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Abstract. If F is a positive Lagrangian sub-bundle of a symplectic vecJ$|r B&ndlq
(F, ω) we show by elementary means that the Chern classes of F are determined
by ω. The notions of metaplectic structure for (F, ω), metalinear structure for
and square root of KF, the canonical bundle of F are shown to be essentially the
same. If F and G are two positive Lagrangian sub-bundles with FnG = Dc, we
define a pairing of KF and KG into the bundle Q)~2(ΰ) of densities of order -2
on D. This is the square of Blattner's half-form pairing and so characterizes the
latter up to a sign.

Introduction

In order to construct a Hubert space in the theory of geometric quantization [4, 6,
7], Kostant [3] introduced the notion of half-form normal to a_positive
polarization. If two positive polarizations F and G are such that FnG = Dc is
smooth, Blattner [1] showed the existence of a pairing of the half forms normal to F
and G into the densities of order — 1 on D.

If FnG = 0, βeΓKF, yeΓKG, KF, KG the canonical bundles of F and G, then
β Λ γ is a non-singular pairing of KF and KG into the volumes onX. Dividing by the
Liouville volume gives a function <β, y>0. In the general case where FnG = Dc, we
observe that F and G project into DL/D to give Lagrangian sub-bundles F/D, G/D
satisfying F/DnG/D = 0. Thus by dividing out the intersection we can reduce to the
case where FnG = 0 and use the exterior product to define a pairing. This pairing is
shown to be the square of Blattner's half-form pairing. It is often easier to compute
this pairing of the canonical bundles and use continuity arguments to deduce
properties of the half-form pairing.

Notation. Let Fbe a vector space over a field I 9 b = (vί9..., vr) an r-tuple of elements
of V and A = (AtJ) an r x s matrix over I then b - A will denote the s-tuple with j-th
entry ^i=ιΛijvi. If bί9 b2 are r- and s-tuples, (bl9b2) will denote the r + s-tuple
obtained in the obvious way. If Tis an endomorphism of Fand b an r-tuple, Tb will
denote the r-tuple obtained by letting T act componentwise.
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If Ω : V x F->f is a function, bl9 b2 r- and s-tuples then Ω(bl9 b2) will denote the
r x s matrix with ί)'-th entry Ω(υi9 w7 ), b1=(vl9 . . ., vr\ b2 = (w1, . . ., ws). If Ω is bilinear, A
an r x p matrix, 5 an s x g matrix then

where ^4Γ denotes the transpose of A. There is an obvious modification if ϊ = C and
Ω is anti-linear in one of its arguments.

Let Jn denote the 2n x 2n matrix whose only non-zero entries are (Jn)i>n+i = 1,
W»+i,i= ~~ 1» ΐ = 1, ...,H The real symplectic group Spn consists of all real 2n x 2n
matrices g with g Jng

τ = Jn.
Let Un be the subgroup of all g in SpM with gJn = Jng, then [7Π is maximal

compact in Spw and isomorphic to U(ri). We shall identify Un and U(n). Explicitly, if
f/ + i7el7(π)then

U -
V U

will be the corresponding element of Un.

Positive Almost-Complex Structures and Positive Lagrangian Sub-Bundles

LetX be a smooth manifold and (E, ω) a symplectic vector bundle over JΓ. £ is a real
vector bundle of fibre dimension 2n and ωx a non-singular skew-symmetric bilinear
form on Ex for each xeX. A 2/7-tuple b of elements of Ex is called a symplectic frame
at x if ωx(b,b) = Jn. If 0eSpn, fe # is again a symplectic frame at x, and the space
#(£, ω) of all symplectic frames of £ is a principal SpM bundle over X.

Since U(n) is maximal compact in Spπ, B(E, ω) can be reduced to a U(n) bundle
and in this way Chern classes ct(E9 ω)eH2i(X, TL\ i = 1, . . ., n are associated to (£, ω).
They are independent of the reduction. A smooth section J of End E will be called a
positive, compatible almost-complex structure (PC ACS) in (E, ω) if

(i) J2=-1, VxeZ and

(ii) SJ

x(v9w) = ωJ(v9Jxw)9 v,\veEx

defines a symmetric, positive definite bilinear form on Ex for each xeX. Then we
may define

B(E9ω9J) = {beB(E9ω)\b = (bl9b2) with b2 = Jb1}.

B(E, ω, J) is a reduction of B(E, ω) to a (7(n) bundle and every reduction arises this
way. Let EJ denote E regarded as a complex n-dimensional vector bundle by means
of the PCACS J. EJ has a Hermitian structure HJ given by

HJ

x(υ9 w) = SJ

x(v9 w) - iωx(v9 w) , t;, we £^ .

