Ty, T, ... T,5} € E{,, satisfies monotonicity :
Tom EemnE, 20 (3.1)
and the linear constraints of QF T:
Tiom€ Eonyn1°. (3.2)

Then in addition to the statement of [ Proposition 2.3a, I] we have

(a) There exists a strongly continuous representation U= U
operators on Ay, = Vy such that

(D) U@)Pw(X)=Pw(®,X) VgeG VxeEy,.

(il) U@ An-1 )U@G) ' =An-_1)(x,) on Vy_, VxeE, VgeG.

(iii) The self-adjoint generator P =Py, of the space-time translation group in this
representation has its spectrum o(P) contained in X.

(b) If Nz=3 and if x,®x,—x,®x,€L, then

[A(N— 1)(x1)7 A(N— 1)(x2)] Mn- 3 =0

(c) If in addition the inequality

1Tom(* - XN = v+ 1)) Tow) (X x)? (3.3)
VX€Ew_1y YVEEN+1) du+1) Some continuous seminorm on E.,, holds the
symmetric linear extension Ay, :E,—~>L(Vy_,,Vy) of Ay_, according to
[Proposition 2.3b, I] satisfies

() U@Aw(x)U(G) "= A (x,) on Vy_, VxcE, VgeG

(i) [A(N)(xl)’ A(N)(xz)] FVN_2=0, if Nz2 and

X, ®x,—x,®x,€L,.

Proof. (a) The assumption ﬂzw)EEézmﬁIg easily implies that U(g) defined on
Vy =((D(N)(E(N))a <oy '>(N)) by
U(g)(p(zv)()_c): = gI)(N)(%)_C) VxeEny,

is a unitary operator on the pre-Hilbertspace V, which satisfies (a) (ii). The
remaining part then follows by standard arguments. The equation

Pw)(¥ 1), X(P)YP iy (y2)D vy = Tiom) (VT - (X)) Vy;€Eqyy VX€EE,
shows that T,y € E{,y,NI3 implies (a) (iii).

(b) If N=3 we have for all yeEy_,, all xeEy, and all x;eE,:

<(D(N)(3_C), [A(N - 1)(x1), An- 1)(x2)] (p(N)Q’»(N)

= (2N)(>_C* (X ®xy —X,®x4)"Y).

Therefore b) follows from T(,y € E{,,N17.
(c) If the additional continuity property (3.3) holds Proposition 2.3b of [I]
applies and the properties of the extension Ay,:E; —L(Vy_,, Vy) follow as above.

of G by unitary

TNy

By Theorem 2.4 we know which possibilities can occur for a given Tj,y € E(s )
T,5 20. In order to distinguish the case where we need the additional continuity
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property (3.3) and where not, we do the further distinction

(B, 4,+#0, 0=n<N-1, Ay=0
(B,) 4,+0, 0<n<M, Me{l,...N=2}, A%=0, M+1<usN.

By Proposition 2.1 the Hilbertspace #y, has the following structure
Ho)§H ) SHon =K

in Case B, and Case B,. Therefore Proposition 3.1 tells us that 4 y_,, is densely
defined in #y, in Case B,. If in addition to (3.1) and (3.2) inequality (3.3) holds we
know to construct Ay, :E; —~L(Vy_,, Vy) which is then densely defined in #7y, in
Case B,. That is in Case B, and Case B, the problem of extending A4 _;,
respectively Ay, to a proper subspace of #(y, disappears. This allows to prove:

Theorem 3.2. A functional T,y € E(,y, which satisfies (3.1), (3.2) and in addition

(@) (B,) and (33) or
(B) B,

has at most one m.c.l. extension TeE', ;; and in case of existence of such an
extension this is a minimal extension which satisfies the linear constraints of QFT:
TeE, nI°

’

Proof. a) The first statement is just Theorem 2.4(B). Suppose T€E', , is an
extension of 7,y,. By Corollary 2.5 we know that T is a minimal extension of 7, y,
which is uniquely determined by T/, ;) M <N — 1. Thus we may assume that T
has a pre-Hilbertspace realization T(x-y)=<®(x), ®(y))> such that @I Ey =Py,

CH oMy = om (3.4)
where Vy=(®y(Ew),{*," D) is the canonical pre-Hilbertspace realization of

T n)
(2N)
b) First we prove G-invariance: We proceed by induction using the notation

of Section 2

Ty 10505y - @ Xpg 1)) =< Poy - (%X an—p1)s Ppg 1 1(Xar 1))

= <¢2N—M(0‘gsz—M>» Oy P+ 1(0‘gxM+ W

21 {Dyy- M(O‘gsz —M) U(g)@(M)(h{M))>< U(Q)¢(M)(£’{M))» Ppriq ((xgxM )

J

7;2N)(ch(x>2kN -u® b{M))ﬂzzN)(%(b{ﬁ) ® Xpr41)

s

j=1

s

Tom(X3n-u® h(JM))’Ezzv)(b{AﬂZ) @ Xpr41)= Doy s 1 (XN @ Xpp 4 1)
1

Jj

By linearity and continuity of T,y., and of «, the invariance of T,y , follows.
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Assume that all Ty, ,, I Spu<m are G-invariant. Then we get for Thy,,,
TN 1(0<g(xzzv+m—M Q@ Xp41))= <¢2N+m—M(%X§N+m—M)v Dy 1(%XM+ )

= Z {Pynsm- M(%X% e M) (p(hl)((xgh{M))><(D(N[)(O(gh{M))> Dyt 1(0‘gXM .y
=

8

=2 Tion 4 my) (%X s m—nr” h{M)))T(zN)(O‘g(llf% Xpr+1)
i=1

= Z ’1?2N+n1)(X2N+rn—M'b{M))TZZN)(}—l(j;(I)'XM+1)
j=1
=Toneme 1 onemn @Xpre1)  VX,€E,, v=M+12N+m—-M.

