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Abstract. This paper contains a detailed study of the flow that the classical
Hamiltonian

H=3(x}+y})—3(x3+y))+0,4

induces near the origin of its phase space R*. Here the perturbation term 0,
represents a convergent power series. In particular, criteria for the existence and
stability of periodic orbits are developed and expressed in terms of canonical
invariants that are extracted from the perturbation term.

0. Introduction

The present work is dedicated to a study of the flow that the Hamiltonian (1.1)
induces near the origin of its phase space R*.

The methods that we will apply in our study are essentially the same as those of
[1]. In that paper a Hamiltonian was studied which can be obtained from the
Hamiltonian (1.1) of the present work by replacing the minus sign in the leading
term ’

L=30(3+y)—3(3+y2)
by a plus sign. The symplectic transformations that leave the leading term L
invariant constitute the group U(1, 1), and correspondingly the Gustavson normal
form of our Hamiltonian is best viewed as a function of a canonical set: M, = %"
M,, M,, M, of generators of that group, that is to say, as a function over the Lie-
algebra u(1, 1). Here L or M, generates the center of the group, whereas M |, M ,, M,
generate SU(1, 1).

"We bring the Hamiltonian (1.1) into normal form up to order 2n, where n is
determined by the condition that the lowest degree, non-trivial polynomial K, in the
generators of the group U(1, 1) that appears in the normal form is homogeneous of

degree n. Here, a polynomial is called non-trivial if it is not just a function of M, = £2’—
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alone. Accordingly, after this transformation our Hamiltonian consists of a part
which is in normal form and can be written as a sum of K,, plus a polynomial P(M ;)
of degree n—1in M, (beginning with a term 2M ), and a remainder 0,,,, , which is
not in normal form. We will refer to the former as the unperturbed or truncated
Hamiltonian and to the latter as the perturbation.

The manifold that is obtained by identifying points of the same orbit that P(M )
induces on a manifold M, = const, is shown to be a two-sheeted hyperboloid : 4>
imbedded in the Lie-algebra su(1, 1), the latter being identified with R3. According
to a theorem by Moser [2] the non-degenerate critical points of K, on that orbit-
manifold give rise to periodic orbits of the unperturbed Hamiltonian. These
periodic orbits are stable/unstable, precisely if the critical points (c.p.), which give
rise to them, are stable/unstable. They can be continued to periodic orbits of the full
Hamiltonian, provided that the absolute value of the energy is kept sufficiently
small. Unstable periodic orbits of the truncated Hamiltonian are continued to
unstable orbits of the full Hamiltonian. However, in order that a stable periodic
orbit of the truncated Hamiltonian remain stable after its continuation, a certain
non-linear canonical invariant has to be non-zero [see Theorem 2 and Expression
(3.8)]. This follows from a suitable application of Moser’s twist theorem [3].

An essential difference between the Hamiltonian of the present work and the
one studied in [1] is that the leading term in the latter Hamiltonian is positive
definite, while that in the Hamiltonian (1.1) is indefinite. Thus, the stability of the
origin of R* is no longer guaranteed. Criteria that allow a determination of the
nature of this equilibrium point were developed by Sokol’skii [4]. In Section 4 we
generalize those criteria to Hamiltonians of the form (1.23) (see Theorem 3).

In Sections 5 and 6 we confine ourselves to the case n=2. For this special case we
present a complete classification of all periodic orbits that arise from non-
degenerate critical points of K‘® on the orbit manifold h? in terms of non-linear
canonical invariants which are extracted from the polynomial K®. For the general
theory underlying this approach to periodic solutions see [2]. The coefficients of
K@ are represented by a vector b and a symmetric 2 by 2 matrix . The latter
represents a quadratic form over the vector space su(l, 1)~ R* and because the
group SU(1,1) induces restricted Lorentz-transformations [i.e. elements of
SO'(2,1)] in this vector space the question naturally arises whether the matrix 2 can
be diagonalized by a transformation of the group SO'(2,1). (See Theorem4.)
Depending on whether this is possible or not we distinguish the two main Cases I
and IT which in turn decompose into several subcases. In the Case I the classification
scheme of critical point bears great resemblance to the one developed in [1].

