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Abstract. If F is a positive Lagrangian sub-bundle of a symplectic vect&r Bindle
(E, w) we show by elementary means that the Chern classes of F are deterthined.
by w. The notions of metaplectic structure for (E, w), metalinear structure for
and square root of K¥, the canonical bundle of F are shown to be essentially the
same. If F and G are two positive Lagrangian sub-bundles with FnG = DS, we
define a pairing of KF and K¢ into the bundle 2~ (D) of densities of order —2
on D. This is the square of Blattner’s half-form pairing and so characterizes the
latter up to a sign.

Introduction

In order to construct a Hilbert space in the theory of geometric quantization [4, 6,
7], Kostant [3] introduced the notion of half-form normal to a positive
polarization. If two positive polarizations F and G are such that FnG=DC is
smooth, Blattner [ 1] showed the existence of a pairing of the half forms normal to F
and G into the densities of order —1 on D.

If FnG=0, feI'KF, yeI'KS, K¥, K the canonical bundles of F and G, then
f A yisanon- smgular pairing of K* and K€ into the volumes on X. Dividing by the
Liouville volume gives a function <f, y>,. In the general case where FNG = D€, we
observe that F and G project into D*/D to give Lagrangian sub-bundles F/D, G/D
satisfying F/DNG/D =0. Thus by dividing out the intersection we can reduce to the
case where FnG =0 and use the exterior product to define a pairing. This pairing is
shown to be the square of Blattner’s half-form pairing. It is often easier to compute
this pairing of the canonical bundles and use continuity arguments to deduce
properties of the half-form pairing.

Notation. Let V be a vector space over a field f, b=(v,, ..., v,) an r-tuple of elements
of V'and A=(4;;) an r x s matrix over f then b-A4 will denote the s-tuple with j-th
entry »%_, A;v. If by, b, are r- and s-tuples, (b;,b,) will denote the r+s-tuple
obtained in the obv1ous way. If T'is an endomorphism of Vand b an r-tuple, Tb will

denote the r-tuple obtained by letting T act componentwise.
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If Q:V x V-tis a function, b,, b, - and s-tuples then Q(b,, b,) will denote the
r x s matrix with jj-th entry Q(v;,w)), b, = (v, ...,v,),b,=(w,, ..., w). If Qis bilinear, A
an r x p matrix, B an s X g matrix then

Q(b,-A,b, B)=ATQ(b,,b,)B

where AT denotes the transpose of A. There is an obvious modification if f=C and
Q is anti-linear in one of its arguments.

Let J, denote the 2n x 2n matrix whose only non-zero entries are (J,); ,+; =1,
(Ju+i,i=—1,i=1,...,n. The real symplectic group Sp, consists of all real 2n x 2n
matrices g with gJ g7 =J,.

Let U, be the subgroup of all g in Sp, with gJ,=J,g, then U, is maximal
compact in Sp, and isomorphic to U(n). We shall identify U, and U(n). Explicitly, if
U+iVeU(n) then

U —

vl

will be the corresponding element of U,

Positive Almost-Complex Structures and Positive Lagrangian Sub-Bundles

Let X be a smooth manifold and (E, w) a symplectic vector bundle over X. E is a real
vector bundle of fibre dimension 2n and w_ a non-singular skew-symmetric bilinear
form on E, for each xeX. A 2n-tuple b of elements of E_ is called a symplectic frame
at x if w. (b, b)=J,. If geSp,, b-g is again a symplectic frame at x, and the space
B(E, w) of all symplectic frames of E is a principal Sp, bundle over X.

Since U(n) is maximal compact in Sp,, B(E, w) can be reduced to a U(n) bundle
and in this way Chern classes ¢,(E, w)e H¥(X,Z), i=1,...,n are associated to (E, w).
They are independent of the reduction. A smooth section J of End E will be called a
positive, compatible almost-complex structure (PCACS) in (E, w) if

(i) J2?=-1, VxeX;and
(i) Slw,w)=w(v,J,w), v,weE,

defines a symmetric, positive definite bilinear form on E, for each xeX. Then we
may define

B(E,w,J)={be B(E,w)b=(b,,b,) with b,=Jb}.

B(E, w, J) is a reduction of B(E, w) to a U(n) bundle and every reduction arises this
way. Let E’ denote E regarded as a complex n-dimensional vector bundle by means
of the PCACS J. E’ has a Hermitian structure H’ given by

Hl(v,w)=58v,w)—iw (v,w), v,weEl.

If b, is an HI-orthonormal frame for EJ then (b,,Jb,)e B(E, w, J), and conversely.
Thus B(E, w, J) can be identified with the bundle of orthonormal frames for E’ and
the ¢,(E, w) are the Chern classes of the complex vector bundle E’.