If ί?1 is an H^-orthonormal frame for Ex then (b1,Jb1)eB(E,ω,J)x and conversely.
Thus B(E, ω, J) can be identified with the bundle of orthonormal frames for EJ and
the ct(E9 ω) are the Chern classes of the complex vector bundle EJ.

Let £c denote the complexification of £, extend ω by linearity and let v denote
complex conjugation in £c. A sub-bundle F of £c is called a positive Lagrangian
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sub-bundle (PLS) if

(i) dimςF^n, VxeX;

(ii) ωx(v, w) = 0, Vι>,weFx, xeX;

(iii) -kox(v9v)^Q9 Vι>eFx, xeX .

In addition we say F is positive definite if — iωx(v, v)>0 for all non-zero v in Fχ9 x in
X. According to the proof of Lemma 3.1 1 in [1], if F is a PLS, F is positive definite if
and only if FnF = 0, in which case Fc = FφF is a direct sum. Further, if F and G are
PLS's then FnG = FnG = (FnF)n(GnG) and in particular FnG = 0 for all PLS's F
if G is positive definite.

If J is a PCACS, extend it to E€ by linearity, then PJ=^l-iJ) is a field of
projections; let FJ = PJ(FC) = PJ(F). It is easily checked that FJ is a PLS and is
positive definite. PJ'LEL

J-+FJ is a complex linear isomorphism and the kernel of PJ

on Fc is FJ.'But FnFJ = 0 for any PLS F by the remarks in the previous paragraph
so PJ regarded as a map from F into FJ is also an isomorphism. Thus as complex
vector bundles F^FJ^EJ for any PLSF and PCACS J. In particular the Chern
classes of a PLS F are ct(E, ω), ί = 1, . . ., n. Further the Hermitian structure HJ on EJ

transports, via the above isomorphisms, to F. It follows that fixing a PCACS J gives
an isomorphism of a U(n) bundle of orthonormal frames of F with a t/(π)-reduction
oίB(E,ω).

Let F be aPLS of Fcand F° the sub-bundle of the dual (Fc)* of all linear forms
vanishing on F. Let v\->υω = ω(v9 ) be the isomorphism of Fc with (F^)* determined
by ω. F is Lagrangian when Fω = F°, in particular for a PLS, F, and F° are
isomorphic. Thus F° has dimension n and KF = ΛnF° is a line bundle, which we call
the canonical bundle of F (denoted NF by some authors). It follows KF has c^F, ω)
as its Chern class. If b = (vl9 . . ., vn) is a frame for Fχ9 set bω = v™ Λ ... Λ v™9 then bω is a
frame for KF

X and for all 0eGL(n,C), (6 #)ω

Square Roots, Metalinear and Metaplectic Structures

The groups Spπ and GL (n, C) have the same fundamental group as U(n) which is Έ.
All three groups have thus unique (up to isomorphism) connected double covering
groups Mpn, ML(rc,(C), and MU(n) respectively, and MU(n) may be regarded as a
maximal compact subgroup of both Mpn and ML(rc,(C). ML(rc,C) has a unique
character Det1/2 such that if σ:ML(n,C)->GL(w,C) denotes the covering map,

(Det1/2 [0])2 = Det [σfe)], ^eML(n,C).

The reason for introducing these groups is the existence of this square root see [3].
Let (F, ω) be a symplectic vector bundle of dimension 2n, B(E, ω) the Spπ bundle

of symplectic frames and π:B(E, ω)-+X the projection. A metaplectic structure on
(F, ω) is an isomorphism class of double coverings σ:B^>B(E, ω) by principal Mpn-
bundles π:B-+X such that

BxMpn -»σxn
£(F,ω)xSpn -> B(E,ω)
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commutes, horizontal arrows being given by group actions and where two such
coverings Bί9 B2 are isomorphic if there is a diffeomorphism τ:Bi^B2 such that

τxidj,

B2 x Mpn — > B2

commutes.
The notion of metalinear structure in a PLS F is defined analogously in terms of

double coverings of its frame bundle B(F) by principal ML(rc,C) bundles.
Let F have a metalinear structure σ:B^B(F) (it is convenient to work with

representatives rather than isomorphism classes). Pick a PC ACS J, transfer HJ

from EJ to F as before and reduce 5(F) to a [7(n) bundle B(F,J). Then
σ~1(B(F,J)) = BJ is an Mt/(rc)-bundle and hence BJxMU(n}Mpn a principal Mpπ

bundle. Using the isomorphisms B(E, ω) = B(E, ω, J) x u(n)Spn and
B(F, J) ̂  B(E, ω, J) it is easy to exhibit BJ x MV(n}Mpn as a double covering of #(£, ω)
giving (E, ω) a metaplectic structure. This sets up a bijection between the metaplectic
structures on (£, ω) and metalinear structures on F. The condition for these to exist
is cί(E9ω) = Omod2 and H1(X,Z2) acts simply-transitively on both sets of
structures. The bijection we have outlined intertwines this action.