However, the Case IT has no counterpart in the treatment of the Hamiltonian of
[1]. In this case our classification scheme is based on a (real) normal form of A
which differs from diagonal form. (See Theorem 7 and for the generic subcase of
CaseII the end of Section 6.)

Applying Sokol’skii’s criteria to the generic subcase of Case I we see that the
origin of R* is stable/unstable precisely if the total index of all c.p. that K@
possesses on h? is +2/—2. (See Theorems 5 and 6.)

Also, in some subcases of Case 11, a connection between the total index and the
stability of the origin of R* can be exhibited (see e.g. Theorem 8). In Section 7 we
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illustrate Case I with help of an example that bears great resemblance to the model
of Henon-Heiles [6].

Finally, we remark that the methods of this paper and [1] could also be applied
to reasonant Hamiltonians with two degrees of freedom for which the ratio of the
frequencies is different from one. However, these cases have been studied almost
exhaustively by other authors (see e.g. [8]).

1. General Considerations and Preparations

The goal of this section is to collect as much general information as possible about
the flow that the classical Hamiltonian

[oo]
H(xl,yl,xz, yz)=%(xf+ﬁ)—%(x§+yg)+ kZ Hk(xp V15X, yZ) (1)
=3

induces in its phase space R*. Here, H, is a homogeneous polynomial of degree k
over R* and the infinite sum is convergent in some complex neighborhood of the
origin of R*. The vector field X,; in R*, associated with the Hamiltonian (1), is the
unique vector field whose inner product with the 2-form

2
w= ) (dy,rdx,) (2
k=1
yields —dH, in formulae:
Xy1w=—dH. 3)

The group of linear canonical transformations leaving the leading term of our
Hamiltonian invariant is U(1,1). This is most easily seen if the variables

5=2""20+iy) (k=12 )
and the sesquilinear expressions
M,=%Z'¢,Z, k=0,1,2,3 ' %)

are introduced. Here Z = (fl ), Z'=(z,, z,) and the 6,’s (k=0, 1,2, 3) are the Pauli-

22
matrices, where for notational convenience we have taken the liberty to call o, what
is conventionally called ¢, and vice versa, i.e. we define:

10 0 1 0 —i 10
“°=(0 —1>’ “1=(1 0)’ “2=<i (1)> "3=(0 1)‘ ©

If expressed in the z,-variables, the leading term of the Hamiltonian (1) simply
becomes 2M|, and the 2-form w is given by the following expression:

1 2
o= Y (dzx A dz)=id(Z"0,dZ). (7
k=1
The new coordinates make it apparent that the group of linear transformations
leaving w and M, invariant is
U(L, 1)={UeGLQ)|U',U=0,}, ®)

where GL(2) is the group of complex (invertible) two by two matrices.



38 M. Kummer

The M,’s (k=0,1,2,3) as defined in (5) are nothing but the infinitesimal
generators of the group U(1, 1) and accordingly they satisfy the bracket relations

[M,M,]=iM,, [M,,M;]=iM,
[M,M,]=—iM;, [My,M]=0 (k=1,23)
with respect to the Poisson-bracket

2 (af dg og af) )

©

(fol= X \5- % — 35 7

v=1\0z, 0z, 0Oz, 0z,

which is associated with the 2-form icw. They are not functionally independent but
satisfy the relation:

M2 —M?>—M2=M3:. (11)
By associating with each point (x,,y,, X,,y,) of R* the point

M M M

M, UM, M,
of R® we obtain a map IT : R*— R3, which is defined everywhere except on the cone :

M,=0. (13)
It maps each hyperboloid k3 : M, =m onto the upper sheet h%(z = 1) or lower sheet
h% (z< —1) of the two dimensional hyperboloid h? : h(x)=1, where [see (11)]

h(x)= —x?—y*+ 22 (14)

depending on whether m is positive or negative.

The meaning of the mapping IT and the hyperboloid h* becomes more
transparent if we introduce a new symplectic chart in the region |z,|*>>0 of R* by
means of the following succession of transformations. We set:

(12)

Ne=lzl?,  z=Ni?e™™ (k=1,2) - (15)
and .