As above G-invariance of T,y ., ., follows and thus

TeE, \nI¢.

¢) Proof of the spectral condition: Because of the G-invariance of Te E', | the
Hilbertspace #7; of the canonical pre-Hilbertspace realization of T carries a
strongly continuous unitary representation U, of G. But T being a minimal
extension of Tj,y, we know that the canonical isometry J : 7y, — #7 is a unitary
map onto #7. Therefore U, (g)=JU(g)J ' and thus T satisfies the spectral
condition because U=U,, does according to Proposition 3.1a (iii).

d) Proof of locality: In case () of our assumptions we know that A ,(x) is

N-1
densely defined on @N:di(m(@ E?"), Ay, according to Proposition 3.1c. To
n=0

prove locality of T we use the fact that T is a minimal extension of T, y,, e.g. T'is
defined in terms of a linear function 4: E, —»L(Z,, 2 ,) such that
i) ZyEZ,
(i) A)*1 2,=AKx*) " 2,
(i) AC) T Zy=A, ()T Zy.
This follows from Proposition 2.5 of [1]. Locality of 7, y, implies (M =N —1):
CAw(X)Pan(¥ 1) APy Dy VY€ Ew
={AnX5)Pon (1) Am(X )PV Dy VX @ X, =X, ®x,€L,.
Properties (i), (ii), (ii1) above therefore imply
LA, AT Zy=0 VX, @x,—x,@x,€L,.

Then we use symmetry of A again. For all peZ,, all pe%, and all x, ®x,
—Xx,®x,eL, we get:

<o, [A(x ), A(x,) ) =< LA(xF), A(xT) ], p) =0
thus

LA, AT 7,=0 VX, ®x, =X, ®x€L,.

In Case B, we know that already Ay _,(x) is densely defined on Zy_,
N-2

=<D(N)( ) E?"); therefore we can proceed as above to prove locality. Thus in
n=0

both cases TeE', ; N 1}.



Vacuum Expectation Values. 11 179

Remarks. (a) The essential idea of the proof of Theorem 3.2 is contained in
Corollary 2.6 of [1]. Indeed the ideas used in the proof of Theorem 2.7 of [1]
could be used to give another proof of Theorem 3.2.

(b) In Case A of Theorem 2.4 where one expects more than one m.c.l. extension
to exist under appropriate assumptions it is much harder to find conditions which
imply the existence of an extension in E', ; nI°. In particular, one wants to isolate
conditions on Tj,y,€E,y,N1°% T,y =0 which ensure that in Case A there is at
most one extension in E', ;N I°

(c) Theorem 3.2 answers the question whether it is possible to characterize a
relativistic quantum field theory in terms of finitely many vacuum expectation
values or not.

Theorem 3.2 says that in principle it is possible.

4. Applications to the Extension Problem for T, ={1, T;, T,, T;, T,}

In this section we want to discuss the problem of monotone continuous linear
extension for particular cases of a given functional

T, ={1,0,T,, Ty, T,} € E,, such that T, 1E,nE, =0. (4.1)

We restrict our discussion to the case of Tj,, because

(i) most of the new problems (compared to the extension problem for 7 ,))
appear already in this case (compare Theorem 2.4 and the discussion at the end of
Section 3 of I)

(i) we think that for applications to QFT, in particular in connection with the
construction of nontrivial models for QFT knowing a fairly complete answer to
this extension problem would be of some importance.

The assumption T; =0 is no restriction. If we know how to treat the case (4.1)
we also know how to treat the case

S(4):{1’S1’SZ’S3’S4}EEE4)$ S(4)20, SI:*:O (41’)

Denoting t,,={1,5,,57?% 83, SP*} and using the ®-product of [2] we can solve
the equations (i4,® 1)), =S, n=1,2,3,4 for T, to get

T(4)={1,0,52~S?2,S3—S?3—S1 ®(52“S§M)s 54‘“5?4_5?2@(52”5?2)
+Sl®(S3~S§3—SI@(SZ—S?Z))}.

Thus if TeE’, , is a mcl extension of this T, then t®TekE, |,
1={1,5,,8%% SP?,..}eE . is a mcl extension of S, =(t® T),, Note that
according to Corollary 2.6 this teE’, | is the unique m.cl extension of
(1.5,,592).

At first we investigate the canonical pre-Hilbertspace realization of Ty, in more
detail. This prepares all further considerations.

Proposition 4.1. If T, € E{,, satisfies (4.1) the canonical pre-Hilbertspace realization
V,=(P,(E), (. ) of Ty, according to Theorem 2.1 and Proposition 2.3 of [1]
has the following structure :

a) Structure of the Hilbertspace :
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The completion A, = V, of V, has an orthogonal decomposition
Hiay=H @A DH,

which results from a natural orthogonal decomposition of @, =®,+ @, + P,
Hy=CP, D,=D,|(1) H,=o,(E,)=closure in v,

Q;=orthogonal projection of H#,, onto I, j=0,1
DU x)=D,(X)— Qo P,(x) — Q,D,(x) =D, (x) — T,(x)®, — P3(x) all xeE,

H,=®*(E,)=closure in V,,
b) Realization by linear operators :
o) There are linear functions A;;:E,— L (A, H)) (ij)=(01), (10) welldefined by

