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Abstract. We derive new inequalities for the plane rotator ferromagnetic model
and use them to obtain the following results:

1) If the model is isotropic, the derivability of the free energy as function of
the magnetic field h implies the existence of a unique translation invariant Gibbs
state and if furthermore /z = 0 all Gibbs states are invariant by rotation of the
spins.

2) If the model is anisotropic the above assertion holds for h non-zero.
3) If the model is anisotropic then there are at most two extremal translation

invariant Gibbs states for almost all values of the anisotropy parameter.

1. Introduction

In a recent work [1] Lebowitz derived new inequalities for the ferromagnetic Ising
model which are very useful to obtain information about the number of pure phases
that can coexist in such systems. In the following section we derive the analogous
inequalities for the plane rotator ferromagnetic model and we also observe that the
inequalities of Ginibre [2] can be slightly generalized. Using the fact that the
translation invariant Gibbs states can be defined in terms of tangent functionals to
the free energy (see [16, 3, 4]), we prove in Section 3 the results mentioned in the
abstract. Among them the unicity of the translation invariant Gibbs state for the
isotropic model at zero magnetic field was obtained by Bricmont et al. [5] quite
recently. We refer the reader to the Section 4 for further comments.

2. Inequalities

Let A = (1,..., n) be a finite set of sites which we shall think as a subset of a regular d-
dimensional lattice Jδf, say Ac^= Zd. The spin at the site ieΛ is described by a
two-dimensional unitary vector

θ£e[0,2π].
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The set KΛ of the θ = {01? . . . , θn} is the set of configurations of the system. If HΛ(Θ) is
the energy of the configuration θeKΛ and β = l/kT the inverse temperature

μA(dθ) = Z- 1 exp [ - βHA(θ) ]dθ dθ = f\ [(l/2π)d0J
i = l

describes the Gibbs measure of the finite system defined on Λ, ZΛ being the
corresponding partition function. The expectation value of a function F defined on

KA*

<F>Λ= ί μΛ(dθ)F(θ)
KΛ

and — pΛ= — —ΛogZΛ is the free energy. We introduce the set 501̂  of all
' ' n

M={Mι ,...,Mn}, the Mt taking integer values, and we write Mθ= £ Mβi if

Proposition 1. Let J and J' be two real-valued functions defined on yJlΛ and for each
let φMe[0,2π]. Consider the two measures on KΛ

J(M)cosMΘdθ
mΛ }

Σ J'(M)cos(MΘ-ψM)\dθ
eWlΛ )

and write < . > (resp. < . > ') for the corresponding expectation values. If J(M) ^ | J'(M)\
for all M<=mΛ then

<cosMθ cosNθy - <cos(M0 - φM) cos(NΘ -

^ |<cosMΘ><cos(Ne - φN)y - <cos(MΘ -

for any M9Ne<ϋΰlΛ and any φM,φNe[Q,2π'].

Proof. Proposition 1 is a slight improvement of a result by Ginibre [2]. It is
obtained by remarking that

2[J(M) cosM0 4- J'(M) cos(M0 - φM)]

= [J(M) + J'(Af)][cos Mθ + cos(MΘ - ψMJ]

+ [ J(M) - J'(MJ] [(cos Mθ - cos (M 0 - φM)]

and

cos Mθ + cos (Mθf - ιpM) = 2 cos (MΦ - ψM/2) cos (MΦf - ψM/2)

cosMΘ - cos(MΘ' - \pM) = 2sin(MΦ - φM/2) sm(MΦf - ιpM/2)

where
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The inequality to prove is equivalent to the positivity of

<cosM0 cosNθy - <cos(M0 - φM) cos(NΘ -

This is proved by expanding the exponential and observing that by taking into
account the identities above it can be written as a sum of terms of the form

with positive coefficients. D
As a particular case of Proposition 1 one obtains under the same hypothesis that

<cosMΘ>-<cos(MΘ-<p)>'^0 for any MeWlA and φe[0,2π].
One can also introduce purely imaginary angles ίψM in the measure μ(dθ) and

obtain a generalization of Proposition 1. We state it on a slight modificated way. Let
JP J2 and J'1? J'2 be two pairs of real valued functions on 501̂ , define

(M)smMΘ\dθ

and assume that

J1(M)^0, J1(M)2-J2(M)2^J/

1(M)2 + J/

2(M)2 for all

Then the inequality of Proposition 2 is still true.
The following result is the extension of the inequalities of Lebowitz [1].