Let E€denote the complexification of E, extend w by linearity and let & denote
complex conjugation in E®. A sub-bundle F of E® is called a positive Lagrangian
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sub-bundle (PLS) if
(i) dim¢F,=n, VxeX;
(i) o (o,w)=0, Vo,weF,, xeX;
(i) —iw (v,0)20, VveF,, xeX.

In addition we say F is positive definite if —iw, (v, ) >0 for all non-zero vin F,, x in
X. According to the proof of Lemma 3.11 in [1], if F isa PLS, F is positive definite if
and only if FAF =0, in which case E®= F@F is a direct sum. Further, if F and G are
PLS’s then FNG = FNG =(FNF)n(GNG) and in particular FNG =0 for all PLS’s F
if G is positive definite.

If J is a PCACS, extend it to EC by linearity, then P'=4(1—iJ) is a field of
projections; let FY = P’(EC)=P’(E). It is easily checked that F’ is a PLS and is
positive definite. P’ E’ - F” is a complex linear isomorphism and the kernel of P’
on E€is F7. But FAF? =0 for any PLS F by the remarks in the previous paragraph
so P’ regarded as a map from F into F’ is also an isomorphism. Thus as complex
vector bundles F~F’~E’ for any PLS F and PCACS J. In particular the Chern
classes of a PLS F are ¢/(E, w), i=1, ..., n. Further the Hermitian structure H' on E’
transports, via the above isomorphisms, to F. It follows that fixinga PCACS J gives
an isomorphism of a U(n) bundle of orthonormal frames of F with a U(n)-reduction
of B(E, w).

Let F be aPLS of E€and F° the sub-bundle of the dual (E®)* of all linear forms
vanishing on F. Let v+v® = w(v, -) be the isomorphism of E€ with (E®)* determined
by w. F is Lagrangian when F®=F°, in particular for a PLS, F, and F° are
isomorphic. Thus F° has dimension n and K¥ = A"F? is a line bundle, which we call
the canonical bundle of F (denoted N¥ by some authors). It follows K* has ¢, (E, w)
asits Chernclass. If b=(v,, ...,v,)isa frame for F ,set b*=0v{ A ... Av?, thenb®isa
frame for K¥ and for all ge GL (n, ©), (b-g)® =Det [¢]b®.

Square Roots, Metalinear and Metaplectic Structures

The groups Sp, and GL (n, €) have the same fundamental group as U(n) which is Z.
All three groups have thus unique (up to isomorphism) connected double covering
groups Mp,, M L(n,C), and M U(n) respectively, and M U(n) may be regarded as a
maximal compact subgroup of both Mp, and ML(n,C). ML(n,C) has a unique
character Det!/? such that if ¢ : M L(n, C)—GL (n, C) denotes the covering map,

(Det'?[g])>=Det [o(g)], geML(n,C).

The reason for introducing these groups is the existence of this square root ; see [3].
Let (E, w) be a symplectic vector bundle of dimension 2n, B(E, w) the Sp, bundle
of symplectic frames and n: B(E, w)—>X the projection. A metaplectic structure on
(E, w) is an isomorphism class of double coverings ¢ : B— B(E, ) by principal Mp,-
bundles 7#: B—X such that
BxMp, — B
axal al \ﬂ‘/v X
B(E, w) x Sp, — B(E, )
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commutes, horizontal arrows being given by group actions and where two such
coverings Bl, B2 are isomorphic if there is a diffeomorphism 7: B, — B, such that

B, x Mp, — B,
Tid 7] Z; B(E, w) BX

B, xMp, — B,

commutes.

The notion of metalinear structure in a PLS F is defined analogously in terms of
double coverings of its frame bundle B(F) by principal M L(n, C) bundles.

Let F have a metalinear structure o:B— B(F) (it is convenient to work with
representatives rather than isomorphism classes). Pick a PCACS J, transfer H’
from E’ to F as before and reduce B(F) to a~1 U(n) bundle B(F,J). Then
o Y(B(F,J))=B’ is an MU(n)-bundle and hence B’ x mumMPp, @ principal Mp,
bundle.  Using the isomorphisms  B(E,w)=B(E,w,J)x U(n)Spn and
B(F,J)~B(E, w, J)it is easy to exhibit B’ x mumyMP, as a double covering of B(E, w)
giving (E, w) a metaplectic structure. This sets up a bijection between the metaplectic
structures on (E, w) and metalinear structures on F. The condition for these to exist
is ¢,(E,w)=0mod2 and H'(X,Z,) acts simply-transitively on both sets of
structures. The bijection we have outlined intertwines this action.