A (X)Py=,(x)  Ag;(X)¥,=(D;(x*),¥,>,P,

for all xeE,, all ¥,e#, such that
(@) 1 4;000)ll;0=¢,(x)=T,(x*®x)"/?
(i) | 4o (o1 =41 (x*)
(i) A,y (0)*=A4,,(x*)
(iv) T(x®y)=<A4;0(x*)Pp, A; () Pp>; =P, Ap1(X)A;0(¥)P0) 4
forall x,y in E,. 5
B) There is a linear function A, :E,—L(®,(E,), #,) welldefined byA, ,(x)®,(y)
=P} (x®y)=0,D,(x®y) all x,yeE,, such that
(i) ¢3(x®y)=4,,(x)®,(y)||, is a continuous seminorm on E®?
(i) A, ()P (E,)=A,,(x*)D,(E,)
(i) Ty(x@Y®2) = (A, (¥ Py, Ay, (1A, (P,
={Py, Ao1(x)A; 1 (VA 0(2)Po >,
_ =CA; 1 (VA o(x*) P, 41 4(2)Pg) 4
for all x,y,zeE,.

c) Structure of the four-point-functional :

T,=T2+ T} + T} with the definitions TP=T,QT,

T} (x; @x,@X3®x4) = Ay 1 (x5) A, (xF) Py, Ay 1 (X3)A1 o(X,)Po>, all x;€E,
THz@w)={P*(z*), d*(W)y, all z,weE,.

d) Uniqueness of m.c.l. extension:

There is at most one m.c.l. extension if T} =0, e.g. if ®*=0.
Proof. a) T, =0 implies &, L @, (E,), therefore #, L#,. By definition of ¢} i=1,2
D,(2) = T,(2)P, D P}(2) D P*(2) for all ze E, and thus #, LA, j=0, 1.

b) o) Clearly for all xeE; A,,(x) and A,,(x) are welldefined linear operators
as indicated and in addition x— A4, (x), A,,(x) are linear functions. Furthermore

410G 10 =sup{llA1o(¥)¥oll1swo€Ho, [Wollo=1} =q,(x)
401 (X)los =sup {|[<P(x*), ¥, D | ¥ e, [| ¥y ], =13 =4, (x%).
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By definition of the adjoint for operators with respect to different spaces the
symmetry relation A,,(x)*=A4,,(x*) is immediate as well as the relations
expressing T, in terms of A,, and A4,;.

B) Assume @,(y)=0, yeE,, then because of the consistency relations for @ ,,

125 @), =sup{[KP,(2), P3(x®@)1];2€ Ey, ,(2) =1} =0.
Thus A,,(x) is a welldefined linear operator @,(E,)—#, and

[4;1(x)@, ) §(T22((X®J’)*®X®J’))l/2 >

therefore g} is a continuous seminorm on E®?. The symmetry relation T3 =T,
easily yields A, ;(x)*1 ®,(E,)=A4,,(x*)}®,(E,) and thus the relations expressing T,
in terms of 4,,, A,,, and A, ;.

c) The orthogonal decomposition of &, according to part a) and the
definitions above easily yield the decomposition of T, as indicated.

d) This is implied by Corollary 2.6.

The previous results are applied to the following special cases of T, € Ey,:

(@) Tyy=1{1,0,T,,T;,T,} 4,=0 (Theorem 4.2)

(b) T5,={1,0,T,, T3} (Corollary 4.3-4.5)

(c) T4y={1,0,7,,0,T,} A4,%0 (Proposition 4.6, Theorem 4.7, Corollary
4.8-4.9)

In Part I the case of a given T;,)= {1, T;, T, } has been treated (completely with
respect to m.c.l. extensions); thus by Theorem 2.4 the only missing possibility of a
given Ty € Ejy,, N <4, is the case

(d) Tyy={1,0,T,, T3, T,} T5+0 and 4,30.

By the following discussion we will see why Case (d) causes additional technical
difficulties concerning domain questions of the associated operators (compare
remark b) of Section 5).

Case (c) is the simplest example (different from 7,) where one expects more
than one m.c.l. extension to exist. Case (b) is an example where one fixes a minimal
extension (here of 7,)={1,0, T,}) by fixing the next possible n-point-functional.
This illustrates Corollary 2.6 and Theorem 2.7 of I. After all Case (a) represents a
nontrivial example of a functional which has at most one m.c.l. extension and thus
illustrates Theorem 2.4 and Theorem 3.2.

If we assume in addition to (4.1) that
4,=0 eg T}=0 4.2)
holds we know that there is at most one m.c.l. extension of Ty, and there is a m.c.l
extension if and only if 4 ,,:E, ~L(V}, V)
0 Ay(x)
A (x): ( 01
W Agolx)  Aq(x)
as specified according to Proposition 4.1 has a symmetric linear extension
A:E,—~IL(2,,92,) which has the properties listed in Proposition 2.5 of I. The

properties of 4,,(x) and A, ,(x) as specified in Proposition 4.1 imply that this is the
case if and only if 4,,:E,—»L(®,(E,), ;) has a symmetric linear extension

) xeE, (4.3)
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A E\~>L(Z3,,P;3,), ?,(E))CP;,, and this in turn can be expressed by a
corresponding chain of inequalities (K, ,) for T; (Theorem 2.7 of I). These
inequalities read in this case

> { » (Z ( » T3<y::<®y::1®hvn_JTa(htn_l@y:.k_z@hvn_z))

Jj=1 Wvi=1 \vy=1 Vp-1=1

~-T3(h:‘;®yi“®hvl)) T3<h;i®x®h,-)}'{ » T3<h;=®x1®h,“)( S Tk ®x,®h,)
1

=1 Ha2=

( Y Lk ®x, ,Qh, )Th ®x, ®xm))...)}‘

Um-2=1
épn(yl®"‘®yn)pm+l(x®x1®"'®xm) (44)

for all x,x,y,cE, and m=n—1,n and n=2,3,..., where {®,(h)}jen 1s an
orthonormal basis of #, and p,; n=2,3,... are continuous seminorms on E®"
such that p,(z)=q3(z)=(T}(z*®z))"/? for z€E,.