Proposition 2. Let SίJΓj" be the set of A = {Aly...,An}, the Ai taking non-negative
n

integer values. For Ae^n^ andq = {qί, ..., qn}, gteR, write qA= f] qfί.LetJ1,J2and
i=l

J'19 J'2 be two pairs of real-valued functions on 5Dΐ^. Define

to be the Gibbs measures of two systems on A, and assume that

J^A^J^AlJ^A^J^Ay for all Λ e 9 W + .

Then

for any A, Ee9W+.
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Proof. It is sufficient to prove that the following quantity is positive

<*A> ~ <*A>' ± [<*Λ><V ~ <*Λ>'<*β>]

= ί J μ(dθ}μ(dθ')(xA - x'A)(l ± XBX'B) .

We have a corresponding expression for the /s. Introduce the variables

and notice that the binomials XA + x'A9 XA - x'A, y'A + yA, y'A - yA, for all A e SR + can be
developped as sums of products of the variables α£, /?t , y/9 (5f with positive coefficients.
From this it appears that Proposition 2 is a particular case of the following lemma.

Lemma 1 . Let A, B,C,De SOΪ̂  and let gbea real function on KA such that \g(θ)\ ^ 1 and
g(θ)-g(θf) is invariant under the two symmetries fy-* — 0ί9 0;-> — 0 and θ^π — θ^
0|->π — 0J, (z = l, ...,n). Then, under the hypothesis of Proposition 2,

Dίl ±g(θ)g(θ'}\ ^0. (1)

Proof. We write

2[ J2(A)yA + J'2(A)y'A-\ = U'2(A) + J2(A}~\(y'A + yA) + {J'2(A) - J2(A)-\(y'A - yA) .

Therefore, under the hypothesis of Proposition 2, the exponential in μ(dθ)μ'(dθf) can
be expanded as a sum of products of the variables αίs βi9 yf, δt with positive
coefficients. We see, by taking into account the symmetries of the positive measure
dθdθ' [1 ±0(%(0')] that the quantity Q{ defined by

.E.C,!)^ ^dθidθf

1(ί±g(θi)g(θf

i)^iβfiyCiδ^ satisfies

Hence the only terms which give a non-zero contribution to (1) are products of the
Qt with Ai9 Bi9 Cί9 Dt all even or all odd. The lemma is thus proved since

*Mt = (*? - ̂ (y? - yf) = (cos2 θt - cos2 β;.)2 ̂  o . D
Remarks. 1) From Lemma 1

?(dWxΛ + X'A)(XB ± x'B) ^ 0 .

Therefore under the hypothesis of Proposition 2, the inequality (xAxBy — {x^XflX
^Kx^XxjjX — <^>X^β>L and the analogous inequality for the y holds.

2) If we take g(θ)=Ylsinniθίcosmiθi we obtain an inequality which is also
ieA

useful.

3. Applications

The plane rotator model or classical X 7 model is defined on a regular d-dimensional
lattice &= Zdas follows : at each site ie J£? there is a two-dimensional vector of unit
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length, called spin,

σi = (xi9 yt) = (cos θ J9 sin θt) , θt e [0, 2π] .

The configurations 0 of the system are functions on 3? with values in [0, 2π].
K# = Kis the set of configurations on which we introduce the product topology and
the corresponding Borel σ-algebra. We introduce also 901, resp. 9Pΐ+, the set of
functions defined on & with values in Z, resp. Z+, which have finite support (i.e.
they are equal to zero except at a finite number of points). An interaction of the
system is a real- valued function J(.) on 9Dΐ or a pair of real- valued functions Ĵ .), J2(.)
on 9JΪ+. Let ψeKg>\Λ be a given configuration &\A where A is finite. Then the
energy of the system restricted to A with boundary condition ψ outside A is

HA(U)=- Σ J(M)cosM0 (2)
MeOR

suppM n Λ Φ 0

or

HΨ

Λ(Θ) =- Σ Uι(Λ)xA + J2(A)yA-\ (3)

where the configuration θeK coincides with ip on ££\A. In (2) and (3) we have used
the notation of Section 1. Ferromagnetism corresponds to positive interactions. A
probability measure on K is a Gibbs measure or equilibrium state if for all finite A
its conditionnal probability given ψ outside A is equal to the Gibbs measure of the
finite system on A defined by the hamiltonian (2) or (3). All possible extremal Gibbs
states are obtained as limits of the Gibbs measures on A with various boundary
conditions as ATSf (see e.g. [4]).

