On the Pairing of Polarizations

J. H. Rawnsley

Dublin Institute for Advanced Studies, School of Theoretical Physics, Dublin 4, Ireland

Abstract. If F is a positive Lagrangian sub-bundle of a symplectic vector bundle (E, ω) we show by elementary means that the Chern classes of F are determined. by ω . The notions of metaplectic structure for (E, ω) , metalinear structure for and square root of K^F , the canonical bundle of F are shown to be essentially the same. If F and G are two positive Lagrangian sub-bundles with $F \cap \overline{G} = D^{\mathbb{C}}$, we define a pairing of K^F and K^G into the bundle $\mathcal{D}^{-2}(D)$ of densities of order -2 on D. This is the square of Blattner's half-form pairing and so characterizes the latter up to a sign.

Introduction

In order to construct a Hilbert space in the theory of geometric quantization [4, 6, 7], Kostant [3] introduced the notion of half-form normal to a positive polarization. If two positive polarizations F and G are such that $F \cap \overline{G} = D^{\mathbb{C}}$ is smooth, Blattner [1] showed the existence of a pairing of the half forms normal to F and G into the densities of order -1 on D.

If $F \cap \overline{G} = 0$, $\beta \in \Gamma K^F$, $\gamma \in \Gamma K^G$, K^F , K^G the canonical bundles of F and G, then $\beta \wedge \overline{\gamma}$ is a non-singular pairing of K^F and K^G into the volumes on X. Dividing by the Liouville volume gives a function $\langle \beta, \gamma \rangle_0$. In the general case where $F \cap \overline{G} = D^c$, we observe that F and G project into D^{\perp}/D to give Lagrangian sub-bundles F/D, G/D satisfying $F/D \cap \overline{G/D} = 0$. Thus by dividing out the intersection we can reduce to the case where $F \cap \overline{G} = 0$ and use the exterior product to define a pairing. This pairing is shown to be the square of Blattner's half-form pairing. It is often easier to compute this pairing of the canonical bundles and use continuity arguments to deduce properties of the half-form pairing.

Notation. Let V be a vector space over a field $\mathfrak{k}, b = (v_1, \dots, v_r)$ an r-tuple of elements of V and $A = (A_{ij})$ an $r \times s$ matrix over \mathfrak{k} then $b \cdot A$ will denote the s-tuple with j-th entry $\sum_{i=1}^{r} A_{ij}v_i$. If b_1, b_2 are r- and s-tuples, (b_1, b_2) will denote the r+s-tuple obtained in the obvious way. If T is an endomorphism of V and b an r-tuple, Tb will denote the r-tuple obtained by letting T act componentwise. If $\Omega: V \times V \to \mathfrak{k}$ is a function, b_1, b_2 r- and s-tuples then $\Omega(b_1, b_2)$ will denote the $r \times s$ matrix with *ij*-th entry $\Omega(v_i, w_j), b_1 = (v_1, \dots, v_r), b_2 = (w_1, \dots, w_s)$. If Ω is bilinear, A an $r \times p$ matrix, B an $s \times q$ matrix then

 $\Omega(b_1 \cdot A, b_2 \cdot B) = A^T \Omega(b_1, b_2) B$

where A^T denotes the transpose of A. There is an obvious modification if $\mathfrak{k} = \mathbb{C}$ and Ω is anti-linear in one of its arguments.

Let J_n denote the $2n \times 2n$ matrix whose only non-zero entries are $(J_n)_{i,n+i} = 1$, $(J_n)_{n+i,i} = -1$, i = 1, ..., n. The real symplectic group Sp_n consists of all real $2n \times 2n$ matrices g with $gJ_ng^T = J_n$.

Let U_n be the subgroup of all g in Sp_n with $gJ_n = J_n g$, then U_n is maximal compact in Sp_n and isomorphic to U(n). We shall identify U_n and U(n). Explicitly, if $U + iV \in U(n)$ then

$$\begin{bmatrix} U & -V \\ V & U \end{bmatrix}$$

will be the corresponding element of U_n .

