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Abstract. This paper contains a detailed study of the flow that the classical
Hamiltonian

induces near the origin of its phase space R4. Here the perturbation term &3

represents a convergent power series. In particular, criteria for the existence and
stability of periodic orbits are developed and expressed in terms of canonical
invariants that are extracted from the perturbation term.

0. Introduction

The present work is dedicated to a study of the flow that the Hamiltonian (1.1)
induces near the origin of its phase space R4.

The methods that we will apply in our study are essentially the same as those of
[1]. In that paper a Hamiltonian was studied which can be obtained from the
Hamiltonian (1.1) of the present work by replacing the minus sign in the leading
term

by a plus sign. The symplectic transformations that leave the leading term L
invariant constitute the group [7(1, 1), and correspondingly the Gustavson normal

form of our Hamiltonian is best viewed as a function of a canonical set : M0 = y,

M19 M2, M3 of generators of that group, that is to say, as a function over the Lie-
algebra u(l, 1). Here L or M0 generates the center of the group, whereas M1? M 2, M3

generate SU(1, 1).
We bring the Hamiltonian (1.1) into normal form up to order 2n, where n is

determined by the condition that the lowest degree, non-trivial polynomial Kn in the
generators of the group [7(1, 1) that appears in the normal form is homogeneous of

degree n. Here, a polynomial is called non-trivial if it is not just a function of M0 = y
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alone. Accordingly, after this transformation our Hamiltonian consists of a part
which is in normal form and can be written as a sum of Kn plus a polynomial P(M0)
of degree n— 1 in M0 (beginning with a term 2M0), and a remainder @2n+1 which is
not in normal form. We will refer to the former as the unperturbed or truncated
Hamiltonian and to the latter as the perturbation.

The manifold that is obtained by identifying points of the same orbit that P(M0)
induces on a manifold M0 = const, is shown to be a two-sheeted hyperboloid: h2

imbedded in the Lie-algebra su(l, 1), the latter being identified with R3. According
to a theorem by Moser [2] the non-degenerate critical points of Kn on that orbit-
manifold give rise to periodic orbits of the unperturbed Hamiltonian. These
periodic orbits are stable/unstable, precisely if the critical points (c.p.), which give
rise to them, are stable/unstable. They can be continued to periodic orbits of the full
Hamiltonian, provided that the absolute value of the energy is kept sufficiently
small. Unstable periodic orbits of the truncated Hamiltonian are continued to
unstable orbits of the full Hamiltonian. However, in order that a stable periodic
orbit of the truncated Hamiltonian remain stable after its continuation, a certain
non-linear canonical invariant has to be non-zero [see Theorem 2 and Expression
(3.8)]. This follows from a suitable application of Moser's twist theorem [3].

An essential difference between the Hamiltonian of the present work and the
one studied in [1] is that the leading term in the latter Hamiltonian is positive
definite, while that in the Hamiltonian (1.1) is indefinite. Thus, the stability of the
origin of R4 is no longer guaranteed. Criteria that allow a determination of the
nature of this equilibrium point were developed by SokoΓskii [4]. In Section 4 we
generalize those criteria to Hamiltonians of the form (1.23) (see Theorem 3).

In Sections 5 and 6 we confine ourselves to the case n = 2. For this special case we
present a complete classification of all periodic orbits that arise from non-
degenerate critical points of K(2) on the orbit manifold h2 in terms of non-linear
canonical invariants which are extracted from the polynomial K(2\ For the general
theory underlying this approach to periodic solutions see [2]. The coefficients of
K(2) are represented by a vector b and a symmetric 2 by 2 matrix 91. The latter
represents a quadratic form over the vector space su(l, 1)&R3 and because the
group SU(1,1) induces restricted Lorentz-trans formations [i.e. elements of
SOT(2,1)] in this vector space the question naturally arises whether the matrix 91 can
be diagonalized by a transformation of the group SOT(2,1). (See Theorem 4.)
Depending on whether this is possible or not we distinguish the two main Cases I
and II which in turn decompose into several subcases. In the Case I the classification
scheme of critical point bears great resemblance to the one developed in [1].

However, the Case II has no counterpart in the treatment of the Hamiltonian of
[1]. In this case our classification scheme is based on a (real) normal form of 91
which differs from diagonal form. (See Theorem 7 and for the generic subcase of
Case II the end of Section 6.)

Applying SokoΓskii's criteria to the generic subcase of Case I we see that the
origin of R4 is stable/unstable precisely if the total index of all c.p. that K(2}

possesses on h2 is +2/ —2. (See Theorems 5 and 6.)

Also, in some subcases of Case II, a connection between the total index and the
stability of the origin of R4 can be exhibited (see e.g. Theorem 8). In Section 7 we
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illustrate Case I with help of an example that bears great resemblance to the model
of Henon-Heiles [6].

Finally, we remark that the methods of this paper and [1] could also be applied
to reasonant Hamiltonians with two degrees of freedom for which the ratio of the
frequencies is different from one. However, these cases have been studied almost
exhaustively by other authors (see e.g. [8]).

1. General Considerations and Preparations

The goal of this section is to collect as much general information as possible about
the flow that the classical Hamiltonian

00

k = 3

induces in its phase space R4. Here, Hk is a homogeneous polynomial of degree k
over R4 and the infinite sum is convergent in some complex neighborhood of the
origin of R4. The vector field XH in R4, associated with the Hamiltonian (1), is the
unique vector field whose inner product with the 2-form

2
ω = Σ (dykΛ dxk) (2)

yields — dH, in formulae:

XH_\ω=-dH. (3)

The group of linear canonical transformations leaving the leading term of our
Hamiltonian invariant is 17(1,1). This is most easily seen if the variables

zk = 2~il2(xk + ίyk) (fc=l,2) (4)

and the sesquilinear expressions

M —Lγϊσ 7 i- —0 1 ? 3 (*>\
k — 2 k J — 5 ? ' V /

are introduced. Here Z = ί 1 , Zf = (z1? z2) and the σk's (k = 0,1,2,3) are the Pauli-
\Z2/

matrices, where for notational convenience we have taken the liberty to call σ0 what
is conventionally called σ3 and vice versa, i.e. we define:

°\ σ _/° l\ σ _/° -^ σ =fl °

If expressed in the zfe-variables, the leading term of the Hamiltonian (1) simply
becomes 2M0 and the 2-form ω is given by the following expression:

1 2

ω = - % (dzk Λ dzk) = ίd(Z*σ0 dZ). (7)
1 k=l

The new coordinates make it apparent that the group of linear transformations
leaving ω and M0 invariant is

7 = σo}, (8)

where GL(2) is the group of complex (invertible) two by two matrices.
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The Mfc's (fc = 0,1,2,3) as defined in (5) are nothing but the infinitesimal
generators of the group 17(1, 1) and accordingly they satisfy the bracket relations

[M 3, MJ = ίM2 , [M2, M3] = iM,

tMl9M2l=-ίM3, [M0,MJ=0 (/c=l,2,3) (9)

with respect to the Poisson-bracket

which is associated with the 2- form iω. They are not functionally independent but
satisfy the relation :

M2-M2-M2 = M2. (11)