We say that a Gibbs state is rotation invariant if it is invariant under a global
rotation of all spins. We restrict ourselves to translation invariant interactions and
make the usual conditions on the interactions in order to assure the existence of the
free energy p(J\ resp. p(J1? J2), which is defined as the thermodynamical limit of the
free energy pΛ(J\ resp. pΛ(Jl9J2), of the finite system (see e.g. [3]).

We now analyze some consequences of Proposition 1. Consider the system
defined by the hamiltonian (2) with different boundary conditions. Assume that
J(M)^0 for all Me 501. Let <cosMΘ>^ denote the correlation functions corre-
sponding to the boundary condition ipt = 09 ie^\A and <cosM0>y, those
corresponding to an arbitrary boundary condition ψ. It easily follows from
Proposition 1 that <cos Mθ>^ ̂  <cos M0>y. Also it is easy to deduce the following
facts established by Griffiths (reported in [6] and [7]) for the Ising systems:
<cosM0>^ is a decreasing function of A and therefore lim<cosM0>^

ΛT&

= <cos Mθy + exists, the translation in variance of this state for translation invariant
interactions and finally the clustering property of this state. Moreover we have

Theorem 1. Let J be a translation invariant ferromagnetic interaction (i.e. J(M)^O)
defined on 951 and consider the system associated to the hamiltonian (2). Then the
correlation functions <cosM0> + , <sinMΘ>+=0, Me 501, define a translation in-
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variant Gibbs state extremal in the convex set of all Gibbs states. Moreover if for a
certain MeϊR, <cosM0> + =0 then <cosM0> = <sinM0>=0/0r all Gibbs states.

Proof. Assume that the state < . > + can be decomposed into other Gibbs states and
let < . >' be one of them. Since <cosM0> + ^<cosM0>' we must have <cosM0> +

= <cos Mβy. By taking into account that cos Mθ, sin Mθ, for all Me 501 form a total
set of functions on K the extremality follows if we have <sinM0>' = 0. But
Proposition 1 implies

<cos (Mθ ± φ)y = <cos Mθ>'cos φ + <sin M0>'sin φ

= <cos Mθy + cos φ T <sin Mθy sin φ ̂  <cos Mθy +

which if 0 < φ < π gives

± <sin Mθy < <cossmφ

Hence <sin Mθy = 0 and this proves the first part of the theorem. Let now < . > be an
arbitrary Gibbs state. The same inequality for φ = 0, π/2, π and 3π/2 shows

± <cos Mθy ̂  <cos Mθy + , + <sin Mθy ̂  <cos Mθy + .

This proves the second part of the theorem. D
We give now sufficient conditions assuring that a Gibbs state coincides with the

Gibbs state < . > + . We introduce first a definition. An element M of 9W or 9Jl+ is said

to be even or odd according to the parity of the number |M| = £ |Mf|
ieJ5?

Lemma 2. For any Gibbs state of a system verifying the conditions of Theorem 1, (xAy
= (xAy

+ for all y4eSR+, resp.for all even AeW+ implies <cosMΘ> = <cosM0> + ,
<sinMΘ>=0/or all Me TO, resp.for all even MeϊR.

Proof. We remark first that cos Mθ can be expanded in terms of the form xAyE with
E even and if M is even in terms of the form xAyE with A and E even. On the other
hand XA for all A e 5DΪ + and XE -I- yE and XE — yE for all even E e 9W + can be written as
a sum of terms of the form cosM0 with positive coefficients. Hence, from
Proposition 1 we have (xA(xE±yE)y+ ^(xA(xE±yE)y. Therefore if <x^x£>
= (xAxEy+ we get (xAyEy = (xAyEy + f°r all E even. This proves the part of the
lemma concerning the <cos Mθy. For <sin Mθy we repeat the argument of the proof
of Theorem 1. D

We examine now the consequence of Proposition 2.