Positive Almost-Complex Structures and Positive Lagrangian Sub-Bundles

Let X be a smooth manifold and (E, ω) a symplectic vector bundle over X. E is a real vector bundle of fibre dimension 2n and ω_x a non-singular skew-symmetric bilinear form on E_x for each $x \in X$. A 2n-tuple b of elements of E_x is called a symplectic frame at x if $\omega_x(b,b) = J_n$. If $g \in \text{Sp}_n$, $b \cdot g$ is again a symplectic frame at x, and the space $B(E, \omega)$ of all symplectic frames of E is a principal Sp_n bundle over X.

Since U(n) is maximal compact in Sp_n, $B(E, \omega)$ can be reduced to a U(n) bundle and in this way Chern classes $c_i(E, \omega) \in H^{2i}(X, \mathbb{Z})$, i = 1, ..., n are associated to (E, ω) . They are independent of the reduction. A smooth section J of End E will be called a positive, compatible almost-complex structure (PCACS) in (E, ω) if

- (i) $J_x^2 = -1$, $\forall x \in X$; and
- (ii) $S_x^J(v, w) = \omega_x(v, J_x w), \quad v, w \in E_x$

defines a symmetric, positive definite bilinear form on E_x for each $x \in X$. Then we may define

$$B(E, \omega, J) = \{b \in B(E, \omega) | b = (b_1, b_2) \text{ with } b_2 = Jb_1\}.$$

 $B(E, \omega, J)$ is a reduction of $B(E, \omega)$ to a U(n) bundle and every reduction arises this way. Let E^J denote E regarded as a complex *n*-dimensional vector bundle by means of the PCACS J. E^J has a Hermitian structure H^J given by

$$H_x^J(v,w) = S_x^J(v,w) - i\omega_x(v,w), \quad v,w \in E_x^J.$$

If b_1 is an H_x^J -orthonormal frame for E_x^J then $(b_1, Jb_1) \in B(E, \omega, J)_x$ and conversely. Thus $B(E, \omega, J)$ can be identified with the bundle of orthonormal frames for E^J and the $c_i(E, \omega)$ are the Chern classes of the complex vector bundle E^J .

Let $E^{\mathbb{C}}$ denote the complexification of E, extend ω by linearity and let \overline{v} denote complex conjugation in $E^{\mathbb{C}}$. A sub-bundle F of $E^{\mathbb{C}}$ is called a positive Lagrangian

sub-bundle (PLS) if

(i) $\dim_{\mathbb{C}} F_x = n$, $\forall x \in X$; (ii) $\omega_x(v, w) = 0$, $\forall v, w \in F_x$, $x \in X$; (iii) $-i\omega_x(v, \overline{v}) \ge 0$, $\forall v \in F_x$, $x \in X$.

In addition we say F is positive definite if $-i\omega_x(v, \bar{v}) > 0$ for all non-zero v in F_x , x in X. According to the proof of Lemma 3.11 in [1], if F is a PLS, F is positive definite if and only if $F \cap \bar{F} = 0$, in which case $E^{\mathbb{C}} = F \oplus \bar{F}$ is a direct sum. Further, if F and G are PLS's then $F \cap \bar{G} = \bar{F} \cap G = (F \cap \bar{F}) \cap (G \cap \bar{G})$ and in particular $F \cap \bar{G} = 0$ for all PLS's F if G is positive definite.

If J is a PCACS, extend it to $E^{\mathbb{C}}$ by linearity, then $P^J = \frac{1}{2}(1-iJ)$ is a field of projections; let $F^J = P^J(E^{\mathbb{C}}) = P^J(E)$. It is easily checked that F^J is a PLS and is positive definite. $P^J : E^J \to F^J$ is a complex linear isomorphism and the kernel of P^J on $E^{\mathbb{C}}$ is $\overline{F^J}$. But $F \cap \overline{F^J} = 0$ for any PLS F by the remarks in the previous paragraph so P^J regarded as a map from F into F^J is also an isomorphism. Thus as complex vector bundles $F \cong F^J \cong E^J$ for any PLS F and PCACS J. In particular the Chern classes of a PLS F are $c_i(E, \omega), i = 1, ..., n$. Further the Hermitian structure H^J on E^J transports, via the above isomorphisms, to F. It follows that fixing a PCACS J gives an isomorphism of a U(n) bundle of orthonormal frames of F with a U(n)-reduction of $B(E, \omega)$.