By associating with each point (Xι,y1 ?x2,y2) °f ^
4 tne point

of #3 we obtain a map 77 : #4-»#3, which is defined everywhere except on the cone :

M0=0. (13)

It maps each hyperboloid h^ : M0 — m onto the upper sheet h2

+(z ̂  1) or lower sheet
h2_ (z^ — 1) of the two dimensional hyperboloid h2 : h(x) = 1, where [see (11)]

h(χ)=-χ2-y2 + Z

2 (14)

depending on whether m is positive or negative.
The meaning of the mapping 77 and the hyperboloid h2 becomes more

transparent if we introduce a new symplectic chart in the region |zj2 >0 of R4 by
means of the following succession of transformations. We set:

Nk = \zk\
2, z^N^e-'"* (fc=l,2) ' (15)

and

L = N1-N2 = 2M0, R = N2, 0-α1+α2 (16)

and finally

ξ=]/2Rcosφ, η=]/2Rsinφ. (17)

We find:

a) = djγι Λ dΰίl + dN2 Λ doc2 =dL/\ daί + dR Λ dφ = dL Λ dαi +dξ Adη (18)

i.e., L, α l 9 ξ, f/ are the coordinates of a symplectic chart covering the region J V j >0
(hence in particular the region M0 >0) of Λ4. They relate to the original variables
x 9 ? x , ; ) as follows:

(19)

f / s n α 1

y2 = ξ sinoq —
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The transformation (19) shows that each hyperboloid /z^(m>0) is analytically
diffeomorphic to R2 x S1 and therefore also to \ι\ x S1 (because h2

+ is obviously
diffeomorphic to the plane).

These considerations show that the map Π defined in (12) is nothing but the
projection of a trivial fiber-bundle

Π:h2

m^h2

+xS1^h2

+

whose fibers are the orbits of the Hamiltonian M0 (or L) on the surface Λ£. In other
words, h2

+ is the orbit manifold associated with the flow that M0 induces on each
surface hm (m > 0) and Π is the canonical map that identifies points lying on the same
oriented orbit. In the new chart the map Π :R4 — {MQ=Q}-+h2CR3 has the
following expression:

f»72}. (20)
l^i

Its restriction to the hyperboloid h^ (m > 0) is obtained by setting: L = 2m. Finally,
we note that if Π is restricted to the surface

/^n {0^=0^ = const} (m>0) (21)

it becomes a diffeomorphism with the inverse

\1 / 2 / 2m \1 / 2

-1 tι = vί 1 (22)
I \z +

That is to say, the flow of M0 on the hyperboloid h^(m>0) possesses transversal
sections that are diffeomorphic to the orbit manifold h\. This result will be of
crucial importance when we discuss periodic orbits of our Hamiltonian in Sections
2 and 3.

As a consequence of the Birkhoff-Gustavson normal form theorem, our
Hamiltonian can be brought into the form

by means of a real analytic canonical transformation.
Here, M = (M1? M2, M3), P(M0) = 2M0 +... is a polynomial of degree ^ n -1 in

MO whose lowest order term is 2M0, and Kn(M0,M) denotes a homogeneous
polynomial of degree n in the variables (M0, M) that, on account of relation (11) is
only determined up to an additive polynomial belonging to the ideal generated in
the algebra of all polynomials in the variables (M0, M) by the quadratic polynomial

-/Vjf -t ~| -ίVjί 2 Mi ^ ~T~ -LrJ. o . ^^£^^

The integer n is determined by the condition that (modulo a polynomial in this ideal)
Kn(M0, M) is not just a polynomial of M0 alone. Thus, Kn(M0, M) can be assumed to
possess a representation

Kn(M0,M)= Σ MiKnj(M) (25)
7 = 0

in which at least one of the polynomials Knj(M) of degree n—j in the variables M
(/ = 0,1,..., n — 1) is neither zero nor divisible by M2 + M| — M\. In this connection,
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we note for later use that if akokίk2k3 is the coefficient of M^M^M^M*3 in Kn and
c/c0/cιfc2fc3 the corresponding coefficient in a polynomial of the expression (24),
Kn is unaltered by a simultaneous translation

ίk2k3 (26)

of its coefficients.
The symbol &2n+ι *n (23) represents a convergent power series in the variables

xl9 yl9 x2, y2 that begins with a term of order 2n + 1. The most important case is the
case in which n = 2. Sections 5 and 6 of our present work will almost entirely
de dedicated to a detailed analysis of this special case.

There is another even more important reason why the coefficients of the
polynomial Kn (which are polynomials in the coefficients of H3, ...9H2n) are not
uniquely determined.

Namely, any transformation of the zk~ variables (fc= 1, 2) of the form

Z=C7Z, C/eSU(l,l), (27)

where SU(1, 1) = \U= (Γ _ 0,be(C, |α|2 — |fr|2 = l f is canonical and induces a
I \b <*) )

transformation 0((7)eSO(2, 1) of the vector M by means of the formula:

(28)

where σ = (σl9 σ2, σ3) is the vector of Pauli matrices. It is well known that the image
of the map

0:SU(1,1)-*SO(2,1),

defined in this way, is precisely the subgroup SOT(2, 1) of SO(2, 1), characterized by
the condition

SO^(2,l) = {0 = (ί>ίk)eSO(2,l)|o33^l}. (29)

Of the two connected components that the group SO(2, 1) possesses the one
containing the unit element coincides precisely with the subgroup 80^2, 1). The
transformations of SOT(2, 1) in turn induce transformations in the space of
homogeneous polynomials of which Kn is a member. This fact represents the major
reason for the non-uniqueness of Kn and will play an important role in the sequel.

Finally, we note that the transformation

ί-»-ί, z1^>z2 (30)

replaces Kn(M0)M) by — Kn( — M0, M). In the jc-space this transformation
induces a reflection

x^-x. (31)

This is most easily seen from the fact that

( N 4- N \
Reίz^), Im(z~z2\ ' 2

 2\ (32)

is invariant under the transformation (30), whereas M0 = ̂ (N1 —N2) changes its
sign.

In the following we shall refer to the transformation (30) as time reversal.
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2. The Flow of the Truncated Hamiltonian

In this section we shall drop the term $2«+ι i*1 (1-23) and call the resulting
Hamiltonian H0 the truncated or unperturbed Hamiltonian. We intend to gather as
much qualitative information about its flow in R4 as possible. In particular, we are
interested in its periodic orbits.

First, we note that the flow of H0 carries each hyperboloid fo^(mφθ) into itself
and that the corresponding flow on h2 is the restriction to h2 of the flow in #3,
governed by the differential equations

^ = i(FfcxFK<«>)(*), (1)

the last statement being an immediate consequence of the bracket relations (1.9).
The function K(n} appearing in (1) is related to the function Kn, defined in (1.23), by
K(n\x) = Kn(l,x) and τ is a new time-parameter, given by τ = M5~1ί.