If π :K^X is a complex line bundle overX, a square root of K is an isomorphism
class of pairs (Q, i) where Q is a line bundle over X and i an isomorphism of Q®Q
with K. Two pairs (Qr,ir)r=l, 2 being isomorphic if there is an isomorphism
τ:6ι">62 of line bundles with i2°τ®τ = ί 1 . K has a square root if and only if its
Chern glass is zero modulo 2, and H1(X,Z2) parametrizes the set of square roots.

Let (£, ω) be a symplectic vector bundle, FcE^ a PLS then F has a metalinear
structure if and only if KF has a square root, since both conditions are equivalent to
c1(E,ω) = Omod2. In fact there is a bijection of metalinear structures and square
roots as follows: We have KF^B(F) xGL(n C)C, GL(n,<C) acting on C by the
character Det, so that if σ :B->B(F) is a metalinear structure, B x ML(M)(C)C is a square
root where ML(n, <C) acts on C by Det1/2. Conversely, let (β, i) be a square root for
KF and set

Let ML(n, C) act on J5 on the right by

and define σ :B^B(F) by σ(b, g) = 6, then σ :B^B(F) is a metalinear structure on F.
At the level of isomorphism classes this sets up the required bijection.

In [1] Blattner constructs specific metalinear structures and square roots for
PLS's F and their canonical bundles KF starting from a metaplectic structure on
(£, ω). This construction is compatible with the bijections described above. We
denote this particular square root for KF by (QF, ίF). Corresponding with F^ G for
two PLS's F and G we have QF = QG as line bundles if they arise from the same
metaplectic structure on (E, ω). Indeed, one may consider a metaplectic structure on
(£, ω) as a consistent assignment of square roots of the canonical bundles of all the
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PLS's of Fc. This consistency is necessary for the pairing. Sections of QF are called
half-forms normal to F.

Densities and Pairings

Let GLM denote GL (n, IR) or GL (n, (C) according to context. By complexifying one
need really only consider the complex case. Let D be a real or complex n-
dimensional vector bundle and B(D) the principal GLn bundle of frames of D. Let
αeIR, then μ:J3(D)->C is an α-density or density of order α on D if

μ(b - g) = |Det [0]PW&) Vfce B(D) , gε GLn .

Let ^α(D) denote the complex line bundle B(D) x GLnC where GLn acts on (C by the
character |Det [ ]Γ Then the α-densities on D can be identified with the sections of
Q)\D\ We identify ^α(D) with ^α(Dc) in the obvious way for any real bundle D.

If μ is an α-density, v a /J-density on D then the point wise product μv is an (α + β)-
density. If D c E is a sub-bundle and λεΓ@1(E) a nowhere vanishing section, there is
an isomorphism of ^α(D) with ^~α(F/D) given by

~μ(b) = μ(e)/λ(e,b)

where με@"(D\ bεB(E/D\ (e,b)εB(E) such that b projects onto b. In particular, if
(F, ω) is symplectic one can choose the Liouville density λ defined by λ(b) = 1 for b in
B(E, ω). This is consistent since Det [g] = 1 for all g in Spπ.

Let (F, ω) be a sympletic vector bundle over X, F, G PLS's. We shall suppose
FnG has constant dimension and then FnG = D^ for some real sub-bundle D of E.
D is isotropic :

ωx(v, w) = 0 Vι>, we Dx, xε X ,

If DcE is any isotropic sub-bundle and

DL = {ve E\ω(v, w) = 0 V we D}

then DcD1 and D is the kernel of the restriction of ω to D1. Hence there is an
induced symplectic structure ω/D on Dλ/D by setting

where v,we(D L/D)x and υ9 weD^ project to £,w respectively. It may easily be
checked that if FnG = Dc, then_F C (D1)*, as is G, and F and G project to PLS's F/D,
G/D of (Dλ/D)€ where F/DnG/D = 0.

If F, G are PLS's of Ec, we say F and G are transverse if FnG = 0 (this is not
consistent with the usual notion of transverse, E€=F + G, but should not cause
confusion). In the general case where Fn G = Dc, wejeduce to the transverse case by
passing to the quotient (Dλ/D,ω/D). Let FnG = 0 and βeKζ, yeK% then
β Λ γeΛ2n(E€)* and is non-zero if β and γ both are, so KF and KG are non-singularly
paired byjjβ, y)±-*β Λ γ.