Let F be a PLS of $E^{\mathbb{C}}$ and F^0 the sub-bundle of the dual $(E^{\mathbb{C}})^*$ of all linear forms vanishing on F. Let $v \mapsto v^{\omega} = \omega(v, \cdot)$ be the isomorphism of $E^{\mathbb{C}}$ with $(E^{\mathbb{C}})^*$ determined by ω . F is Lagrangian when $F^{\omega} = F^0$, in particular for a PLS, F, and F^0 are isomorphic. Thus F^0 has dimension n and $K^F = A^n F^0$ is a line bundle, which we call the canonical bundle of F (denoted N^F by some authors). It follows K^F has $c_1(E, \omega)$ as its Chern class. If $b = (v_1, \dots, v_n)$ is a frame for F_x , set $b^{\omega} = v_1^{\omega} \wedge \dots \wedge v_n^{\omega}$, then b^{ω} is a frame for K_x^F and for all $g \in GL(n, \mathbb{C})$, $(b \cdot g)^{\omega} = \text{Det}[g] b^{\omega}$.

Square Roots, Metalinear and Metaplectic Structures

The groups Sp_n and $\text{GL}(n, \mathbb{C})$ have the same fundamental group as U(n) which is Z. All three groups have thus unique (up to isomorphism) connected double covering groups Mp_n , $ML(n, \mathbb{C})$, and MU(n) respectively, and MU(n) may be regarded as a maximal compact subgroup of both Mp_n and $ML(n, \mathbb{C})$. $ML(n, \mathbb{C})$ has a unique character $\text{Det}^{1/2}$ such that if $\sigma: ML(n, \mathbb{C}) \to \text{GL}(n, \mathbb{C})$ denotes the covering map,

$$(\operatorname{Det}^{1/2}[g])^2 = \operatorname{Det}[\sigma(g)], \quad g \in ML(n, \mathbb{C}).$$

The reason for introducing these groups is the existence of this square root; see [3].

Let (E, ω) be a symplectic vector bundle of dimension $2n, B(E, \omega)$ the Sp_n bundle of symplectic frames and $\pi: B(E, \omega) \to X$ the projection. A metaplectic structure on (E, ω) is an isomorphism class of double coverings $\sigma: \tilde{B} \to B(E, \omega)$ by principal Mp_n bundles $\tilde{\pi}: \tilde{B} \to X$ such that

$$\begin{array}{ccc} \tilde{B} \times Mp_n & \to & \tilde{B} \underbrace{\tilde{\pi}}_{\sigma \times \sigma \downarrow} & & \\ \sigma \downarrow & & \sigma \downarrow & \\ B(E, \omega) \times \operatorname{Sp}_n & \to & B(E, \omega) \end{array}$$

commutes, horizontal arrows being given by group actions and where two such coverings \tilde{B}_1, \tilde{B}_2 are isomorphic if there is a diffeomorphism $\tau: \tilde{B}_1 \to \tilde{B}_2$ such that

commutes.

The notion of metalinear structure in a PLS F is defined analogously in terms of double coverings of its frame bundle B(F) by principal $ML(n, \mathbb{C})$ bundles.

Let F have a metalinear structure $\sigma: \tilde{B} \to B(F)$ (it is convenient to work with representatives rather than isomorphism classes). Pick a PCACS J, transfer H^J from E^J to F as before and reduce B(F) to a U(n) bundle B(F, J). Then $\sigma^{-1}(B(F, J)) = \tilde{B}^J$ is an MU(n)-bundle and hence $\tilde{B}^J \times_{MU(n)} Mp_n$ a principal Mp_n bundle. Using the isomorphisms $B(E, \omega) \cong B(E, \omega, J) \times_{U(n)} Sp_n$ and $B(F, J) \cong B(E, \omega, J)$ it is easy to exhibit $\tilde{B}^J \times_{MU(n)} Mp_n$ as a double covering of $B(E, \omega)$ giving (E, ω) a metaplectic structure. This sets up a bijection between the metaplectic structures on (E, ω) and metalinear structures on F. The condition for these to exist is $c_1(E, \omega) \equiv 0 \mod 2$ and $H^1(X, \mathbb{Z}_2)$ acts simply-transitively on both sets of structures. The bijection we have outlined intertwines this action.