Ifn: K—X is a complex line bundle over X, a square root of K is an isomorphism
class of pairs (Q, i) where Q is a line bundle over X and i an isomorphism of Q®Q
with K. Two pairs (Q,,i,)r=1,2 being isomorphic if there is an isomorphism
7:Q,—Q, of line bundles with i,>t®7t=i,. K has a square root if and only if its
Chern class is zero modulo 2, and H!(X,Z,) parametrizes the set of square roots.

Let (E, w) be a symplectic vector bundle, F C EC a PLS then F has a metalinear
structure if and only if K* has a square root, since both conditions are equivalent to

¢,(E,w)=0mod 2. In fact there is a bijection of metalinear structures and square
roots as follows: We have K" =B(F) X g1, )€, GL(n,C) acting on € by the
character Det, so that if ¢ : B— B(F) is a metalinear structure, B x ,, Lo, o)L 18 @ square
root where M L(n, C) acts on C by Det!/2. Conversely, let (Q, i) be a square root for
K¥ and set

B={(b,q)eB(F)x Qlnb=nq, b°=i(q®q)}.
Let ML(n,C) act on B on the right by
(b, q), 9)—(b-o(g), Det'/* [g]q)

and define o : B—B(F) by 6(b,q)=b, then : I;’—»B(F ) is a metalinear structure on F.
At the level of isomorphism classes this sets up the required bijection.

In [1] Blattner constructs specific metalinear structures and square roots for
PLS’s F and their canonical bundles K starting from a metaplectic structure on
(E,w). This construction is compatible with the bijections described above. We
denote this particular square root for K* by (QF, ). Corresponding with F =~ G for
two PLS’s F and G we have QF =QF€ as line bundles if they arise from the same
metaplectic structure on (E, ). Indeed, one may consider a metaplectic structure on
(E, ) as a consistent assignment of square roots of the canonical bundles of all the
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PLS’s of E€. This consistency is necessary for the pairing. Sections of Q* are called
half-forms normal to F.

Densities and Pairings

Let GL, denote GL (n,IR) or GL (n, C) according to context. By complexifying one
need really only consider the complex case. Let D be a real or complex n-
dimensional vector bundle and B(D) the principal GL, bundle of frames of D. Let
aclR, then u:B(D)—C is an a-density or density of order a on D if

wb-g)=|Det [g]I"u(b) Vbe B(D), geGL,.

Let 2%(D) denote the complex line bundle B(D) x gy, € where GL, acts on € by the
character |Det [ - ]|*. Then the a-densities on D can be identified with the sections of
9*D). We identify 2%D) with 2*(D%) in the obvious way for any real bundle D.

If uis an a-density, v a f-density on D then the pointwise product pvis an (a + f§)-
density. If D C E is a sub-bundle and e I'2*(E) a nowhere vanishing section, there is
an isomorphism of 2% D) with 2 ~%E/D) given by

jub) = w(e)/ e, b)

where pe 2%(D), be B(E/D), (e, b)e B(E) such that b projects onto b. In particular, if
(E, ) is symplectic one can choose the Liouville density A defined by A(b)=1 for b in
B(E, w). This is consistent since Det[g]=1 for all g in Sp,.

Let (E, w) be a sympletic vector bundle over X, F, G PLS’s. We shall suppose
FG has constant dimension and then FNG = D€ for some real sub-bundle D of E.
D is isotropic:

o (v,w)=0 Yo,weD,, xe X,
If DCE is any isotropic sub-bundle and
D' = {ve E|w(v,w)=0 Ywe D}

then DCD?' and D is the kernel of the restriction of w to D*. Hence there is an
induced symplectic structure w/D on D*/D by setting

(/D) (B, W)= (v, w)

where B, we(D*/D), and v,we D} project to #,w respectively. It may easily be
checked that if FNG = DC, then F C(D*)%, as is G, and F and G project to PLS’s F/D,
G/D of (D*/D)® where F/DNG/D =0.

If F, G are PLS’s of EC, we say F and G are transverse if FNG =0 (this is not
consistent with the usual notion of transverse, E®=F + G, but should not cause
confusion). In the general case where FnG = D€, we reduce to the transverse case by
passing to the quotient (D'/D,w/D). Let FNnG=0 and BeK%, yeKY then
B A7e AP"(E®)* and is non-zero if f and y both are, so K* and K¢ are non-singularly
paired by (B, y)—f A 7.

If FAG = D®we need some way of passing from K¥ to K*/P. Observe thatifbisa
frame for F, and feKE then f=fb® for some feC. If e is a frame for D, it can
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always be extended to a frame (e,b,)=>b for F, and b®=e” Ab{. Thus f=e” A,
where , = fb$. Moreover b, projects to a frame b for (F/D),. We set

Bo=1bo”.