The flow induced by K(ή) on h2 determines the flow of H0 on each hyperboloid
hn completely. Indeed, if x(τ) is a solution of (1) then, for m>0, ξ and η can be
obtained as functions of t from the expressions (1.22). Furthermore, from (1.20) we
infer

where k = (0,0, 1) is the unit vector in the positive z-direction. Hence, on
the rate of change of oq with respect to t is

(3)

A simple integration of the last equation yields 04 as a function of ί.
We proceed therefore to study the flow induced by the differential Equation (1)

on h2. It is clear that the orbits of this flow are obtained by intersecting the level
surfaces of K(n) in R3 with h2. In particular, the critical points (abbreviated : c.p.) of
K(n) on h2 are the equilibrium points of the flow. They are points eεR3 satisfying
h(e) = ί and

VK(n\e) = ^Vh(e) (4)

with some number λeR which we shall call the multiplier of e. They correspond to
periodic orbits of H0 in R4. Indeed, to a c.p. e oϊK(n} on h2

+ the relations (1.14) and (3)
yield a family of periodic orbits, one on each surface /ι^(m>0), with frequency

1 m""1

-F(m)+—nK<n\e). (5)

As pointed out in Section 1, the surfaces

^mn ίαι = αι = const}

are diffeomorphic to fι+. Because they are transversal sections to the periodic orbits
associated with the c.p. e on h2 it follows that each member of the family of periodic
orbits is stable/unstable, precisely if the c.p. e is stable/unstable.
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In order to investigate the nature of a c.p. we let 2I(e) denote the Hessian of K(n\
evaluated at e and we introduce the "Lorentzian" scalar product :

<x,y> = (x,Gy) (6)

in R2. Here, ( , ) denotes the usual Euclidian inner product of R* and G is the 3 by 3
matrix

G = diag(-l,-l,l). (7)

Clearly, the quadratic form, associated with the scalar product (9) agrees with the
function h(x\ defined in (1.14).

It is not difficult to see that a c.p. e oΐK(n) on h2 is stable or unstable depending
on whether the restriction of the quadratic form

GOO = Wy) - (y, «(«) Jθ = (y, [Ac - «(*)] y) (8)
to the tangent plane T(e) to h2 at e is definite or indefinite. If it is semi-definite the
c.p. is called degenerate. Unless stated otherwise, c.p. in the sequel will always mean :
non-degenerate c.p.

Our criterion translates into the following formula for the index of the c.p. e :

, (9)

where

A(e)=- det (λG

(~^τe) GQ] = <*> adj(A - GΌ(e))e> (10)

and A(e) φ 0 as a result of our non-degeneracy assumption (adj = algebraic adjoint).
In most instances we have limited our discussion to the region M0 >0 of R4 and

correspondingly to the flow of K(n) on h2

+. We do not lose any generality as a result
of this limitation because, as the following theorem shows, upper and lower sheet of
the hyperboloid h2 are interchanged by the time reversal (1.30).

Theorem 1. The flow induced by K(n} (via the differential Eq. (I)) on h2(y = ±1) is
mapped by the time reversal (1.30) onto the time-reversed flow (τ-» — τ), induced by
K(n}(x) = K(n\ - x) on h2_ r In particular, if e is a c.p. ofK(n} on h2 with multiplier λ (see
(4)J, — e is a c.p. of K^ on h2_γ with the same multiplier and the two c.p. have the same
index.

We leave the trivial proof to the reader.

3. Periodic Solutions of the Full Hamiltonian

The families of periodic solutions of the truncated Hamiltonian that we found in the
last section can be continued to periodic solutions of the full Hamiltonian (1.23),
provided that the absolute value of the energy is kept sufficiently small. The
possibility of their continuation follows immediately from a theorem of Moser ([2,
Theorem 3, p. 624]). However, the question remains whether a stable orbit of H0

will remain stable in the process of this continuation. In order to investigate this
question we first remark that, by a suitable transformation (7eSU(l, 1) of the
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zfe-variables (k = 1, 2), preceded, if necessary, by a time reversal (1.30) it is possible
to bring any c.p. lying on h2 into the position k [see Formulae (1.27) and
(1.28)]. Moreover, it is easy to see that U can be chosen in such a way that the 12-
element in the Hessian <H(k) = (Aik)1^ίk^3 vanishes

A12=0. (1)

The Equations (2.4), with e replaced by fc, yield

dK(n) dK(n} dK(n)

-&-<*>= ΊF(Jk)=0' -^(k)=λ> (2)

and the condition (2.10) for the stability of the c.p. k simply becomes

(3)

where A = λ + Aίί,B = λ + A22. In order to be able to formulate a sufficient stability
condition for the continued family of periodic solutions corresponding to the c.p. k
we need the coefficients in the expansion of the function

F(ξ,η) = K*\X(2,ξ,η))-KM(k) (4)

about the point ξ — r\ = 0. Here, jc(2, ξ, η) denotes the right side of (1.20), where L has
been given the value 2. We find

F(ξ,η) = ±(Aξ2 + Bη2)+ £ Bk3_k^η3~k + Σ Ck4_kξ
kη4~k + &5 (5)

fc = 0 fc = 0

where (95 is a convergent power series in ξ, η, beginning with a term of order five. If
we use the notation C = λ — A33 and

Q3K(n)

^ιi3 = 2(^etc . , (6)

the coefficients in the expansion (5) are given by the following expressions

^30~ 2^13 + 6"^111> ^03 "1^-23

&12 —2(^13+^122)' ^21 — 2(^23

^40 = 8"(^~"^)~l" 4^113 + 24^1111 '

^04 — ΪW — Q + 4^-223 + 24^-2222 »

The expressions for the coefficients C13 and C3 x have been omitted because they are
not needed in the sequel.

With these preparation behind us, we are in the position to formulate a theorem
which relates the stability of our c.p. k to the stability of the associated family of
periodic orbits of the full Hamiltonian :

Theorem 2. (i) To each unstable c.p. of K(γi) on h2 there corresponds an unstable one-
parameter family of periodic orbits of the full Hamiltonian, the family parameter
being the energy, which we think of being kept sufficiently small.
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(ii) An analogous statement holds if the c.p. is stable provided that in addition (after
transformation of the c.p. into k) the following expression is non-zero:

\ _ , ^ 2 1

- AB(1C40B
2 + C22^β -I- 3C04A

2) . (8)

Remark. The expression (8) simplifies considerably if all As with three and four
subscripts in the list (7) vanish as is the case Ίϊn — 2. In this instance the expression (8)
after multiplication with the factor eight becomes

l2(B3A2

13 + A3A2

23)-4(AB)2T+3(A + B)2Dί (9)

where T= Trace (λ - G«(fc)), D = det (λ - G2I(fc)).
The proof of Theorem 2 proceeds along the lines of Theorem 1 of [1]. We shall

only sketch the proof of statement (ii).
Setting zk = εzk(k=l, 2), where ε is a small positive number and using the chart L,

α1?ξ,^[see (1.16) to (1.18)] we have:

H = s2H L = ε2L, ξ = εξ η = εή (10)

n-ί)9 (11)

where the symbol (9 (ε2" 1) denotes a function that is real analytic in the variables L,
α1? ξ,η,ε at the point (L,α1? 0,0,0) (L>0), periodic in aί with period 2π and which
begins with a term of order 2n—l in ε.