If $\pi: K \to X$ is a complex line bundle over X, a square root of K is an isomorphism class of pairs (Q, i) where Q is a line bundle over X and i an isomorphism of $Q \otimes Q$ with K. Two pairs $(Q_r, i_r)r = 1, 2$ being isomorphic if there is an isomorphism $\tau: Q_1 \to Q_2$ of line bundles with $i_2 \circ \tau \otimes \tau = i_1$. K has a square root if and only if its Chern class is zero modulo 2, and $H^1(X, \mathbb{Z}_2)$ parametrizes the set of square roots.

Let (E, ω) be a symplectic vector bundle, $F \in E^{\mathbb{C}}$ a PLS then F has a metalinear structure if and only if K^F has a square root, since both conditions are equivalent to $c_1(E, \omega) \equiv 0 \mod 2$. In fact there is a bijection of metalinear structures and square roots as follows: We have $K^F \cong B(F) \times_{\operatorname{GL}(n,\mathbb{C})} \mathbb{C}$, $\operatorname{GL}(n,\mathbb{C})$ acting on \mathbb{C} by the character Det, so that if $\sigma: \tilde{B} \to B(F)$ is a metalinear structure, $\tilde{B} \times_{ML(n,\mathbb{C})} \mathbb{C}$ is a square root where $ML(n,\mathbb{C})$ acts on \mathbb{C} by $\operatorname{Det}^{1/2}$. Conversely, let (Q, i) be a square root for K^F and set

$$B = \{(b,q) \in B(F) \times Q | \pi b = \pi q, \quad b^{\omega} = i(q \otimes q)\}.$$

Let $ML(n, \mathbb{C})$ act on \tilde{B} on the right by

 $((b,q),g)\mapsto (b\cdot\sigma(g), \operatorname{Det}^{1/2}[g]q)$

and define $\sigma: \tilde{B} \to B(F)$ by $\sigma(b, q) = b$, then $\sigma: \tilde{B} \to B(F)$ is a metalinear structure on F. At the level of isomorphism classes this sets up the required bijection.

In [1] Blattner constructs specific metalinear structures and square roots for PLS's F and their canonical bundles K^F starting from a metaplectic structure on (E, ω) . This construction is compatible with the bijections described above. We denote this particular square root for K^F by (Q^F, i^F) . Corresponding with $F \cong G$ for two PLS's F and G we have $Q^F \cong Q^G$ as line bundles if they arise from the same metaplectic structure on (E, ω) . Indeed, one may consider a metaplectic structure on (E, ω) as a consistent assignment of square roots of the canonical bundles of all the

Polarizations

PLS's of $E^{\mathbb{C}}$. This consistency is necessary for the pairing. Sections of Q^F are called half-forms normal to F.

Densities and Pairings

Let GL_n denote $\operatorname{GL}(n, \mathbb{R})$ or $\operatorname{GL}(n, \mathbb{C})$ according to context. By complexifying one need really only consider the complex case. Let *D* be a real or complex *n*dimensional vector bundle and B(D) the principal GL_n bundle of frames of *D*. Let $\alpha \in \mathbb{R}$, then $\mu : B(D) \to \mathbb{C}$ is an α -density or density of order α on *D* if

 $\mu(b \cdot g) = |\text{Det}[g]|^{\alpha} \mu(b) \ \forall b \in B(D), \quad g \in \text{GL}_n.$

Let $\mathscr{D}^{\alpha}(D)$ denote the complex line bundle $B(D) \times_{GL_n} \mathbb{C}$ where GL_n acts on \mathbb{C} by the character $|\text{Det}[\cdot]|^{\alpha}$. Then the α -densities on D can be identified with the sections of $\mathscr{D}^{\alpha}(D)$. We identify $\mathscr{D}^{\alpha}(D)$ with $\mathscr{D}^{\alpha}(D^{\mathbb{C}})$ in the obvious way for any real bundle D.