L=N,—-N,=2M,, R=N,, ¢=oa,+0, (16)
and finally

é=]/ﬁcos¢, n=]/ﬁsin¢. 17
We find:

w=dN; Ado, +dN, ndo,=dL ndo, +dR Adp=dL ndo, +dE ndn (18)

ie., L, a,, & n are the coordinates of a symplectic chart covering the region N, >0
(hence in particular the region M,>0) of R*. They relate to the original variables

(x4, ¥1» X5, ¥,) as follows:
x; =QL+E*+n?) 2 cosa,
=—(Q2L+&+nH)sina
Y1 ( .’1 ) 1 (19)
x, =¢cosa, +nsina;,

y,=¢Esina; —ncosa, .
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The transformation (19) shows that each hyperboloid h2(m>0) is analytically
diffeomorphic to R* x S* and therefore also to h% x S* (because h2 is obviously
diffeomorphic to the plane).

These considerations show that the map IT defined in (12) is nothing but the
projection of a trivial fiber-bundle

IT:h2~h> x S*—>h?
whose fibers are the orbits of the Hamiltonian M, (or L) on the surface h3. In other
words, h? is the orbit manifold associated with the flow that M, induces on each
surface h,, (m>0) and IT is the canonical map that identifies points lying on the same
oriented orbit. In the new chart the map IT:R*—{M,=0}—-h?>CR® has the
following expression:

II:(L,ay, & n)—x
= QL +E P8, QL& 47, L+ ) (20)

Its restriction to the hyperboloid k3 (m>0) is obtained by setting: L =2m. Finally,
we note that if IT is restricted to the surface

hin{o,=ad=const} (m>0) (21)
it becomes a diffeomorphism with the inverse
2m \/? 2m \/2
é"‘<z+1> "zy(z+1) ' 22)

That is to say, the flow of M, on the hyperboloid h (m>0) possesses transversal
sections that are diffeomorphic to the orbit manifold h3. This result will be of
crucial importance when we discuss periodic orbits of our Hamiltonian in Sections
2 and 3.

As a consequence of the Birkhoff-Gustavson normal form theorem, our
Hamiltonian can be brought into the form

H:P(MO)+Kn(MO’M)+(02n+1 (23)

by means of a real analytic canonical transformation.

Here, M=(M,, M,, M), P(M,)=2M,+ ... is a polynomial of degree <n—1in
M, whose lowest order term is 2M,, and K,(M,, M) denotes a homogeneous
polynomial of degree n in the variables (M ,, M) that, on account of relation (11) is
only determined up to an additive polynomial belonging to the ideal generated in
the algebra of all polynomials in the variables (M ,, M) by the quadratic polynomial

M2+ M2—M?2+M?2. (24)

The integer nis determined by the condition that (modulo a polynomial in this ideal)
K, (M,, M)isnot just a polynomial of M, alone. Thus, K (M ,, M) can be assumed to
possess a representation

Kn(Mo, M)= 'Zo M{)Knj(M) (25)
i=
in which at least one of the polynomials K, (M) of degree n—j in the variables M
(=0, 1,...,n—1)is neither zero nor divisible by M? + M% — M3. In this connection,
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we note for later use that if @, 4,1, is the coefficient of M M% M5 M¥% in K, and
Ciokskaks the corresponding coefficient in a polynomial of the expression (24),
K, is unaltered by a simultaneous translation

(26)

Weokeskaks ™ Molesiaks T Chokykaks

of its coefficients.

The symbol 0,,,, , in (23) represents a convergent power series in the variables
X1, V15 X, V, that begins with a term of order 2n+ 1. The most important case is the
case in which n=2. Sections 5 and 6 of our present work will almost entirely
de dedicated to a detailed analysis of this special case.

There is another even more important reason why the coefficients of the
polynomial K, (which are polynomials in the coefficients of H,, ..., H,,) are not
uniquely determined.