On the surface H = 2, relation (1 1) implicitly defines — L as a function of α1? ξ, η,
ε, which is real analytic at (αl9 0, 0, 0), periodic in α x with period 2π and which takes
the value two for ε = 0. Subtracting its value at (α1?0,0,ε) we obtain a function A
whose power series in ε begins as follows

. (12)

The function A together with the 2- form

dξΛdη (13)

determines the flow on the energy surface H = 2#2, α1 serving as new time parameter.
Introducing complex normal coordinates £, f in the lowest order term of (12) the
transformed Hamiltonian becomes

^(α1,ί,Γ,ε) = ε2("-1>[F(ρ) + Φ(e)], (14)

where ρ = CC and F is the normal form of F. Because in the new coordinates the two-
form (13) becomes i(dζ Λ dζ\ the equations associated with the Hamiltonian A are

( >

where the dot denotes differentiation with respect to αr An explicit calculation of
F(ρ) yields
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where v = (A)1/2 sgn^l, κ= — y-^ expression (8) and A = AB > 0 as a consequence of

our assumption that the c.p. k is stable [see (3)]. If we follow the trajectories from
oί1 = 0 to α1 =2π we obtain a measurepreserving map

where the term ΰ(ε) no longer depends on αr Obviously, for ε = 0 the function

has an isolated zero: C = 0. Because

the implicit function theorem guarantees that this zero can be continued for non-
zero but sufficiently small ε. That is to say, there exists a function sζ0(ε) which is
analytic at ε = 0 such that

/(εC0(ε),εΓo(ε),ε) = 0.

Since εζ0(ε) is a fixed point of the map M, it gives rise to a periodic orbit of the full
Hamiltonian. Setting ζ = ζ + εζ0 (ε) in formula (16) and dropping the carets again, we
shift the fixed point into ζ = 0 without changing the general form of the map M. But
the map M has the form of a measure preserving perturbed twist. Moreover, this
twist is non-degenerate in a sufficiently small annulus 0 < ρ < ρ0(ε) if F"(0) = 2κ φ 0
and ε is small enough. Here ρ0 can be assumed to be a continuous function of ε for
ε>0. Assume now that Fis an open neighborhood of the point ε = ε0>0, ρ = 0
(ε0 small enough). Then V contains a "cylinder" of the type

min ρ0(ε);<5<ε0}.
N-β|^<5 J

According to Moser's twist theorem, the annulus 0<ρ<ρx (ε fixed) contains an
invariant curve: Cε surrounding the fixed point ρ = 0 of M. Because these curves can
be assumed to depend continuously on ε for |ε —ε0|<(5, the set

(J Interior (CJ
\ε-ε0\<δ

is open. Moreover, it is contained in Fand invariant under M, proving the stability
of the fixed point ε = ε0, ζ = 0. The stability of the associated periodic orbit of the full
Hamiltonian is proved.

4. The Question of Stability of the Origin of R4

In contradistinction to the Hamiltonian studied in [1] our present Hamiltonian has
a leading term that is indefinite. Thus, the stability of the origin of K4 is no longer
guaranteed and a separate investigation of its nature becomes necessary. In the case
n = 2a criterion which allows a decision about the nature of this equilibrium point
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has been found by SokoΓskii [4]. Theorem 3 of the present section contains a
generalization of his criterion to the case of general n. In other words, we shall
assume that our Hamiltonian has the form

Kn(M0,M)= Σ Mi>KnJ(M), (1)
J=P-I

•where p is an integer between 1 and n, defined by the condition that Knp_ί is not
identically zero [compare (1.25)]. In the symplectic chart L, α1? R, φ [see (1.16) and
(1.18)] our Hamiltonian takes the form

tf2π+1 , (2)

where (92n+ι represents a convergent power series in the variables (L + R)l/2

9 R112

that starts out with a term of order 2n + 1 and whose coefficients are real analytic,
periodic functions of OLI and φ. Stretching the variables zfe(fc = l,2) by setting

zk = εpzk (k=l,2),

where ε is a small positive number and p is the integer defined in connection with
formula (1), replaces the Hamiltonian H by

where the arguments of Kn are the same as in (2) except for the carets on .R and L. In
the following we shall drop these carets again except for the one on H. Let c be a real
constant with the property 0<|c|^l. On the energy surface

H = 2cε,i.e.H = 2cε2p+ί (3)

— L becomes a function of α l 5 jR, φ, ε which is real analytic at ε =0, for all α1? φ and
for R restricted to some open interval with positive initial point. After dropping an
irrelevant constant term we find that this function A (not to be confused with the
function denoted by the same symbol in Section 3) has a power series expansion in ε
that starts out as follows

+l)9 (4)

where q = (2n— l)p — l,r = n — p + ί and

(5)

The function A together with the 2- form dR Λ dφ determines the flow on the energy
surface (3) with a1 serving as time parameter. The following is a generalization of a
theorem of SokoΓskii:

Theorem 3. (i) If Q(φ) has a simple zero then the origin of R4 is unstable.
(ii) // Q(φ) has no zero and if p = 1 (l^p^n— 1) then the origin of R4 is stable

(weakly stable).

Remark. The term: "weakly stable" means that for almost all (in the sense of
measure theory) initial conditions sufficiently close to the origin of R4 the
corresponding solution-curves do not leave a pre-assigned open neighborhood.
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Proof of (ί). In order to prove (i) we assume first that 00 is a simple zero of Q(φ) with
We choose <5>0 so small that -Q0= supQ'(φ)<Q. Here,

h = [0o ~~<5> 0o +<5] We will show that any solution starting in the interior of the
domain

on the energy surface (3) will eventually escape Q)c through the outer circular part of
its boundary. For this purpose we remark that up to a positive factor the vectorfield
associated with the Hamiltonian (4) is

Because -Q'(Φ)^Q0>Q and therefore δ(0)^(V(0o~0)>0 for φ0-δ^φ<φ0

and β(0);S — β0'(0~0o)<0 for Φo<Φ = Φo+δ> we see tnat everywhere on the
boundary of 2)c except on the circular arc: R = 2c, φelδ the vector-field points
inside Q)c as long as ε is small enough. Because the radial component is positive
everywhere in Q)c as long as ε is small enough it follows that every solution starting
in the interior of &c will eventually escape through the outer circular arc.

If φQ is a simple zero of Q(φ) with β'(00)>0> then the time reversal (1.30)
replaces KΠ(M0,M) by Kn(M0,M)= — Kn( — M0,M). The time reversed flow
induced by H on the energy surface

#=-2cε (c>0)

is again governed by a Hamiltonian of the type (4), where Q(φ) is replaced by
Q(φ)= —Q(φ). Hence, β'(00)<0 and we may proceed as before.