If μ is an α -density, $\nu a \beta$ -density on D then the pointwise product $\mu\nu$ is an $(\alpha + \beta)$ density. If $D \subset E$ is a sub-bundle and $\lambda \in \Gamma \mathscr{D}^1(E)$ a nowhere vanishing section, there is an isomorphism of $\mathscr{D}^{\alpha}(D)$ with $\mathscr{D}^{-\alpha}(E/D)$ given by

$$\tilde{\mu}(b) = \mu(e)/\lambda(e, b)$$

where $\mu \in \mathscr{D}^{\alpha}(D)$, $\tilde{b} \in B(E/D)$, $(e, b) \in B(E)$ such that b projects onto \tilde{b} . In particular, if (E, ω) is symplectic one can choose the Liouville density λ defined by $\lambda(b) = 1$ for b in $B(E, \omega)$. This is consistent since Det[g] = 1 for all g in Sp_n .

Let (E, ω) be a sympletic vector bundle over X, F, G PLS's. We shall suppose $F \cap \overline{G}$ has constant dimension and then $F \cap \overline{G} = D^{\mathbb{C}}$ for some real sub-bundle D of E. D is isotropic:

 $\omega_{\mathbf{x}}(v,w) = 0 \ \forall v, w \in D_{\mathbf{x}}, x \in X,$

If $D \in E$ is any isotropic sub-bundle and

 $D^{\perp} = \{ v \in E | \omega(v, w) = 0 \ \forall w \in D \}$

then $D \in D^{\perp}$ and D is the kernel of the restriction of ω to D^{\perp} . Hence there is an induced symplectic structure ω/D on D^{\perp}/D by setting

 $(\omega/D)_{x}(\tilde{v},\tilde{w}) = \omega_{x}(v,w)$

where $\tilde{v}, \tilde{w} \in (D^{\perp}/D)_x$ and $v, w \in D_x^{\perp}$ project to \tilde{v}, \tilde{w} respectively. It may easily be checked that if $F \cap \overline{G} = D^{\mathbb{C}}$, then $F \subset (D^{\perp})^{\mathbb{C}}$, as is G, and F and G project to PLS's F/D, G/D of $(D^{\perp}/D)^{\mathbb{C}}$ where $F/D \cap \overline{G/D} = 0$.

If F, G are PLS's of $E^{\mathbb{C}}$, we say F and G are transverse if $F \cap \overline{G} = 0$ (this is not consistent with the usual notion of transverse, $E^{\mathbb{C}} = \overline{F} + G$, but should not cause confusion). In the general case where $F \cap \overline{G} = D^{\mathbb{C}}$, we reduce to the transverse case by passing to the quotient $(D^{\perp}/D, \omega/D)$. Let $F \cap \overline{G} = 0$ and $\beta \in K_x^F$, $\gamma \in K_x^G$ then $\beta \wedge \overline{\gamma} \in A^{2n}(E^{\mathbb{C}})^*$ and is non-zero if β and γ both are, so K^F and K^G are non-singularly paired by $(\beta, \gamma) \mapsto \beta \wedge \overline{\gamma}$.

If $F \cap \overline{G} = D^{\mathbb{C}}$ we need some way of passing from K^F to $K^{F/D}$. Observe that if b is a frame for F_x and $\beta \in K_x^F$ then $\beta = fb^{\omega}$ for some $f \in \mathbb{C}$. If e is a frame for D_x it can

always be extended to a frame $(e, b_1) = b$ for F, and $b^{\omega} = e^{\omega} \wedge b_1^{\omega}$. Thus $\beta = e^{\omega} \wedge \beta_1$ where $\beta_1 = f b_1^{\omega}$. Moreover b_1 projects to a frame \tilde{b}_1 for $(F/D)_x$. We set

$$\tilde{\beta}_e = f \tilde{b}_1^{\omega/D}$$

One may easily check that $\tilde{\beta}_e$ depends only on e and not the choice of b_1 extending e to a frame of F_x . Clearly $\tilde{\beta}_e \in K_x^{F/D}$ and

$$\tilde{\beta}_{e \cdot g} = \operatorname{Det}[g]^{-1} \tilde{\beta}_{e}, \ g \in \operatorname{GL}_{k}$$

where $k = \dim D$. Since $K^{F/D}$ and $K^{G/D}$ are non-singularly paired we obtain, for each $\beta \in \Gamma K^F$, $\gamma \in \Gamma K^G$ a function $\langle \beta, \gamma \rangle_0$ on B(D) from