If FnG = Dc we need some way of passing from KF to KF/D. Observe that if b is a
frame for Fx and βeKζ then β = fbω for some /e(C. If β is a frame for Dx it can
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always be extended to a frame (e, bi) = b for F, and bω = eωΛ b%. Thus β = eωΛβ1

where βί =fb™. Moreover b1 projects to a frame bί for (F/D)X. We set

One may easily check that β^ depends only on e and not the choice of b± extending e
to a frame of Fx. Clearly βeeKFJD and

where fe = dimD. Since KF/D and KG/D are non-singularly paired we obtain, for each
βeΓKF, γeΓKG a function <βy>0 on B(D) from

where λ0"10 denotes the Liouville volume on DL/D (λ°LID(b) = l ifbeB(DL/D,ω/D)).
< , >0 is a nonsingular sesquilinear pairing of KF x KG into Q)~2(D\ Let < , •> be
the corresponding pairing into <2>2(E/D) obtained from < , >0 using the Liouville
density to identify @2(E/D] and @~2(D).

To obtain an explicit formula for < , >0, choose a frame e for D, an extension
(e, bj to a frame for F, (e, ί?2) to a frame for G with ω(bl9 b2) = l, then (&19 b2) is a
(complex) symplectic frame for D1/D(C. Thus

where (e,bί9f,b2) is an extension to a (complex) symplectic frame of £c. In [1]
Blattner constructs pairings

and Theorem 3.20 of [1], together with the formula (*) shows

for φeΓQF, ψeΓQG. Thus the pairing of canonical bundles determines the half-
form pairing up to a global sign. This may be sufficient in many applications.

Flat Partial Connections

A partial connection is a covariant derivative Vξ defined only for ξ in a sub-bundle F
of the tangent bundle. Let F be a sub-bundle of TX or TX€. F is called involutive if
ξ,ηeΓF=^\_ξ,η]eΓF. If /eC°°(Y) let dFf denote the restriction of df to F. It is a
section of F*, where F* is the dual bundle of F. Let F be a real or complex (it must be
complex if F is) vector bundle. An F-connection in F is a linear map
F:FE->FF*(x)F with

for all /eC°°(30, seFF. Then for £eFF one may define Vξ by



Polarizations

regarding F*(x)E as Hom(F,E). The F-connection Pis said to be flat if

for all ξ,ηeΓF, seΓE. Some properties of flat F-connections in line bundles are
studied in [5].

The Lie derivative in any bundle associated to the frame bundle of the normal
bundle of F defines a flat F-connection. In the case F is real and integrable this is the
flat connection along the leaves due to Bott. Two special cases in the symplectic
situation are D C TX, isotropic and F C TX€, a PLS on a symplectic manifold (X, ω).
Then @«(TX/D) has a flat D-connection. Since F0^(TX(C/F)^, KF has a flat F-
connection. But ΓKF consists of differential forms so the Lie derivative is given by

ξ\ ξeΓF.

However for βeΓKF, i(ξ)β = 0 so that

Vξβ = i(ξ)dβ, ξεΓF

defines the natural flat F-connection in KF.
Let (X, ω) be a symplectic manifold, then a positive polarization is an involutive

PLS FcTX€. If (TX,ω) admits a metaplectic structure, we have the square root
(<2F, ίF) oϊKF. As observed by Gawedzki in [2], a flat F-connection Fin KF induces a
unique flat F-connection F1/2 in QF such that

V/(φ®v) = iF(Vll2φ®y + φ®Vll2ιp\ ξeΓF, φ,ιpeΓQF .

Let D C TX be isotropic, and D1 C TX its orthogonal complement with respect to
ω as before, so that DcDλ. If dimD = k, dimX = 2n then dimDL/D = 2(n-k). For
xeX choose any neighbourhood U with a 2(n — /c)-tuple b of vector fields in D1 on U
with ω(b, b) = Jn_kat each point of U. Then b spans a complement of D in D1 on U
and projects to a symplectic frame field for (DL/D,ω/D) on U. Writing
b = (vl9...9vn_k, w 1,.. .,w n_ f e) we define

Then θ% is independent of the choice of frame- field b with the above properties and
defines a smooth section of D*. This is Blattner's obstruction to projecting the half-
form pairing to X/D. One may compute

rξ<β, y> = < v& y> + < β, ̂ > - θD(ξχβ9 r>

where βεΓKF, yeΓKG, FnG-Dc, ξeΓD. We thus obtain the obstruction at the
canonical bundle level.
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