Proof of (iί). It is no retriction to assume that β(0)>0 because according to what
has been said above if Q(φ) <0 a time reversal will replace Q(φ) by a trigonometric
polynomial that is positive. With the help of the generating function

Π- J f *Φ r _ 1
) ' l l r 9 ° ~

we introduce action and angle variables J and χ = ——. In these variables the
oJ

Hamiltonian (4) takes the form

If r ̂  2, i. e. p ̂  n — 1 Moser's twist theorem [3] allows us to construct on each energy
surface with c ή= 0 an invariant torus which prevents any solution that starts close to
the origin of R4 on this surface from escaping. For details of this construction in a
similar situation see [5, pp. 43-45]. The possibility of this construction depends on
the non-degeneracy of the twist which on the surface H = Q is only guaranteed if
p = 1. Thus, for 2 ̂  p ̂  n — ί we cannot exclude the possibility of a solution starting
on the surface H = 0 from escaping a pre-assigned neighborhood of the origin of #4.
Because the set of points of such a surface has measure 0 our theorem is proved.
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5. Classification of Periodic Orbits for n=2

From now on we will assume that n = 2. In Sections 5 and 6 we shall present a
complete classification of all periodic orbits of our Hamiltonian that arise from c.p.
of K(2) on h2. It turns out that it is advantageous to distinguish two main cases :
Cases I and II, depending on whether the matrix 21 (see below) is diagonalizable
with the help of a matrix 0eSO(2, 1) or not. In Section 5 we will treat Case I,
postponing Case II until Section 6.

A classification of periodic solutions is synonymous with a classification of
critical points of K(2) on h2. Right from the beginning we shall introduce a
distinction between two classes of c.p. This distinction will make sense for general n
and was already considered in [1]. A c.p. will be called of second or first kind
depending on whether the multiplier [defined in (2.4)] is an eigenvalue of G2l(e) or
not.

If n = 2 we can write K(2\x) in the form

^ ( 2 )W=y+<^^> + i(^^), (1)

where b is a constant vector and 21 a constant 3 by 3 matrix. The Equation (2.4)
becomes

(2)

and the Hessian 21 (e) equals 21 independently of e. By introducing the function
1b (3)

which is defined on the resolvent set of the matrix G2I we see that a c.p. of the first
kind is of the form e(λ0), where λ0 is a simple [see (5) below] zero of the function

0(λ)=ι-<*μ),«(λ)>. (4)
An easy calculation using formula (2.10) with 2I(e) replaced by 21 yields the
following expression for its index

ind^(A0) = sgn[det(A0-G2I)^(A0)]. (5)

A glance at the Equation (2) shows that a c.p. of the second kind can only be present
if the vector ft is Lorentz-orthogonal (i.e. orthogonal with regard to the inner
product < , » to the eigenspace to the eigenvalue λ of the matrix G2I. As already
pointed out in Section 1, K(2\ as given in (1), is not uniquely determined by H. If we
subject the zfc-variables (fc=l,2) to a transformation which replaces Z by (7Z,
l/eSU(l,l) [see (1.27)], x is replaced by 0(U)x, 0(l/)eSOT(2,l) [see 1.28)] and
consequently ft by 0(U)~ 1 b and 21 by 0(U)T<&0(U). The question arises whether 21
can be diagonalized by such a transformation. In order to answer this question we
find it convenient to distinguish the following two possibilities.

(I) G2I has no eigenspace that coincides with an isotropic line.
(II) G2I has such an eigenspace.
Here, a line is called isotropic if it is spanned by an isotropic vector and a vector

is called isotropic if <jc, jc> =0. Borrowing from the vocabulary used in relativistic
physics we also call such a vector null-like.
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Correspondingly, a vector x will be called time-like if <#, #> > 0 and space-like if
<*, x> <0. A Lorentz-basis of R3 is a basis consisting of one time-like vector and
two space-like vectors such that the inner product < , > in that basis is represented by
the matrix G [see (2.7)]. Before we formulate a necessary and sufficient condition
under which we can diagonalize the matrix 31 by means of a transformation
0([7)(l/eSU(l, 1)) we want to emphasize that assumption I also excludes the
existence of a complex isotropic eigenspace and therefore implies that all
eigenvalues of the matrix S = G<H are real. Indeed, if the inner produce <,> is
extended in the usual manner to a sesquilinear form over C3 (say, antilinear in the
first and linear in the second argument) then S is Hermitian with respect to this
extended inner product. But this implies in the usual manner that all eigenvalues of
S to non-isotropic eigenvectors are necessarily real and that any complex
eigenvector is necessarily isotropic (with respect to the properly extended inner
product).

The following theorem addresses itself to the question raised above.

Theorem 4. (i) 91 is diagonalized by a transformation 0(U) if and only if the
assumption I is satisfied. In that case there exists t/eSU(l, 1) such that

βl, -α2,*3), (6)

where α1? a29 % are the necessarily real eigenvalues of the matrix S =
(ii) // the eigenvalues of S are real and distinct the assumption I holds.

Proof of (i). Because the homomorphism 0:SU(1, 1)->SOT(2, 1) which associates
0(U) with U is surjective, we only have to show that 91 can be diagonalized by some
0eSOT(2, 1) if and only if G2I has no eigenspace that is spanned by an isotropic
vector. Assume first 9ί is diagonalizable in this fashion, i.e. there exists 0eSO(2, 1)
such that 0T<HO = GD, where D is a diagonal matrix. Then, 0T(ΆO = 0TGOD, i.e.
G210 = OD, i. e. the columns of 0 form a basis of eigenvectors of S. Hence, S has no
eigenspace which is spanned by an isotropic vector. Assume now that 2ί satisfies
condition /. S has certainly an eigenvector /which, according to assumption /, is or
can be chosen to be non-isotropic. Its conjugate (i.e. Lorentz-orthogonal) plane 2P is
also invariant under S and does not contain/. If/is time-like, & is space-like and the
restriction of S to & is symmetric with respect to the negative definite inner product
obtained by restricting < , > to & and therefore possesses two orthogonal vectors :/1?

f2 with the property <//,/,> = — 1 (i = 1, 2). Hence,/!, /2,/3 = ±/is a Lorentz-basis. If
we choose the sign in front of/ such that the z-component of/3 is positive, then the
matrix 0 whose columns are the vectors f^f^f^ belongs to SOT(2, 1) and has the
property SO = OD, D = diag(al9a2,a3\ where at is the eigenvalue of S to the
eigenvector /f. However, the last relation is easily seen to be equivalent to (6) :
0T<ΆO = 0TGOD = GD. Thus, the statement (i) is proved provided /is time-like.
However, if /is space-like its conjugate plane & cuts the cone of isotropic vectors.
Because S leaves this plane invariant its restriction to & has another eigenvector
which, again by assumption /, is or can be chosen to be non-isotropic. If this
eigenvector is time-like it can take the plane of /in the first considered case. If it is
space-like its conjugate vector is a time-like eigenvector of S which therefore can
take over the role of /in the first considered case. Statement (i) of Theorem (4) is
proved.
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As to the Statement (ii) we simply remark that under the assumption that the α/s
are mutually distinct the eigenvectors of S must be linearly independent. Because
they are also mutually Lorentz-orthogonal it follows that the condition / is
satisfied. Q.E.D.