$$\langle \beta, \gamma \rangle_0(e) \lambda^{D^\perp/D} = (-1)^{n-k} \tilde{\beta}_e \wedge \tilde{\tilde{\gamma}}_e, \ e \in B(D)$$

where $\lambda^{D^{\perp}/D}$ denotes the Liouville volume on $D^{\perp}/D(\lambda^{D^{\perp}/D}(b) = 1$ if $b \in B(D^{\perp}/D, \omega/D))$. $\langle \cdot, \cdot \rangle_0$ is a nonsingular sesquilinear pairing of $K^F \times K^G$ into $\mathcal{D}^{-2}(D)$. Let $\langle \cdot, \cdot \rangle$ be the corresponding pairing into $\mathcal{D}^2(E/D)$ obtained from $\langle \cdot, \cdot \rangle_0$ using the Liouville density to identify $\mathcal{D}^2(E/D)$ and $\mathcal{D}^{-2}(D)$.

To obtain an explicit formula for $\langle \cdot, \cdot \rangle_0$, choose a frame *e* for *D*, an extension (e, b_1) to a frame for *F*, (e, b_2) to a frame for *G* with $\omega(b_1, \overline{b}_2) = 1$, then $(\tilde{b}_1, \tilde{b}_2)$ is a (complex) symplectic frame for $D^{\perp}/D^{\mathbb{C}}$. Thus

$$\langle \beta, \gamma \rangle_0(e) = (-1)^{n-k} \tilde{\beta}_e \wedge \overline{\tilde{\gamma}_e}(\tilde{b}_1, \overline{\tilde{b}_2}) = \beta(f, \overline{b_2}) \overline{\gamma}(f, b_1) \tag{(*)}$$

where $(e, b_1, f, \overline{b}_2)$ is an extension to a (complex) symplectic frame of $E^{\mathbb{C}}$. In [1] Blattner constructs pairings

$$\langle \cdot, \cdot \rangle_0 : Q^F \times Q^G \to \mathscr{D}^{-1}(D), \ \langle \cdot, \cdot \rangle : Q^F \times Q^G \to \mathscr{D}^1(E/D)$$

and Theorem 3.20 of [1], together with the formula (*) shows

$$\langle i^{F}(\varphi \otimes \varphi), i^{G}(\psi \otimes \psi) \rangle_{0} = \langle \varphi, \psi \rangle_{0}^{2}$$

for $\varphi \in \Gamma Q^F$, $\psi \in \Gamma Q^G$. Thus the pairing of canonical bundles determines the half-form pairing up to a global sign. This may be sufficient in many applications.

Flat Partial Connections

A partial connection is a covariant derivative V_{ξ} defined only for ξ in a sub-bundle Fof the tangent bundle. Let F be a sub-bundle of TX or $TX^{\mathbb{C}}$. F is called involutive if $\xi, \eta \in \Gamma F \Rightarrow [\xi, \eta] \in \Gamma F$. If $f \in C^{\infty}(X)$ let $d^{F}f$ denote the restriction of df to F. It is a section of F^* , where F^* is the dual bundle of F. Let E be a real or complex (it must be complex if F is) vector bundle. An F-connection in E is a linear map $V: \Gamma E \to \Gamma F^* \otimes E$ with

$$\nabla fs = f \nabla s + d^F f \otimes s$$

for all $f \in C^{\infty}(X)$, $s \in \Gamma E$. Then for $\xi \in \Gamma F$ one may define ∇_{ξ} by

$$\nabla_{\varepsilon} s = (\nabla s)(\xi)$$

Polarizations

regarding $F^* \otimes E$ as Hom(F, E). The F-connection V is said to be flat if

$$[V_{\xi}, V_n]s = V_{[\xi, n]}s$$

for all $\xi, \eta \in \Gamma F$, $s \in \Gamma E$. Some properties of flat *F*-connections in line bundles are studied in [5].