Namely, any transformation of the z,-variables (k=1,2) of the form

Z=UZ, UeSU(,1), 27)
where SU(1,1)= {U= (g 2) ; a,beC, Ialz—lbl2=1} is canonical and induces a
transformation O(U)eSO(2,1) of the vector M by means of the formula:

Ulle-M)U=6-M,M=0(U)M, (28)

where 6 =(0,,0,,0;) is the vector of Pauli matrices. It is well known that the image
of the map

0:SU(1,1)-S0(2,1),

defined in this way, is precisely the subgroup SO'(2, 1) of SO(2, 1), characterized by
the condition

SO'(2,1)={0=(04)€SO(2,1)|05; =1} . (29)

Of the two connected components that the group SO(2,1) possesses the one

containing the unit element coincides precisely with the subgroup SO'(2,1). The

transformations of SO'(2,1) in turn induce transformations in the space of

homogeneous polynomials of which K, is a member. This fact represents the major

reason for the non-uniqueness of K, and will play an important role in the sequel.
Finally, we note that the transformation

t—>—t, z,0z, (30)

replaces K, (Mg, M) by —K,(—M,, M). In the x-space this transformation
induces a reflection

X—>—X. ‘ (31)
This is most easily seen from the fact that
_ - __. N,+N
M= (Re(zlzz), Im(z,Z,), %) (32)
is invariant under the transformation (30), whereas M, =%(N, — N,) changes its

sign.
In the following we shall refer to the transformation (30) as time reversal.
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2. The Flow of the Truncated Hamiltonian

In this section we shall drop the term 0,,,; in (1.23) and call the resulting
Hamiltonian H , the truncated or unperturbed Hamiltonian. We intend to gather as
much qualitative information about its flow in R* as possible. In particular, we are
interested in its periodic orbits.

First, we note that the flow of H,, carries each hyperboloid 42 (m =0) into itself
and that the corresponding flow on h? is the restriction to h? of the flow in R3,
governed by the differential equations

dx 1 o

I = 2(l7h>< VK™)(x), 1
the last statement being an immediate consequence of the bracket relations (1.9).
The function K™ appearing in (1) is related to the function K, defined in (1.23), by
K™(x)=K,(1,x) and 7 is a new time-parameter, given by =M% 't.

The flow induced by K™ on h? determines the flow of H,, on each hyperboloid
h3 completely. Indeed, if x(z) is a solution of (1) then, for m>0, ¢ and # can be
obtained as functions of ¢t from the expressions (1.22). Furthermore, from (1.20) we
infer

x 1
0L L(z+1)

where k=(0,0, 1) is the unit vector in the positive z-direction. Hence, on h2(m>0)
the rate of change of «; with respect to ¢ is

de, 0H, 1 mh =t

—_— = = ——P’

&t~ oL a2l mt—3
A simple integration of the last equation yields o, as a function of .

We proceed therefore to study the flow induced by the differential Equation (1)
on k2, It is clear that the orbits of this flow are obtained by intersecting the level
surfaces of K™ in R® with h2. In particular, the critical points (abbreviated : c.p.) of
K™ on h? are the equilibrium points of the flow. They are points ec R> satisfying
h(e)=1 and

(k—1zx), 2

nK"(x)+ z-l-Ll VK™(x)- (k- zx)|. (3)

VK™(e)= % Vh(e) 4

with some number A€ R which we shall call the multiplier of e. They correspond to
periodic orbits of H, in R*. Indeed, to a c.p. e of K™ on h? the relations (1.14) and (3)
yield a family of periodic orbits, one on each surface h>(m>0), with frequency

mt- 1

nK™(e). %)

1
As pointed out in Section 1, the surfaces

hin{e, =ad=const}

are diffeomorphic to h2 . Because they are transversal sections to the periodic orbits
associated with the c.p. e on h? it follows that each member of the family of periodic
orbits is stable/unstable, precisely if the c.p. e is stable/unstable.
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In order to investigate the nature of a c.p. we let (e) denote the Hessian of K™,
evaluated at e and we introduce the “Lorentzian” scalar product:

(x,y>=(x,Gy) (6)

in R3. Here, (,) denotes the usual Euclidian inner product of R3 and G is the 3 by 3
matrix

G=diag(—1,-1,1). (7

Clearly, the quadratic form, associated with the scalar product (9) agrees with the
function A(x), defined in (1.14).