In the remaining part of Section 5 we will assume that 51 satisfies condition / and
thus can be assumed to be in diagonal form. The functions defined in (1) and (3)-(5)
[see also (2.10)] assume the following simple forms:

(-α1x
2-α23;

2 + α3Z2)J (7)

jbf b2

2

= β|(A-α1)μ-α2)-^(A-β2)μ-β3)-βi(A-fl1)(A-β3)> (10)

where β = (el9 e29 έ?3).
Let us first assume that the α/s are mutually distinct. This case will be referred to

as Case I0, whereas the cases in which some of the α/s coincide will be collected
under the heading Case Ir

In the Case I0, to which we now turn, the classification of the c.p. of K(2) on h2 is
facilitated by the introduction of the following quantities :

Aί = -(aί-a2)(aί-a3)

Δ2=-(a2-aι)(a2-aτ) (11)

and

ε-sgnzl; (i=l,2,3). (12)

For calculation with the ε/s (i = 1, 2, 3) we have to observe the following basic rules :

(i) β1e2=-e3, (ii)

They imply the additional rule

(iii)

which will be particularly useful in the following.
We also distinguish the two cases in which 63 ΦO and b3 =0 and note first the

following facts :
If b3 =0 then there exists precisely one pair of c.p. of K(2} on h2, namely

(13)

It is a pair of c.p. of the second kind with multiplier λ = α3, and with both members
of the pair having index ε3.
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If ί?3 φO and g(at)<0 (i = 1,2) the following pair of c.p. of the second kind is
present

/ A ^ \
if ί = l

if i = 2,

with index ind/^ =βf (i= 1,2).
If fo3 φO there always exist c.p. of the first kind corresponding to zeros of the

function g. Indeed, if Z? 3ΦO this function possesses always at least two zeros: λ±
being located on the real axis on the same side relative to a3 as ai and λ0 being
located on the opposite side.

The situation with regard to c.p. of K(2} on h2 in the Case I0, ί?3Φθ is
summarized in Table 1 which classifies the c.p. e(λ0), e(λ^) of the first kind and the
c.p. f* (i=l,2) of the second kind according to the signs of g(al) and g(a2). In
reading the table the following conventions have to be observed: 1) sgng(at) = +1 if

g(ai)=Q or if lim g(λ) = oo. 2) The appearance of a symbol * in a column means that

the c.p. that heads the column is not present. All other symbols mean that the c.p. is
present with the indicated index. 3) The third column gives a condition on the vector
b which has to be satisfied in order that the given sign combination of the g(atys
(ΐ=l,2) is possible. 4) The question of the presence of additional c.p. of the first
kind is relegated to comments following Table 1.

Table 1

I sgn0(α2) Condition e(λ0), ^(^i), fi, fί
on vector b

+ None ε3 ε3 * *
1 L _ Q 1 p * o

— bi =b? = Q 1 1 £1 ε?

Comment on Row i. One or two (H — )-pairs (elliptic-hyperbolic pairs) of c.p. of the
first kind may be present in addition to e(λQ) and e(λ^.

Comment on Row 2. If ε1 = — 1 one additional (H — )-pair may be present. If ε1 = 1
one additional (+ +)-pair must be present.

Comment on Row 3. If ε2 = — 1 one additional ( H — )-pair may be present. If ε2 = 1
one additional ( + + )-pair must be present.

Comment on Row 4. In this case the following explicit formulae hold :

1 - α3)] k e(λ0) = - sgn[fc3(α1 - α3)] h .
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Some general observations in the Case I0 are expressed in the following
theorem.

Theorem 5. // all eigenvalues of the matrix G2I are real and distinct (Case I0), then
(i) the total index of all c.p. of K(2) on h2 is always 2ε3.

(ii) on each energy surface (for sufficiently small absolute value of the energy)
there exists at least one periodic orbit.

Proof. We prove statement (i) for the second row of Table 1 leaving its proof for the
other three rows to the reader.

By taking into account the comment on row 2 made above we find that the total
index of Row 2 is: 3 + βj + 2ε2 = 2(l+ε1 + ε2) = 2ε3 if εx = l and l+ε1+2ε2 = 2β2

= 2ε3 if ε1 = — 1. Here, we made use of the rules (iii) and.(i) of our ε-calculus.
In order to prove statement (ii) of Theorem 5 we have only to show that at least

one of all the c.p. that the function K(2} possesses on h2 lies on h2

+ and at least one lies
on h2_. An inspection of Equation (13) reveals that this is certainly the case if b3 = 0.
However, as observed earlier (see Table 1), if b3 φ 0 there exist at least two c.p. of the
first kind e(λ0) and e(λv\ and because, by definition, λ0 and λί are numbers that on
the real axis are located on different sides of α3, Equation (8) shows that e(λQ) and
^Aj) lie on different sheets of the hyperboloid h2. The theorem is proved.

At this point the question arises whether in the Case I0 the origin of R4 is a stable
or an unstable equilibrium point. The following theorem reveals an interesting
connection between the answer to this question and the total index of all c.p.

Theorem 6. If all eigenvalues of the matrix G2I are real and distinct (Case I0), then the
origin of R4 is stable/unstable if and only if the total index of all c.p. of K(2} on h2 is
2/-2, that is to say, if ε3 = I/-1.

Proof. An easy calculation using (7) shows that in the Case I0 the SokoΓskii-function
[defined in (4.5)] is Q(φ) = a + βcos2φ, where α = α3 — ̂ (aί +α2), β = ̂ (a2 — aί).
Theorem 6 is an immediate consequence of Theorem 3 because Q(φ) either satisfies
the condition (i) or the condition (ii) of that theorem depending on whether \β\ > |α|,
i.e. ε3 = — 1 or \β\ < |α|, i.e. ε3 = +1. (\b\ = \a\ is excluded by the assumption that the
α/s are all distinct.) Q.E.D.

Before concluding this section, we turn to a short discussion of the Case^ in
which some of the α/s coincide.

If aί = 02 = a3 = α, then by a transformation of type (1.26) we can achieve a = 0
and by a transformation of type (1.27) the vector b (which we assume to be different
from zero) can be brought into one of the three forms (0,0, b), (b,0,0) or (b,0,b)
depending on whether b is time-, space-, or null-like. There are no c.p. except in the
first case in which the pair of elliptic c.p. + k is present. However, the stability of the
corresponding family of periodic orbits is not guaranteed because the expression
(3.9) vanishes. Also, we cannot assert the stability of the origin of R4 because
p = n = 2.

In the second case (b = space-like) this equilibrium point is unstable as follows
from statement (i) of Theorem 3 and the fact that the SokoΓskii-function is Q(φ)
= -bcosφ. (See also [7].)
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In the following we will assume aγ φ α3. If not all α/s coincide this can always be
achieved by a transformation of type (1.27) inducing a rotation about the z-axis.
Under this assumption and if b3 φO the zeros Λ,0, λί of the function g which were
introduced earlier continue to be well defined.

Next, assume a1 = a2 = a Φ α3, hence ε3 = 1. If ί?3 = 0 the only two c.p. are the two
elliptic c.p. f* given in (13).

If b 3φO the first or last row of Table 1 applies (with ε3 = l) depending on
whether #(α)^0 or g(a)<Q with the exception that in the latter case the four c.p.
f* (i=l,2) are replaced by the one-parameter family of degenerate c.p.

— α

Theorem 6 (and its proof) remains valid in this case (with ε3 = 1) and it implies
that the origin of R4 is stable.