This essentially leads to

Theorem 4.2. If T, €E ,, satisfies (4.1) and (4.2) then

a) Ty, has exactly one monotone continuous linear extension Te E', , if and only
if the inequalities (4.4) hold with the specification given above.

b) If Ty, satisfies (4.1), (4.2) and (4.4) the structure of the n-point-functional T, of
the m.c.l. extension is as follows :

T,(6,®...0x,) =T, (x; ®x))T, ,(x;®...®x,)
+ T ®@%,@%3) T, 5(x4®...®x,)
Fo+ T (x5, ®%,... ®X,_ ) Th(x,_ ; ®X,)
+THx, ®...QXx,) 4.5)
where
T,=T, T;=T, and for n=4
T;ll(x1®"'®xn):<¢09A01(x1)211(x2)'"‘le(xn—l)AIO(xn)¢0>1

for all x;eE;.

Proof. Assume first that all vectors

/I(xl)...z(xn)gpo:(wf(x1®...®xn)> (9%

=
01x,®..0x,) © %ﬂ) @
are welldefined in 7, = #,,® ;. Because of (4.3) we get the following recursion
relations for the components ¢/, j=0,1 in #, and #, of these vectors:
P01 1(X ® ... ®%, 1 )= Ag1 (%) (X, ® .. ®X, 1 1)
Ot 1(x1®,,,®x"+1)=A10(x1)q0,?(x2®...®xn+ 1)
+ A ()P (0, ® .. ® X,11) (4.6)
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By induction on n it follows for all n=3:
a1 ®...@x,) =P (x )T, 1 (x,@...®X,) + Ay (x)P;(x,) T, ,(x3®...®x,)
+.. +‘Zll(xl)"‘All(xn'—?:)djl(xn—z)’TZ(xn—1®xn)
A0 Ay (x, )P (x,). 4.7)

The special structure of Equation (4.6) and (4.7) (precisely the fact that in ¢, there
is only one term of highest possible degree in Au(x ) implies: A4 ,,:E, ~L(V}, Vz)
has a symmetric linear extension A4:E,—IL(2,,%,) which satlsfles (i)-(@v) of
Proposition 2.5 of I if and only if

Ay E - L(®(EY), )
has a symmetric linear extension
Ay E\-LP; ,9;5,), P(E)CP;,,,

with corresponding properties.
Thus by Theorem 2.71 and Theorem 2.4 (B) part a) follows. Then Equation
(4.5) is an easy consequence of (4.6) and (4.7). This proves b).

Corollary 4.3. Suppose T3, ={1,0, T,, Ty} € E(3, satisfies

(i) T,(xf®x,)=0 all x,€E,, T,%0,

(i) T¥=T,,

(i) [T @x ) S(T(F@x,)2,(x,) all x,eE;, j=1,2
q, some continuous seminorm on E,.

a) If T, satisfies in addition the inequalities (4.4) with p,=q, then T, has
exactly one minimal extension whose 3-point-functional is T.

b) The 4-point-functional T, of any m.c.l. extension of T, satisfies

T (25 ®2,) = |Ty(z,)]* = Y. Ti(z5@h)Ty(h®z,) 2 THz5®2,) 20 (4.8)
=1

for all z,eE, and all {h;}; CE, such that T, (h*®h‘):

Proof. By assumption (i) 7(,y={1,0, T,} is monotone on E,,. Therefore 7,, has a
canonical pre-Hilbertspace realization V; =(®,,(E ;)), <+, >(1)) and the associated
Hilbertspace me—V has the orthogonal decomposition H#{,,=#,®#, as in
Proposition 4.1. Assumption (iii) implies T;(x; ®x,)=<®,(x,), ®3(x,)>, for all
x;€E;, j=1,2 with some continuous linear function @3:E,—»#, and by
assumption (ii) we know

(D, (xy), ¢%(x2x3)>1 = <@§(x§®x1)» D,(x3)>;

for all x;eE,. This implies that a strongly continuous linear function

Ay E\—»L(®,(E,), #,) is welldefined by 4,,(x)@,(y)=P3(x®y) x,yeE,.
Furthermore there are linear functions A4;;:E, - L(#, #)) (ij)=(01) and (10)

according to Proposition 4.1; there is a linear function A4 ,,:E, — L(V}, 5#;,) of the

form (4.3) as in Theorem 4.2. The first statement then follows from Theorem 4.2.
Suppose TeE', , is an extension of T, Then by Corollary 2.6

A,(x,)=inf{T, — T,®T,) (x5 ®@x,) — | T5(xF ®x2)|2 T(xf®x,)=1}20
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and T is uniquely determined by 7, if and only if 4,=0. But
A5(x)=(T, — T,® T,) (x3 ®x,)
—sup{IT(f@x,)1* s x, € By, T(xf®x;) =13,

2]

130x,)]11 = Z P3(x5), @1(1;)>: <Dy (), P3(x,)>,

for any orthonormal system {®,(h)}; in @,(E,) and all x,eE,; therefore by
definition of T} according to Proposmon 4.1 the mequahtles (4.8) result; and the
first mequahty becomes an equality iff {@,(h))} ;. is an orthonormal basis of 7.

Remark. (a) The conditions on T, expressed by inequalities (4.4) which are
necessary and sufficient for the existence of a m.c.l. extension of Tj,, are essentially
no help in testing a given functional. But these conditions give hints for the
construction of the most general two, three- and four-point-functionals which
have at least minimal extensions and thus hopefully a lot of other extensions.

(b) In particular these conditions lead to some classes of more convenient
conditions for the existence of (minimal) m.c.l. extensions. We discuss the simplest
cases, but it is clear that they should work more general.

Corollary 4.4. Suppose T3, ={1,0, T,, T, } € E(3, satisfies
(i) T,#0, T,(x¥®x,)=0 forall x,€E,,
() TF=T,

(i) |T3(xf ®x, ®@x3)| S(TL(eF @) 2p, (x,) (T (x5 ®x3)) /2
for all x;eE; and p, some continuous seminorm on E .