Theorem 2. Let Jί9 J2 be a pair of translation invariant interactions defined on SDΪ+

such that JI(A)^Q, J2(A)^Qfor all Ae^0l+ and consider the system defined by the
hamiltonian (3). Then

1) The unicity o/<xf>, ie £?Jor all translation invariant states and <xt > Φ 0, ie JSf ,
imply the unicity of(xAy, Ae$Jl+ for all translation invariant states.

2) The unicity of (x^), i and je^, for all translation invariant states and
(XfXj) ΦO imply the unicity o/<x£> E even e90ϊ+,/0r all translation invariant states.

Proof. Let H°Λ be the hamiltonian of the finite system A with free boundary
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condition. Let Hλ

Λ be the perturbed hamiltonian

where A + a is the translate of A. Let < . >^ be the Gibbs measure of the system in A
defined by Hλ

A. From Proposition 2 we have if λ^O

and this inequality is still valid in the limit ATHf. If we assume the continuity of

(xAy
λ and <xβ>

λ at λ = Q together with <xβ> = lim <χβ>
ΛφO, it follows then that

λ^O

(xAxBy
λ is continuous in λ at λ = 0. Hence the infinite volume free energy per site

p(λ) is differentiable at λ = 0. This implies the unicity of <X^XB> for the translation
invariant states. Take now A = {i}9 B — {j}. Hypothesis (1) means that <xf>

λ and
<XJ>A are continuous at Λ = 0 and that <xj >φ0, hence <xίxj > are unique for
translation invariant states. On the other hand (from Proposition 2) <xίxj >
^ <*iXx/> >0. The rest of statement (1) follows by iteration of this argument. The
proof of (2) is similar. D

From 2[Jιμ)^+J2μ)yJ = [Jιμ) + J2μ)](^+yJ+[Jιμ)-J2(^)](^-3;J
we see that the systems considered in Theorem 2 with J2(A) = Q for all A odd are
particular cases of the systems of Theorem 1. They are ferromagnetic in the
sense of Theorem 1, if J 1(A)^\J2(A)\. For such systems, if J2(A)^0, we can apply
both Propositions 1 and 2. We shall restrict therefore our attention to these systems.

We introduce now the notion of generating family [1]. Consider the family 3F of
subsets of S£ consisting of all pairs { ί j } of nearest neighbour points.

Lemma 3. The unicity ^/(x^), {ij}e ^ for all translation invariant states implies
the unicity of <x£> for all translation invariant states and all E even e90ΐ+, if

)^0, J2(A) = Ofor A odd and J1({/j})>0/or all

In this case we say that the family 2F is a generating family for the even

Proof. Let {ij} and {/, fc}e 3F. Since <xt Xy> and <XyXk> are >0, we see that <XfX?x f c>
is unique. In particular <xίx?xfc> = <xI x?x/c>

 + . But x? = cos2θ7. = (l/2)(l+cos2θ7.).
Using now that <xfxk>

 + ̂  <x/Xfc) and <xfcos 2θjXky
 + ̂  <xfcos 207 xk> we conclude

that <xl xfe>=:::<xίxfc>
+ and <χ.cos2θj xfc> = <xίcos2θjxfc>

 + . The equality
<xt?) = <χt?> + follows by the same argument from <x? x?> = <x? x?> + . We finish the
proof by induction. D

Remark. In the case J1(^1) = J2(^) = 0 for all A odd e9W+, denote by
<cosMΘ>~=(-l) |M|<cosMΘ> + , <sinMΘ>~=0 the state obtained from the
boundary conditions ψi = π, ieSf/A. Then from Proposition 2

<Xι> + ~ <**> " = 2<x,> +^\<xA>
 + <xAXt> ~ ~ <xA> " <^Λ> + 1 = 2<x^> + <x^> +

for all even AeWl+. If one has <x f>
+ =0 for all ie JSf one gets that if A is odd also

<x^>+ =0, and from Theorem 1 that <x^> =0 for any Gibbs state.
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Theorem 3. Let Jbea translation invariant two-body interaction such that J({ι, j}) ̂ 0
and strict positive for all {ij}e^. Let h^Qbe the external magnetic field and y^lan
anisotropy parameter. Consider the system associated to the hamiltonian

AeWl + ieA
suppAcΛ

and let p(β, y, h) be the corresponding infinite volume free energy.
1) Ifhή=0 and dp/dh exists (in this case dp/dh>Q), there is a unique translation

invariant Gibbs state.
2) 7/Λ = 0, 7= 1, and dp/dh exists (then dp/dh = 0) there is a unique translation

invariant Gibbs state. Moreover all possible Gibbs states are rotation invariant.
3) 7/Λ = 0, 7>1, and dp/dy exists, then <cosMΘ> is unique for all translation

invariant states, for all M even e SDΪ. Therefore any translation invariant Gibbs state is
a convex linear combination of (at most) two extremal states.