One may easily check that ﬂ depends only on e and not the choice of b, extending e
to a frame of F,. Clearly ﬂ eKF® and

ﬁe.g=Det[g] 18,, geGL,

where k=dimD. Since K*/P and K¢/P are non-singularly paired we obtain, for each
BeTK", yeI'K® a function {B,y>, on B(D) from

(B,y>o(@A? P =(—1y""*B,AF,, ec B(D)

where 12*/P denotes the Liouville volume on D*/D (A?/?(b)= 1 if be B(D*/D, w/D)).
<, ">, is a nonsingular sesquilinear pairing of K* x K¢ into 2~ %(D). Let {-, -» be
the corresponding pairing into 2*(E/D) obtained from (-, - >, using the Liouville
density to identify 2%(E/D) and 2~ *(D).

To obtain an explicit formula for <+, - >, choose a frame e for D, an extension
(e,b,) to a frame for F, (e, b,) to a frame for G with w(b,,b,)=1, then (bl,bz) isa
(complex) symplectic frame for D*/D®. Thus

By ol@=(— 1B, AT, b,)=B(f, B,)7(f, by) *)

where (e, b,, f,b,) is an extension to a (éomplex) symplectic frame of E€ In [1]
Blattner constructs pairings

(40010 xQ%>27HD), <-,->:0"x Q°—>D'(E/D)
and Theorem 3.20 of [1], together with the formula (*) shows

(F(e®0), W) =<0, p)]

for peI'QF, weI'Q®. Thus the pairing of canonical bundles determines the half-
form pairing up to a global sign. This may be sufficient in many applications.

Flat Partial Connections

A partial connection is a covariant derivative V, defined only for £ in a sub-bundle F
of the tangent bundle. Let F be a sub-bundle of TX or TXC. F is called involutive if
& nel'F=[¢,n]elF. If feC®(X) let d*f denote the restriction of df to F. Itis a
section of F*, where F* is the dual bundle of F. Let E be a real or complex (it must be
complex if F is) vector bundle. An F-connection in E is a linear map
V:[E->TF*®E with

Vis=fVs+d'f®s
for all feC*(X), sel'E. Then for {eI'F one may define V, by
Ves=(Vs)(&)
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regarding F*®E as Hom(F, E). The F-connection V is said to be flat if
[Vf’ Vrl]s= l7[6,1113

for all £,nel'F, seI'E. Some properties of flat F-connections in line bundles are
studied in [5].

The Lie derivative in any bundle associated to the frame bundle of the normal
bundle of F defines a flat F-connection. In the case F is real and integrable this is the
flat connection along the leaves due to Bott. Two special cases in the symplectic
situation are D C TX, isotropic and F C TX, a PLS on a symplectic manifold (X, ®).
Then 2% TX/D) has a flat D-connection. Since F°=~(TX%/F)*, K* has a flat F-
connection. But I'KF consists of differential forms so the Lie derivative is given by

0(&)=i(¢)-d+doi(&), EeTF.
However for BeI'K”, i(£)f=0 so that

V.p=i&)dp, Cel'F

defines the natural flat F-connection in K¥.

Let (X, w) be a symplectic manifold, then a positive polarization is an involutive
PLS FCTXC If (TX, w) admits a metaplectic structure, we have the square root
(QF, ") of K*. As observed by Gawedzki in [2], a flat F-connection Vin K” induces a
unique flat F-connection F*/? in QF such that

Vi (p®@w)=i"(V}2pQ@y+oQ@Vi*p), tel'F, ¢,pelQ".

Let D C TX beisotropic,and D* C TX its orthogonal complement with respect to
o as before, so that DCD*. If dimD =k, dimX =2n then dimD*/D =2(n—k). For
x€X choose any neighbourhood U with a 2(n— k)-tuple b of vector fields in D* on U
with w(b, b)=J,_, at each point of U. Then b spans a complement of D in D* on U
and projects to a symplectic frame field for (D*/D,w/D) on U. Writing
b=, ..., 0,_, Wy,...,W,_,) wWe define

9?(0): ;;11‘ wx([”jﬂ wj:la 0)9 UEDx'
Then 67 is independent of the choice of frame-field b with the above properties and

defines a smooth section of D*. This is Blattner’s obstruction to projecting the half-
form pairing to X/D. One may compute

Vel B y> =<V v> +<B, Vey> — 60°(E<B,v>

where peI'K¥, yeI’'K®, FnG =DC¢, £eI'D. We thus obtain the obstruction at the
canonical bundle level.
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