Then we have

a) 1,,=1{1,0,T,} has exactly one minimal extension which is fixed by T;.

b) There are a lot of non-minimal extensions of T,,. The case which is most easily
described is the following type of extensions: Let #, and 3, be as in Corollary 4.3 ;
assume #, to be any separable Hilbertspace and assume that A;;:E,— (A, #)) are
linear functions such that

(i) A(x)*=A,(x¥),
(ii) x> A4;(x)|l;; is a continuous seminorm on E, for (ij)=(12), (21), (22)

(i) L:)O AQ)E))... A E )P, is total in Ay =H, @A\ ®H,

0 Ay,(x) 0
ApX)=[A0(x) A4;,(x) A;,(x) all xeE,. 4.9)
0 Ay (x) Ay,

Then a non-minimal m.c.l. extension of 135, is defined by
T,(x,®...0x,)={P,, A(z)(x1)' . 'A(Z)(xn)¢0>]l’(2) (4.9)

Jorall x;eE; and n=1,2,....
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Proof. Using the same notation as in Corollary 4.3 we have T,(x ® y) =<4, (x)®D,,
APy, and Ti(x*®z® y)=<A,(X)Py, A1 1(2)A1o(V)Py>, for all x,y,z€E,.
The more restrictive continuity assumption (iii) implies

sup{Kch(x), A11(Z)¢1()’)>1| ;x, yeEy, “451(3‘)” 1= @, =1}=p,(2);

thus in this case it is easy to extend A,, to give 4, : E,—L(#,, #,) such that
A, ()| Epy(x). L(#,,#,) denotes as usual the space of bounded linear
operators from the Hilbertspace s, into the Hilbertspace J,.

Therefore

0 Ay, (x)
Ay B> L (A ), Hyy) Am(x)=(A o )

10(X) /L 1(x)

defines a minimal extension of T,, which is also a m.cl. extension of 75, such that
T} =0 (Proposition 2.5, 1), thus (Corollary 2.6 of I and Proposition 4.1) it is the
minimal extension of T;,) which is fixed by Tj. This proves a).

To prove b) note that the assumptions above imply that formula (4.9) defines a
linear function A, :E,—%(H,), #,) such that A, (x)*=A4,,(x*) and
x>[|A,)(x)| is a continuous seminorm on E,. Therefore a m.c.l. functional T on E
is welldefined by (4.9"). It is clearly an extension of Tj,.

Remark. (a) It is evident how to generalize part b) of Corollary 4.4 to include the
case A, E\—~>L(D ), D;), Apy(x) not necessarily bounded in 7#,,, 2,
=H,®H, DD, a dense subspace of #,,.

(b) The most general estimate each T,e E’ has to satisfy is

IT,(x*®y®2)|=p,(x)p,(y)p3(z) forall x,y,zeE,

where p,, p,, p; are continuous seminorms on E,. If T} is symmetric, e.g. T3 =T; it
is no restriction to assume an estimate of the form

IT,(x*®@y®@2)| =p1(x)p,(n)p,(2) -

Thus we are left with three possibilities for a given 7;,={1,0, T,, T3} such (i) and
(ii) of Corollary 4.4 hold:

(@) py(x)£q,(0)=(T,(x*®x))'"

(B) p1(x)=q,(x), p; +4q; forall xeE,.

(y) p, and g, are not comparable
The first case is covered by Corollary 4.4. The second case however seems to be of
more interest for applications in QFT. But it is harder to analyze. In [3] a special
case of p, =q, and p; *(0)=q; *(0) and p, *g¢, is realized in the construction of a
relativistic quantum field with control of the dynamics. A generalization along
these lines seems to be possible.

We propose another kind of conditions on T;,, which imply the existence of the
minimal extension of Tj,, which is fixed by T; but which are more involved than
those of Corollary 4.4. The idea simply is that according to Proposition 2.5 of I we
get such an extension if 4,,(x) as specified in the proof of Corollary 4.3 maps
&,(E,) into &,(E,) for all xeE,.
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Corollary 4.5. Assume 15 € E(5) satisfies the conditions (i), (i1), (iii) of Corollary 4.3
and in addition the following estimate :

/\E \Y . /\ I0*®@x®2)| s sup IT(y, ®2z)|. (4.10)
x,yeE1 y1,...,yn€Ey zeEy ji=1,...,
vy =5(%,9)

Then T, has exactly one minimal extension which is fixed by T, and which is
characterized in terms of a continuous linear map

fH(E{®E q,)~(E q,) suchthat

T,x®y®2)=T,x®f(y®z) forall x,y,zeE, (4.11)
q, is the continuous seminorm of condition (iii) of Corollary 4.3 and q, is defined as
usual (q,(x)=(Ty(x* ®x))"'?).

Proof. We begin as in Corollary 4.3. Using the notation of the proof of Corollary
4.3 we have according to inequality (4.10):

<A1 (x*)P(y), @1(2))4] =sup{[KD,(y)), @1(2)4]: =1, ..., n}
thus () Ker ;S Kerl if we denote the linear functional on @(E))
j=1
,(2)-(B,(7), ®,(2)), by I, respectively
D,(2)=< A1 (x*)D,(y), P(2)); by L.

n

This implies [= Z a;l;, ;€ C and therefore

vk
j=1

A (90,0)= Y 50,(7) =, ( i )e@l(El)

j_

because @, (E,) is dense in #,. So we see that (4.10) characterizes the statement
Ay E,—»L(®(E)), D,(E,)).