Finally, assume a2 = a?ι = aή=aί. If |b 2 l> l^3l no C P eχist If I^IH^al onty the
one-parametric family of degenerate c.p. of the second kind

a^-a,

(χeR) is present. On the other hand, if | fc 3 |> | fc 2 l we have sgng(α2)<0 (actually:

lim g(λ) = — oo) and εί = — 1, and the second or fourth row of Table 1 applies (with

ε1 = — 1) depending on whether g(aί) ^0 or g(a1) <0, except that we have to ignore
the column headed by /*.

The total index is zero and the stability of the origin of R4 depends on higher
order terms in the expansion of our Hamiltonian H.

6. Classification of Periodic Orbits for n = 2

We continue with the classification of c.p. that we began in Section 5 with a
treatment of the Case II. In other words, we work under the assumption that the
matrix S= G9I has an isotropic eigenspace. First we shall assume that this eigenspace
is real (Case IIR) postponing the case of a complex (isotropic) eigenspace (Case Πc)
to the end of the present section.

In the Case IIR to which we now turn we may assume that the isotropic
eigenspace is spanned by a vector/3 whose third component is positive. Let α be the
corresponding eigenvalue. The plane & conjugate to /3 which is invariant under S
coincides with the tangent plane to the cone of isotropic vectors along /3. We
distinguish two cases

Case II Q. 0* contains an eigenvector f^oϊS linearly independent of /3. The
corresponding eigenvalue will be denoted by av

Case Πf. No such eigenvector exists. This case can only be present if the restriction
of S to & has a degenerate eigenvalue, i.e. a^=a.

The following theorem gives the normal forms of the matrix 91 on which our
classification of c.p. in the Case IIR will be based. -
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Theorem?. If W satisfies condition IIR, then there exists a transformation Tsuch that

cφO, in Case

in Case IIR,

(1)

and

. r1 °
TTGT=G= I 0 0 1 .

0 1 O/

Remark. Obviously, T cannot be induced by a transformation t/eSU(l, 1) of the
(fc = l,2). However, if we multiply Twith a matrix

0

then, by an appropriate choice of the sign in the last equation, we can arrange that
O= TWeSO^ (2, 1) and therefore O can be induced by a canonical transformation
of the zk-variables (k= 1, 2). Thus, the normal form of 91 that can be obtained by
such a canonical transformation is

cΦO in Case

— α — 2~1/2 — 2~1/2 \
-2~1 / 2 -α + c/2 c/2
-2~1/2 c/2 α + c/2

(2)

in Case

Proof of Theorem 7, Case ΠQ. It is clear from the definition of/! that we can assume
</1?/3> = 0, </!,/!> = — !. The plane conjugate to /x cuts the cone of isotropic
vectors along /3 and another null-like vector /2 which we normalize such that
</2,/3> = 1. Clearly, the inner product <, > is represented in the basis/1?/2,/3 by the
matrix G (defined in Theorem 7) and if Tis the matrix with this basis as its column-
vectors, we have

ίaί 0 0\
ST=TN, where N = \ 0 α2

\ 0 c

and hence, TT<ΆT=GN.
The symmetry of GN implies α2 = α, and cφO follows from our assumption II.

By the replacement |c|1/2/3-^/3, |c|~1/2/2->/2 we can even normalize c to become
+ 1.
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Case II*. We proceed precisely as in the previous case except that we can no longer
assume that the vector /x with the properties </ι/3>=0, </ι>/ι)==~~ 1 is an
eigenvector of S and accordingly that the vector

may have all three components different from zero. Proceeding as in the Case 11* we
find

l-a -d 0\
TT(ΆT=[-d c al (3)

0 a O/

where dφO follows from our assumption IIR. If we also take into account that the
replacement d/3-»/3, d~if2-*f2 replaces d by 1 (with a simultaneous re-
normalization of c) our proof of Theorem 7 is complete.

At this stage we are ready for the classification of the c.p. of K(2) on h2 under the
assumption IIR. Thus, we will assume that the matrix entering into the expression
(5.1) is in one of the normal forms (1) and that the inner product < , > is represented
by the matrix G. We first treat the Case IIR. We assume that c is normalized to ± 1.
The Equation (5.2) become

(λ-aί)e1=bl, (λ-a)e2 = b2, (λ-a)e^ = b3 + ce2, (4)

where e^ e2, £3 are the components of the vector e. The functions defined in (5.3),
(5.4), and (2.10) take the form

cb

λ — a1' λ — a λ — a (λ — d)2}'

b2 2cb2 2b2b:

a,)e2. (7)

For the index of a c.p. of the first kind we use Formula (5.5) which in the present case
simplifies to:

. (8)

First we treat the subcase aί φ α which we call the Case ΠQ 0. We set

y = sgn[c(α-α1)]. (9)

If ί?2 = 0, then ^(λ) > 0 and no c.p. of the first kind exists. If also ί?3 = 0 then there
is no c.p. at all. However, if b2 = 0 and ί?3 φ 0 then there exists precisely one c.p. of the
second kind

(10)
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with index y. During the remainder of the discussion of the Case ΠQQ we shall
assume b2 φO. If also b± = 0 and g(aί) <0 the hyperbolic pair of c.p. of the second
kind

(ii)

makes its appearance.
In the following let /^(α) be the semi-infinite open interval with (finite) endpoint

a such that a^ e I^(a) and let 7(α, αj be the closed interval with endpoints α, av The
function g has always at least one zero λQ and we have /t^el^a) or λQφI^(d)
depending on whether y = — 1 or y = 1. The situation with regard to c.p. of K(2) on h2

in the Case Il£0, b2 φ 0 is summarized in Table 2 and the comments following it. (The
table has to be read in the same way as Table 1.) .

Table 2

y sgng(aί) Condition e(λ0)
on vector b

+ 4- None 1
+ - fr^Oandίtt) 1
— + None — 1
- - bί=0 1

ft

*

-1
#

-1

Comments with regard to additional c.p. of the first kind :

On Row i. There may exist one or two additional (H — )-pairs of the first kind
corresponding to zeros of g in /^(α).

On Row 2. There exists always one additional pair of elliptic c.p. of the first kind
corresponding to two zeros of g in /^(α) with αx lying in between them. Besides
having vanishing first component the vector b must satisfy

On Row 3. Same comment as on row 1 except that possible zeros of g other than A0

are located outside

On Row 4. An additional (H — )-pair of c.p. of the first kind corresponding to zeros
of g outside /(α, α x) exists precisely if the vector b satisfies (12).

In deriving the results contained in these comments the following formula
proves to be useful: If g(λ) = 0 then

-•) C / Λ Λ \
+e2

2- - . (13)j 2λ — a[ λ — aί λ — a\

For the derivation of condition (12) see also the treatment of Case Π^ below.
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Theorem 8. In the Case ΠQQ the following statements hold:
(i) The total index of all c.p. is always y.

(ii) // y = — 1 the origin of R4 is unstable.

Proof. The first statement follows from an inspection of Table 2 taking into account
the subsequent comments.