Proof. Notice first that the system considered in this theorem verifies the conditions
of Theorems 1 and 2.

To prove statement 1) we apply Theorem 2 with <xf> = dp/dh and deduce that
the translation invariant <x^> are unique and therefore that <x^> = <x^> + for all
Ae^fl. From Lemma 2 it follows then that <cosM0> = <cosM0>+, <sinM0>=0
for all MeSDϊ and the unicity of the invariant Gibbs state is proved. It is clear that
statement 1) is also true for any interactions Jί ΞgO, J2 with support in the even
elements of StR+, and Jί ^ J2 ^0 in the hamiltonian (3).

To prove statement 2) we first apply the inequality ((Xi + yi)(Xj — )>j)) +

^<Xi + J;i> + <Xί-);i> + which is found in [8], Proposition 6, (it easily follows by
doing the change of variables x'. = x. + y. yf. = χ.— y.). Since <xf>

 + = <J^> + =0 we
obtain <cos (θt + θ^ + = (x^ - yy^ + = 0. From Theorem 1 <cos (04 + ̂ )> = 0 in all

Gibbs states. In particular lim (xixj — yiyjy
±λ = Q where the notations of Theorem

2 are used and Hλ

Λ denotes the perturbed hamiltonian with the term
λ Σ *i+α*7+β Therefore

lim X X

λ - X.X> - λ) + « > - λ - < M> *)] = 0 .

Since, from Proposition 2, the two terms in the right hand side are positive, both
tend to zero. This shows that <xίxj >

;ι is continuous in λ at λ = 0 and hence that the
translation invariant <xίx</ > are unique. Moreover (x^) + > 0. Then from Theorem
2 the translation invariant <x^> for all even A are unique. On the other hand, since
<χ.> + = 0, <χ^> = 0 for all odd A. Lemma 2 allows us to conclude then at the unicity
of the translation invariant Gibbs state. The Gibbs state obtained with free
boundary condition is translation invariant and spin rotation invariant and it
coincides with the state < . > + . Hence <cos Mθ> + = 0 for all M such that Σ Mt Φ 0.

ieJS?

Theorem 1 implies then that <cosMΘ> = <sinMΘ>=0 for all Gibbs states if
y M, =4= 0. i.e. that all Gibbs states are rotation invariant.
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To prove statement 3) notice that for any perturbed hamiltonian of the type
considered in Theorem 2 one has (xAy

λ^(xAy~λ if A^O and that lim <x^>±A

define equilibrium correlations at λ = 0. From the existence oϊdp/dy we deduce that

lim
λ>0 OesuppΛ

Since the identity above contains only positive terms Hm,((xA)
λ — (xA)~λ) = Q for

all A such that J(A) >0. Hence the translation invariant <x^> are unique if J(A) >0.
On the other hand they are strictly positive. If they form a generating family for the
even elements of 9W+ we deduce from Theorem 2 the unicity of the translation
invariant <cosM0> for all even MeϊR. From this we have

^ <cosMΘ> + ̂ (- l)lM|<cosMΘ> - ^ <cosMΘ>+ + ̂  <cosMΘ>-

^ <sinM0> + ̂  (- l)lM|<sinM0> =0

for all M and all translation invariant Gibbs states. Take into account that
(— 1)|M|<.> is again a Gibbs state (obtained by changing \pi-^π — \pi on the
boundary) and apply Theorem 1. These identities and the Choquet simplex
structure of the set of Gibbs states show that if < . > is supposed to be an extremal
invariant state it has to coincide with < . >+ or < . >". Therefore any translation
invariant Gibbs state has the form

for some /ίe[0,l]. It is clear that 3) is also true if J(A) has support on the even
,4e2R+. D

Corollary. Under the hypothesis of Theorem 3, for any boundary condition of the
formιp={ψi},'ψiεt-π/2,π/2'], lim <cosMΘ>+ =<cosM0>+ and lim <s

exist independently of the boundary condition, for all MeSR in Cases 1) and 2) and
for all even Me SDΪ in Case 3).