Thus there is some function f,:E, x E; > E, such that 4,,(x)®,(y)=2,(f,(x, y)).
The linearity of A, and @, imply that f, is a bilinear function modg; *(0) and we
may assume that f; is indeed a bilinear function E,; x E; —E, and is thus given in
terms of a linear function f:E, Q E,—E,, eg A, ,(x)?,0)=2,(f(x®}y)). B
definition of the norms

4, (fx@y)=14;,(x)P,()]; £4,(x® )
the continuity properties of f follow. The relation
Lx®y®z)= (P (x*), 4, 1(0)P,(2)

implies (4.11). Therefore there is a linear function A4,,:E,—~L(V;, V}) such that
A(1)(x)* PVi=A,(x*) 1V, and p,(x; ® ... ®xn)=“A(l)(x1)"' A(l)(xn)qjolléf’(” are
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continuous seminorms on E§". This function 4, 1) yields the minimal extension of
T;,, which is fixed by T;.

The content of the second part of this section is a discussion of the extension
problem in Case A of Theorem 2.4. So we try to construct m.c.l. extensions of

T4y={1,0,T,,0, T, }e E4, such that
0=sDOT®xy),  Th(x3®x,)20 forall xiek;, j=1,2 (4.12)
TZ:FO’ T22:T4—T2®T2=‘=0.

Corollary 2.6 implies Ty, I Ey,ynE, 20 and 4,+0. Our main interest will be to
construct first minimal extensions.

By Proposition 4.1 it is evident that in the case 4,+0 we should take into
account a further condition on T, which is obviously necessary for the existence
of at least one m.cl extension; in this case this condition reads (compare
Proposition 2.3b) of I)

T, (xF @ X3)| = (T, (xF @ x,)) 25 (x;) (4.13)

for all x;eE;, j=1,3; q5 some continuous seminorm on E,. An easy consequence
of (4.13) is that

q3(x3)=sup{|TX(x* @ x;); xe E,, q,(x)=1} (4.14)

defines a continuous seminorm on E;, where according to Proposition (4.1)
T}=T,,=T,— T,® T, and consequently

[TE(xF @ X, ® x5 ® x,)| £q,(x,)q5(x, @ x5 @ x,)+ q,(x)q,(x2)q, (x5)g,(x,)
and thus (4.14). This allows to go beyond the results of Proposition 4.1 to get

Proposition 4.6. Suppose T4 € E(, satisfies (4.12) and (4.13). Then in addition to the
results of Proposition 4.1 the following holds :

(a) 4,,=0, eg. T} =0

(b) There are linear functions

Ayy B > L(D(E,), 9*(E; ® E,))
and
Ay, E = L@HE,), #))
welldefined by
A (0D, =P (x®),  Ap(x) [ PHEY) = Ay, (x*)* I *(E,)
such that for all x;eE,
TE(x, ® ... @x4)=C A5, (x3)D,(xT), A5, (x3)P (x4),
={ P, (x}), A1, (x5) A5, (x3)P, (x4))1
= A, () A5, (x)P (xT), P1(x4)D1
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and for all x,yeE, and all zeE,

[4,,()P,(M,=0:(x®Y),  [4,,(x)P*2)] =45(x®2).
Proof. By Definition (4.14) | T} (x¥ ® x5)| £q,(x)q5(x3), x,€E;, j=1,3. Therefore
there is a linear function

DL E,—> A, suchthat TE(x, ® x3)=<P,(x¥), Pi(x3); .
T,,(x¥ ®x,)=0 for all x,eE, implies T3, =T,,. Thus we get by Proposition 4.1
for all x;eE,

<@1(X1), @;(xz ® X3 ®x4)>1 = <@2(Xf ®x1)> ‘pz(x3®x4)>2

=<<P§(x’3"®x§®x1), ¢1(x4)>1 . (4.15)
Then it is immediate that (x,yeE,, zeE,)
A1 ()2, ()=P*(x®Y), A,()P*(2)=P3(x®z) (4.16)

are welldefined and have the properties claimed in Proposition 4.6.

Proposition 4.6 shows in particular that T, is realized in terms of any linear
function A, : E; = L(D ), H#3);

9(2)=*}fo@dj1(E1)<‘B@29 gzgq)Z(Ez)
of the form

0 Ay (x) 0
A(z)(x)= Aqo(x) 0 A;,(x) (4.17)
0 Ay (%) Ajy(x)
where A4,, is any linear function E, —L(Z,, /).

In order to get a minimal extension of T, a linear function 4,, :E,— (D ,, #,)
has to be specified such that the resulting A, :E,—L(Z,),#,) has
a symmetric linear extension A<2) E,>L(%;5,,Z3,) which satisfies (i}-(iv)
of Proposition 2.5 in I. Here we propose to discuss the case A,,=0. This has the
advantage that we can apply Theorem 2.7 of I directly to get necessary and

sufficient conditions on Ty, alone to have minimal extensions in terms of a linear
function A(Z) E\—»L(P;,,%5,) of the form

) 0 Ay, (x) _ 0
Apy)x)= | A;(x) ) 0 A ,(x)]. (4.18)
0 A, (x) 0
By Proposition 4.6 the operators A,,(x) and A ,(x) in (4.18) have the same
properties as those in (4.3). Therefore we proceed similar. Suppose first that all
vectors A(z)(xl) (2)(" )@, x;€ E;, ne N are welldefined in J#,,. The orthogonal
decomposition of Hpy=H, 6—)% @ A, yields
_ qog(xl@"'@xn)
Ag)xy) .. Ag(x)Po= | 02(x, ® ... ® X,) | (4.19)
q)r%(xl ® ®xn)
The components ¢/ of these vectors satisfy the following recursion relations
Pri 1 (X ® . ® X, )= A0 (X )P (X, ® ... ®X, 1 1)
P11 ® ... ®X, 1 =400, @ ... ®@X, 4 1)+ A1), ® .. ®%X,41)
P2 (X1 ® . @i )= Ao (X)OM X, ® . ®X. ) (4.20)
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and thus by induction on n
Dot (X1 ® o @ Xz s )= A1 (x) A1 () oo A (%2,)P (X511
A6 A1 (%5) o Ay (X2 - )P 1 (X — ) T5(X5, @ X1 1)+ -
+&,(x)T,(x,® ... ®X,,4+4) all x,€E;, n=0,12 ... (4.21)