The Lie derivative in any bundle associated to the frame bundle of the normal bundle of F defines a flat F-connection. In the case F is real and integrable this is the flat connection along the leaves due to Bott. Two special cases in the symplectic situation are $D \subset TX$, isotropic and $F \subset TX^{\mathbb{C}}$, a PLS on a symplectic manifold (X, ω) . Then $\mathscr{D}^{\alpha}(TX/D)$ has a flat D-connection. Since $F^{0} \cong (TX^{\mathbb{C}}/F)^{*}$, K^{F} has a flat Fconnection. But ΓK^{F} consists of differential forms so the Lie derivative is given by

 $\theta(\xi) = i(\xi) \cdot d + d \circ i(\xi), \quad \xi \in \Gamma F.$

However for $\beta \in \Gamma K^F$, $i(\xi)\beta = 0$ so that

 $\nabla_{z}\beta = i(\xi)d\beta, \ \xi \in \Gamma F$

defines the natural flat F-connection in K^F .

Let (X, ω) be a symplectic manifold, then a positive polarization is an involutive PLS $F \in TX^{\mathbb{C}}$. If (TX, ω) admits a metaplectic structure, we have the square root (Q^F, i^F) of K^F . As observed by Gawedzki in [2], a flat *F*-connection V in K^F induces a unique flat *F*-connection $V^{1/2}$ in Q^F such that

$$\nabla_{z} i^{F}(\phi \otimes \psi) = i^{F}(\nabla_{z}^{1/2} \phi \otimes \psi + \phi \otimes \nabla_{z}^{1/2} \psi), \quad \xi \in \Gamma F, \quad \phi, \psi \in \Gamma Q^{F}.$$

Let D
ightharpow TX be isotropic, and $D^{\perp}
ightharpow TX$ its orthogonal complement with respect to ω as before, so that $D
ightharpow D^{\perp}$. If dim D = k, dim X = 2n then dim $D^{\perp}/D = 2(n-k)$. For x
ightharpow X choose any neighbourhood U with a 2(n-k)-tuple b of vector fields in D^{\perp} on U with $\omega(b, b) = J_{n-k}$ at each point of U. Then b spans a complement of D in D^{\perp} on U and projects to a symplectic frame field for $(D^{\perp}/D, \omega/D)$ on U. Writing $b = (v_1, \ldots, v_{n-k}, w_1, \ldots, w_{n-k})$ we define

$$\theta_x^D(v) = \sum_{i=1}^{n-k} \omega_x([v_i, w_i], v), \quad v \in D_x.$$

Then θ_x^D is independent of the choice of frame-field b with the above properties and defines a smooth section of D^* . This is Blattner's obstruction to projecting the half-form pairing to X/D. One may compute

$$\nabla_{\xi}\langle\beta,\gamma\rangle = \langle\nabla_{\xi}\beta,\gamma\rangle + \langle\beta,\nabla_{\xi}\gamma\rangle - \theta^{D}(\xi)\langle\beta,\gamma\rangle$$

where $\beta \in \Gamma K^F$, $\gamma \in \Gamma K^G$, $F \cap \overline{G} = D^{\mathbb{C}}$, $\xi \in \Gamma D$. We thus obtain the obstruction at the canonical bundle level.

References

- 1. Blattner, R. J.: The metalinear geometry of non-real polarizations. In: Differential geometric methods in mathematical physics. Lecture notes in mathematics, Vol. 570. Berlin-Heidelberg-New York: Springer 1977
- Gawedzki, K.: Fourier-like kernels in geometric quantization. Dissertationes Mathematicae No. 128, Warsaw 1976
- 3. Kostant, B.: Symplectic spinors. Symposia mathematica, Vol. 14. London: Academic Press 1974

- 4. Kostant, B.: On the definition of quantization. CNRS Colloquium on Symplectic Geometry in Mathematical Physics, Aix-en-Provence 1974
- Rawnsley, J. H.: On the cohomology groups of a polarization and diagonal quantization. Trans. Am. Math. Soc. 230, 235-255 (1977)
- 6. Simms, D.J., Woodhouse, N.M.J.: Lectures on geometric quantization. Lecture notes in physics, Vol. 53, Berlin-Heidelberg-New York: Springer 1976
- 7. Sniatycki, J.: Geometric quantization and quantum mechanics. Part I. Elements of geometric quantization. Research Paper No. 328: Department of Mathematics, University of Calgary, December 1976

Communicated by J. Glimm

Received October 14, 1977