Proof. To these boundary conditions Proposition 2 can be applied and we have
<^>l^<^>y^<^>5/2)

? (π/2) being the boundary condition φ -π/2 for all
ieJS?\Λ Since lim <x^>^ = lim <^>ί/2) = <^>+ the corollary follows by apply-

ing Lemma 2. (Use the fact that <x^>^/2) is increasing in A and is a translation
invariant state.) D

4. Conclusion

We consider in this section models with two-body interactions and with or without
magnetic field h. If /iφO there is a unique translation invariant Gibbs state if and
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only if the free energy is differentiable in h. By the Lee Yang circle theorem
generalized to the plane rotator model [9] we know the existence of the derivative
for such h.

Ath = 0 the equivalence above.was proved first by Bricmont et al. [5] for the iso-
tropic model. We have presented again a brief proof of this fact based on our pre-
vious results. We have thus unicity of the translation invariant Gibbs state as soon
as the spontaneous magnetization is zero, i.e. for all β<βc. Moreover we have proved
that in this case all Gibbs states are rotation invariant. So we recover for the plane
rotator model the general result by Dobrushin and Schlosman [11] about the ab-
sence of broken symmetry in two-dimensional systems for all interactions decaying
at infinity at least like r~4 [10]. We should expect also for anisotropic system at h=Q
that the translation invariant Gibbs state is unique when the spontaneous
magnetization is zero. This fact is true for Ising systems with two-body interactions
[1, 13]. In any case the existence of dp/dy implies the unicity of the translation
invariant state for all β<βc, the inverse critical temperature, since <χ.>+=0.
Moreover dp/dy exists if and only if dp/dβ exists. (If dp/dβ exists and y > 1 then
(cosθ + θy) are unique and so (x^y for all translation invariant states.) Using
integral equations of the Kirkwood-Salsburg type we have complex analyticity of
the free energy in β and h at high enough h. If the temperature is such that the set of
zeros in the Lee- Yang circle theorem does not have z = Qxp(βh) = 1 as accumulation
point we have also real analyticity in β at /z = 0 by a theorem of Lebowitz and
Penrose [15]. So at high enough temperature there is a unique translation invariant
Gibbs state.

Consider now an isotropic system in 3 or more dimensions at h = 0 in the phase
coexistence region [14]. For the translation invariant Gibbs states, it is very
tempting to believe that the unicity of the expectation values of <cos(0f — #,.)> for all
zje j£? implies the unicity of <cosM#> for all observables which can be generated
from the previous one, in general all the spin rotation invariant correlations. From
the existence of dp/dβ and the Choquet simplex structure of the set of Gibbs states
one could deduce in this case that any translation invariant Gibbs state is a convex
superposition of the pure phases associated to the values of an angle φe [0, 2π] and
obtained from the boundary conditions φ. = φ, ie££\Λ. However we are riot able to
solve this problem with the inequalities of Section 2.

Let us finally remark that we have for simplicity restrict our attention to the
plane rotator systems. More general two-dimensional vector spin systems as those
considered in [5] could be treated by the same method. The same results obtained
above hold also for the discrete plane vector systems in which the one point
configurations are restricted to the values θt = kJ2Nn, kt = 0, 1, . . . , N — 1 where N is
some integer. In fact Proposition 1 for this system can be obtained by introducing
an external interaction KcosNθt at allied and letting K-+ + oo. Proposition 2 is
more general. We have discussed the one point measure dθi = δ(xf + yf-l)dxidyi

but any measure symmetric with respect to the two axis of the form μ(dθί)
= f(χί> yϊfi\Jd(xϊ) + yf^dXidyt with/ ̂  0 and g a non-decreasing function of xf can as
well be considered. One has then the same symmetries and the fact that oίβ yiδi = (xf
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Note Added in Proof: In the phase coexistence region of the anisotropic model [12] all translation
invariant equilibrium states are convex combinations of two extremal states as soon as the spontaneous
magnetization is continuous in the temperature.