It is not difficult to see that a c.p. e of K™ on h? is stable or unstable depending
on whether the restriction of the quadratic form

Q(y)=Ah(y)— (v, Ale)y) = (v, [AG — A(e)]y) ®)

to the tangent plane T(e) to h” at e is definite or indefinite. If it is semi-definite the
c.p.is called degenerate. Unless stated otherwise, c.p. in the sequel will always mean :
non-degenerate c.p.

Our criterion translates into the following formula for the index of the c.p. e:

inde=sgn4(e), ©
where
AG—U .
Ale)= —det( G( Ge)T(e) %") = (e,adj(A— GA(e))e> (10)

and 4(e) 0 as a result of our non-degeneracy assumption (adj = algebraic adjoint).

In most instances we have limited our discussion to the region M, >0 of R* and
correspondingly to the flow of K™ on h2. We do not lose any generality as a result
of this limitation because, as the following theorem shows, upper and lower sheet of
the hyperboloid h? are interchanged by the time reversal (1.30).

Theorem 1. The flow induced by K™ (via the differential Eq. (1)) on hZ(y=+£1) is
mapped by the time reversal (1.30) onto the time-reversed flow (t— —1), induced by
K®(x)=K"(—x)onh2.. In particular,if e is a c.p. of K on h2 with multiplier 1 (see
4)), —eisac.p. of K™ on h*, with the same multiplier and the two c.p. have the same
index.

We leave the trivial proof to the reader.

3. Periodic Solutions of the Full Hamiltonian

The families of periodic solutions of the truncated Hamiltonian that we found in the
last section can be continued to periodic solutions of the full Hamiltonian (1.23),
provided that the absolute value of the energy is kept sufficiently small. The
possibility of their continuation follows immediately from a theorem of Moser ([ 2,
Theorem 3, p. 624]). However, the question remains whether a stable orbit of H,,
will remain stable in the process of this continuation. In order to investigate this
question we first remark that, by a suitable transformation UeSU(1,1) of the
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z,-variables (k=1,2), preceded, if necessary, by a time reversal (1.30) it is possible
to bring any c.p. lying on h* into the position k [see Formulae (1.27) and
(1.28)]. Moreover, it is easy to see that U can be chosen in such a way that the 12-
element in the Hessian A(k)=(4;,); <; , <3 vanishes

A,,=0. (1)
The Equations (2.4), with e replaced by k, yield
oK™ OK™ oK™
o =5, (0=0, ——()=1, @
and the condition (2.10) for the stability of the c.p. k simply becomes
A(k)=AB>0, 3)

where A=A+ A,,,B=1+A4,,.In order to be able to formulate a sufficient stability
condition for the continued family of periodic solutions corresponding to the c.p. k
we need the coefficients in the expansion of the function

F(&,m)=K"(x(2,& 1)~ K"(k) )

about the point £ =5 =0. Here, x(2, &, ) denotes the right side of (1.20), where L has
been given the value 2. We find

3 4
F(n =%(A62+B772)+ kZoBks—kékns_k"' Z Ck4—k§k’74—k+(95 (%)
= k=0

where O is a convergent power series in &, 7, beginning with a term of order five. If
we use the notation C=1—A4,, and

63 (n)
A= gcz—a;(k)z etc., (6)

the coefficients in the expansion (5) are given by the following expressions
By = %Am + %Auv By, =%A23 +%A222 >
B1z = %(Am +A122): 321 =%(A,<23 +A112)-
C40=%(A_C)+%A113+21_4A1111’ ()
Cou= é(B_ O)+ %Azzs + ﬁAzzzz >
Cry=3(A+B=2C)+4(A;13+Az53+A1125)-

The expressions for the coefficients C, ; and C4, have been omitted because they are
not needed in the sequel.

With these preparation behind us, we are in the position to formulate a theorem
which relates the stability of our c.p. k to the stability of the associated family of
periodic orbits of the full Hamiltonian:

Theorem 2. (i) To each unstable c.p. of K™ on h* there corresponds an unstable one-
parameter family of periodic orbits of the full Hamiltonian, the family parameter
being the energy, which we think of being kept sufficiently small.