(pgn+1=(p§n+1=(/)én=0 n=0,1,2,...
P21 ® .. ®X3,)=A01 (X )03, 1 (X, ® ... ® %) 421"
(pgn(xl ®... ®x2n)=A21(X1)(P;n—1(xz® e ®X2,) -

These equations show: If 4 ,, has a symmetric linear extension of the form (4.18)
which satisfies (i)—(iv) of Proposition 2.5,1 then

A:E, > L(®,(E,)® D*(E,), #,® H,)

0 A ,(x)
a=( gy M8
has a symmetric linear extension A4 :E,— L(Zz, @) such that (i)~(iv) of Proposition
2.5, 1 hold with obvious modifications and @,(E,)® P*E, QE,)S Z;CH, D K.
Conversely if such a function A exists the Equations (4.21) and (4.21)
imply the existence of a function ,71(2) E\—>L(Z5,,9;,) and this function Z(z)
then satisfies the conditions (i)—(iv) as above. By [Theorem 2.7,I] such a
symmetric linear function A4 exists if and only if the following chains of inequalities
hold which result from the inequalities (K,,) of [Theorem 2.7, I] by inserting an
orthonormal basis {®, (h})},. of #), and an orthonormal basis {®*(h})} . of #,

Z{Z (( Y T2k @@V ®h, )

j=1 =1 Vop-1=1

-Tf(hi;_1®yz*,,_z®h32n-2>)...)

-Tf(hff@y;“®hil)Tf(h§1*®X*®hf)}

{ » Tf(hf*@x@h;l)( S T @x,08).

n1=1 ur=1

( > Tf(hi;_2®x2n_ 1 ®hy,, JTHE  ®X,®x,,., ®x2n+2)>"'>H

Han-1=1
SPos 11 @ ®Yapi P20 s (X*®X ®...X5,45), n=0,1,2,... (4.22a)
LI (2 2 mosern o e, )
J= vi= V2= Van-2=

T @55 @, ).
‘Tf(hvlz*®J)’f®hfl)Tf(hfl®x*®h})}

{ > T:(h}*®xl®hi1)< > T42(h31*®x2®h;2)---

n1=1 u2=1

( > Tf(h;;’:_z(@x%_ 1 ®h52n_ TG ®xX,,®%,,, 1)))}'

Hon-1=1
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S0 ® - @Y )P0+ 2, (XF®X ®... @5, 41), n=1,2,3,... (4.22Db)

for all x,x;,y;eE;; p, are continuous seminorms on E®" such that P;=4;
j=1,2,3; g; are the seminorms of Proposition 4.6.

As in the previous case the meaning of these inequalities (4.22) is that the
extension

- 0 A (x))
Alx)= | - 12
&) <A21(X) 0
is determined by the matrix-representation of

_ 0 Ay,(x)
Ab)= <A21(x) é )

with respect to an orthonormal basis of #; @, in the domain of A(x).
To summarize we formulate the analogue of Theorem 4.2:

Theorem 4.7. a) If T4y ={1,0, T,,0, T, }€ E', , satisfies (4.12) and (4.13) then T, has
a minimal extension TeE', | which is determined by 1.4, in the sense that all the
functionals T,,n=5, can be calculated in terms of a matrix-representation of A,(x),
Equation (4. 18) if and only if all the inequalities (4.22) hold.

b) If T, satisfies (4.12), (4.13), (4.22) the structure of the n-point-functionals T,
of the minimal extension which is determined by T, is as follows:

=T, T,,;,=0 n=0,1,2...
n+1

Lp+ny= 'Zl T22j®T2(n+1—j) n=12,... (4.23)
=
Tzzj(x1®~--®xzj)=<‘p (x1), A12(X2) 21("3) B (X301
all x;eE, and j=2,3,....

Proof. Part a) has been proven above. The Equations (4.21) and (4.21") then imply
the relations (4.23) and thus b) is proven.

Concerning the usefulness of the conditions (4.22) the same remarks as those
following Theorem 4.2 apply. Therefore we proceed similar and discuss the
corresponding cases of sufficient conditions on Ty, to have m.c.l. extensions.

Corollary 4.8. If 1,,={1,0,T,,0, T,} satisfies (4.12) and
IT206, ®@x, @3 ®x )| Sq; (x)p 1 (X,)p (X3)q(x,)  all x,€E, (4.24)

where p, is some continuous seminorm on E | and q,(x)=(T,(x*®x))'/?, then T4, has
a minimal extension which is determined by 1., in terms of the bounded linear
operators

0 Ay, (x)

A(2)(X): Ajo(x) 0 A;,(x)
0 A, (x) 0

141200 12 S (py (x*)p ()2
421321 = (P, (x*)p, (x))1/?

according to Proposition 4.6.
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T4, has a lot of non minimal extensions. Those which are most easily described
can be specified in terms of some linear function

Ay E _)j(// 3y // ) c;ﬁs)zf}fo®=9f1®f}fé@yf3

Ay is any separable Hilbertspace and for all xe E,

0 Ay, (x) 0 0

A o(x) 0 A, 5(x) 0
0 Ay (x) Ayy(x) Ays(x)
0 0 Ay,(x)  Aj;(x)

(4.25)

Ay Ey = LA, ) are such that A;(x)* = A;(x*) and x| A (x)]|;;, i,je (2,3} are

l}’

@ .
continuous seminorms on E | and such that 3,0 U 3 E 3 E Py, is total in
Hiz)

Proof. One has to start with Proposition 4.6 and then to proceed essentially in the
same way as in the proof of Corollary 4.4.