A simple calculation using the normal form (2) of our matrix 9Ϊ yields the
following SokoΓskii-function in the Case ΠQQ '

(14)

with ψ = φ — — . Statement (ii) of Theorems is an immediate consequence of

statement (i) of Theorem 3. Notice that in the case y = 1 the nature of the origin of R4

depends on higher order terms in the expansion of the Hamiltonian H.
Now, let us turn to the Case Π^, i.e. to that subcase of Case II* in which a± = a.

We set μ = c(λ — a)'1 and find from (5) and (6)

Thus, a c.p. of the first kind is given by έ?(μ0), where μ0 is a simple zero of g. Its index
is

ind e(μ0) = - sgn(μ0 g'(μ0)) ,

as follows from (8).
If b2 φO, a study of the polynomial g shows that there exists an elliptic c.p. of the

first kind is joined by a ( H — )-pair of c.p. of the first kind precisely if the vector b
satisfies the inequality (12).

If b2 = 0 there are no c.p. of the first kind. Actually, there are no c.p. at all except
for the degenerate c.p.

which is present provided that b1 =0, b3 φO.
The stability of the origin of R4 depends on higher order terms in the expansion

of the Hamiltonian H.
Next, we discuss the Case Π .̂ We set μ = (λ — a)'1 and obtain

and

where

β = 2bί-cb2.
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If b2 = 0, no c.p. exist, uinless also bί =1=0, in which case the hyperbolic c.p.

is present. In the remainder of the discussion of the present case, we shall assume
52ΦO. We introduce the two numbers

If b is time-like the function g has a local minimum at each of the positions μ = μ±
and it follows that the number of ( H — )-pairs of c. p. of the first kind agrees with the
number of minus signs in the pair of numbers: sgn#(μ_), sgn#(μ+). On the other
hand, if the number < b, by lies in the half-open interval ( — f /?2, 0] and if β φ 0 then g
has a local minimum only at one of the two positions μ+, namely at μ+ if /? <0 and
at μ_ if /?>0. Thus, one (H — )-pair of c.p. is present precisely if this minimum is
negative. If finally <fe, fc> ̂  — f μ2 no c.p. exists.

Again, the SokoΓskii- function corresponding to this case is calculated using the
normal form (2) of the matrix 91. We obtain

where ψ = φ — — . Because it possesses always a simple zero, Theorem 3 implies that

in the Case II t the origin, of JR4 is always unstable.
Finally, we turn to the Case Πc. In this case S = G9I has a complex eigenvalue

c + ia (a>0) and the corresponding eigenvector

is necessarily isotropic with respect to the properly extended inner product < , >
(which we assume to be antilinear in the first argument and linear in the second
argument). Consequently, we find

By multiplying /by a suitable unimodular number we can achieve that </2,/3> =0
and also that/3 is time-like with positive third component. lϊfί is so chosen that/1?

/2, /3 is a Lorentz basis then fi is a space-like eigenvector of S to a real eigenvalue
which we denote by av In short, we see that there exists a matrix l/eSU(l, 1) such
that

0T(U)<ΆO(U)=\ 0 c α , α>0. (15)

Actually, by means of a transformation of type (1.26) we can always achieve c = 0. In
the sequel we will assume that 9ϊ has already the form (15) with c = 0.
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The functions (5.3), (5.4), and (2.10) take the form

2

g(A) = l + . . l ,2+R(λ), where (17)

and b = b2 + ίb3,

Δ(e)=- (λ2 + a2) e\ - (λ - a,) Re [(A + iα)2 (<?2 + ie3)
2]

-(λ2 + a2)e2 for A = a t

•i(A-fllW
2 + aVW for λ + a,. (18)

If £>! φO there are no c.p. of the second kind, that is to say, all c.p. arise from (simple)
zeros of g(λ). This function has between zero and three pairs of zeros, each pair
giving rise to an elliptic-hyperbolic pair of c.p. (Of course, a pair of zeros may
coalesce giving rise to a degenerate c.p.) In any case, the total index of all c.p. equals
zero.

This last property still holds true if b1 =0, although in this case the hyperbolic
[see (18)] pair of c.p. of the second kind

will appear as soon as also g(al) <0. But it is easy to see that its contribution of — 2
to the total index is cancelled by a pair of elliptic c.p. of the first kind corresponding
to zeros of g(λ) that necessarily will appear on different sides of av

Actually, the Case Πc, b1 = 0 can be treated in much more detail. Indeed, in this
case it follows from (17) that g(λ) = 1 + R(λ). We will show that R(λ) has either one or
two relative minima depending on whether b is time-like or space-like. In the first
case there are therefore maximal 2 pairs, in the second case maximal one pair of c.p.
of the first kind. An explicit determination of these minima will therefore allow us to
establish precisely how many pairs of c.p. of the first kind are present.

First we determine a number ψ in the interval —π<ψ^π, so that

In particular,

If we also set λ + ia = reiφ (α>0) we find λ = rcosφ = acotφ and

R(λ)=~sin(ψ-2φ).

In order to find the relative extrema of R(λ) we notice that
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Generically, there are three extrema corresponding to the three angles

φk= Y — k^(k= — 1,0, 1). They are located at the positions λk = acotφk

(k= — 1,0, 1) and a short calculation yields

=- 1,0,1.

The relative order of the numbers R(λk)(k= — 1,0, 1) is obviously the same as the

relative order of the imaginary parts of the unimodular numbers expπ— + — k .

Using the geometrical fact that the latter numbers form the vertices of an equilateral
triangle we establish the following order relation between the extrema

If— π < tp < 0, bis time-like and the number of pairs of c. p. of the first kind is 0,1 or
2 depending on whether none, one or two of the numbers R(λ0\ Rψ^J is smaller
than — l.IfO^t/ ^π, bis null- or space-like and a pair of c.p. of the first kind exists
precisely if R(λ_ ί)+1 <0.

Notice that if both numbers 1 +R(λ0) and 1 +R(λ_ x) are positive, there are no
c.p. whatsoever. This means that under this condition (which, for example, is
satisfied if b = 0) the Hamiltonian K(2)(x) [defined in (5.1)] has no periodic solution
whatsoever.

In the Case IIC the origin of R4 is always unstable. Indeed, remembering that
α>0 we see that the corresponding SokoΓskii-function

Q (φ) = a± sin2 φ + 2α sin φ — a±

has always a simple zero φ0 given by a solution of the equation

if ^=0.

Our contention now follows from Theorem 3.

7. An Example

In this section we illustrate some of the theoretical developments of Sections 4 and 5
with the help of the example Hamiltonian
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Notice, that the third order term is the same as in the Henon-Heiles model [6].
The normal form is of the type (5.7) with

61=62=0 b^^-μ

The pair of c.p. of the second kind

exists for μ < — f μ Φ — 1 with index

1 μ<-2,-l<μ<-f.

Similarly, the pair of c.p. of the second kind

fί = (0, ± [ - ff (μ + £)] 1/2/|μ + fl,(μ ~ i)/μ + t)

exists for μ < — ̂ μ φ — f with index

-1 -

The only c.p. of the first kind are ±k. They are present for all μ and we have

Theorem 6 implies : the origin of #4 is unstable for — 1 <μ < — f and |μ| < ^ and
stable for μ lying in the interior of the complementary intervals.
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