Remark. (a) An immediate translation of remark (a) following Corollary 4.4
applies.

(b) By definition of the topology on E,, each T7eE,, T2*=T?, admits an
estimate

|T (X, ®x,@x3x)| = p(xT)o(x,)0,(x3)p,(x,) all X‘,'EEx-

py and ¢, are continuous seminorms on E,. That is for a given T,
={1,0,7,,0, ,®T, + 17} e E,, such that (4. 12) holds there are only three
possibilities:

() py(0)=4,(0) =(Ty(x*@x))!2

B pi(x)2q,(x),  p,*q, forall xekE,.

(y) p, and g, are not comparable
Again the first case is covered by Corollary 4.8. Concerning the second possibility
remark (b) following Corollary 4.4 applies.

The analogue of Corollary 4.5 is
Corollary 4.9. If T, e E,, satisfies (4.12), (4.13) and the following estimate

A VA TTEE®.@x)s sup [T0,@x,) (4.26)

xjeky yi.ooovmel) xqeky j=1l....,n
j=1,2.3 y;= )ml)

then T, has a minimal extension which is determined by T, and this extension is
characterized in terms of a continuous linear function f (E, ®E,, q;)—(E,,q,), q; as
in (4.14), such that

THx®y®2)=T,(x®f(y®z) forall x,yeE,, zeE,. (4.27)
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Proof. According to Proposition 4.6 T, is realized in terms of 4,,, 4,, and
A, E,—>L(®,(E,),®*(E,®E,)) and A,,:E,—»L(®*E,), #,). And inequality
(4.26) characterizes the fact that

A, E, > L@YE,®E,),®,(E))).

Indeed by (4.26) we know

<AL OHP*(F@xF), @, (x> = {Slup )K®1(Yj)>‘p1(x4)>1|

and thus

J

AP (FRxT) =D, ( O‘;',‘71'>'5(131(E1)~
=1
Then we can proceed as in the proof of Corollary 4.5 and the minimal
extension of T, results from the fact that the range of A ,(E,) is contained in the
domain of A4, ,(E,) such that the formulae (4.23) apply to define this minimal
extension.

5. Conclusions and Further Problems

a) The problem of uniqueness of extensions of T,y € E,y, in E’, | has been solved
(Theorem 2.4). But the associated Hilbertspace has not the structure one expects in
general in QFT (Proposition 2.1, Case B). For instance Fock-space has a structure
which corresponds to case A of Proposition 2.1 and in this case one expects to
have more than one extension in E’, , (Theorem 2.4A). Therefore in Case A the
problem of uniqueness of extensions in E', ,nI° arises.

b) It has been shown that the concept of minimal extensions leads to necessary
and sufficient conditions on Ty, for the existence of (at least a minimal) an
extension in E’, | (Theorem 2.7 of I, Theorem 4.2, Theorem 4.7) and in a
favourable situation it thus allows to construct many extensions in E’, ; and in
special cases in E', ;n1°. The problem which is still open is the question whether
each extension in £, , (or at least each extension in E’, | nI°) can be constructed
via minimal extensions or not. This corresponds roughly to the problem whether
each “field” A:E, - L(Z,, Z,) has a representation as a Jacobi-matrix or not.

¢) The discussion of extensions in E, | of T, supports to distinguish several
types of extensions (extensions of 7T;,y, which are in some sense “generated by
T,5," and which are not) besides the minimal and non minimal extensions. One
would like to have a precise definition of these notions.

d) We have shown that it is possible to characterize a relativistic QFT in terms
of finitely many VEV’s. Collecting the various results we obtain in particular:
Theorem. Each T, ={1.0,T,, T;, T,} € E{4, such that

(1) T(4) rE(4)(\‘E+ ..Z_O >
(i) T,=+0,

(iii) 4T =0,

(iv) T4 e EE‘,')ﬂlo,

(V) T, satisfies any of the sufficient conditions for the existence of a m.c.l.
extension as discussed in Section 4
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characterizes exactly one relativistic QFT (For definiteness we assume here
E,=%(R%)).

Appendix

This appendix contains a proof of Equation (2.7). Using the notation of Section 2
we want to show:
If4,%0, j=1,...,n, then for all x,, , €E,,

inf{én+1(® (g)s - %) Q@4 1 (X, 41)): (Xgs X1, -, X, )ES, } =0

If @, =@, (h],) S D, (E,), je Nis any orthonormal basis of #,, then

Q)
”Q ¢n+1(xn+l ||2 Z |<(Pj> n+1(xn+1)>l2
j=1
Thus given x,,,€E,,, and ¢>0 there is me N such that

o0

Z <@ @1 (X, DI <e

j=m+1

S, spans #, ; therefore we may define

Fo={x€S,: [{Polxo), - 2, (x )} =[{0 1. .. 0, 11}

[A] denotes the closed subspace generated by the set 4 in #{,. Furthermore we
denote by P, = the orthogonal projection onto the subspace spanned by
Dy(xg), ..., P,(x,). Then for x,eF, we obtain P, ,, =P = projection onto
R ,(pm}] The rules for determinants yield

G (@o(X0)s s D(%,); 0,8, 4 (%, 4 1)
=G (Dylx0), - DX PL 0P, (%, )]

This implies the following chain of inequalities respectively equalities:

inf{én—F 1(@O(XO)’ B (pn(xn) 5 Qn(pn+ l(xn+ 1)) 5 )—C(n)esn}
sinf{G, , ((Po(Xg)s -, @(%,); Q@ 1 (X, 1 1))s Xy EF )

oo

=|PQ,®,. (x,. )I*= ) l<€9j:d7n+1(xn+1)>|2<€

j=m+1

and thus proves Equation (2.7).
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