On the Pairing of Polarizations

J. H. Rawnsley
Dublin Institute for Advanced Studies, School of Theoretical Physics, Drblinis 4 , Ireland

Abstract

If F is a positive Lagrangian sub-bundle of a symplectic vecter (E, ω) we show by elementary means that the Chern classes of F are determined. by ω. The notions of metaplectic structure for (E, ω), metalinear structure for and square root of K^{F}, the canonical bundle of F are shown to be essentially the same. If F and G are two positive Lagrangian sub-bundles with $F \cap \bar{G}=D^{\mathbb{C}}$, we define a pairing of K^{F} and K^{G} into the bundle $\mathscr{D}^{-2}(D)$ of densities of order -2 on D. This is the square of Blattner's half-form pairing and so characterizes the latter up to a sign.

Introduction

In order to construct a Hilbert space in the theory of geometric quantization [4, 6, 7], Kostant [3] introduced the notion of half-form normal to a positive polarization. If two positive polarizations F and G are such that $F \cap \bar{G}=D^{\mathbb{C}}$ is smooth, Blattner [1] showed the existence of a pairing of the half forms normal to F and G into the densities of order -1 on D.

If $F \cap \bar{G}=0, \beta \in \Gamma K^{F}, \gamma \in \Gamma K^{G}, K^{F}, K^{G}$ the canonical bundles of F and G, then $\beta \wedge \bar{\gamma}$ is a non-singular pairing of K^{F} and K^{G} into the volumes on X. Dividing by the Liouville volume gives a function $\langle\beta, \gamma\rangle_{0}$. In the general case where $F \cap \bar{G}=D^{\mathbb{C}}$, we observe that F and G project into D^{\perp} / D to give Lagrangian sub-bundles $F / D, G / D$ satisfying $F / D \cap \overline{G / D}=0$. Thus by dividing out the intersection we can reduce to the case where $F \cap \bar{G}=0$ and use the exterior product to define a pairing. This pairing is shown to be the square of Blattner's half-form pairing. It is often easier to compute this pairing of the canonical bundles and use continuity arguments to deduce properties of the half-form pairing.

Notation. Let V be a vector space over a field $\mathfrak{f}, b=\left(v_{1}, \ldots, v_{r}\right)$ an r-tuple of elements of V and $A=\left(A_{i j}\right)$ an $r \times s$ matrix over \mathfrak{f} then $b \cdot A$ will denote the s-tuple with j-th entry $\sum_{i=1}^{r} A_{i j} v_{i}$. If b_{1}, b_{2} are r - and s-tuples, $\left(b_{1}, b_{2}\right)$ will denote the $r+s$-tuple obtained in the obvious way. If T is an endomorphism of V and b an r-tuple, $T b$ will denote the r-tuple obtained by letting T act componentwise.

If $\Omega: V \times V \rightarrow f$ is a function, $b_{1}, b_{2} r$ - and s-tuples then $\Omega\left(b_{1}, b_{2}\right)$ will denote the $r \times s$ matrix with $i j$-th entry $\Omega\left(v_{i}, w_{j}\right), b_{1}=\left(v_{1}, \ldots, v_{r}\right), b_{2}=\left(w_{1}, \ldots, w_{s}\right)$. If Ω is bilinear, A an $r \times p$ matrix, B an $s \times q$ matrix then

$$
\Omega\left(b_{1} \cdot A, b_{2} \cdot B\right)=A^{T} \Omega\left(b_{1}, b_{2}\right) B
$$

where A^{T} denotes the transpose of A. There is an obvious modification if $\mathfrak{f}=\mathbb{C}$ and Ω is anti-linear in one of its arguments.

Let J_{n} denote the $2 n \times 2 n$ matrix whose only non-zero entries are $\left(J_{n}\right)_{i, n+i}=1$, $\left(J_{n}\right)_{n+i, i}=-1, i=1, \ldots, n$. The real symplectic group Sp_{n} consists of all real $2 n \times 2 n$ matrices g with $g J_{n} g^{T}=J_{n}$.

Let U_{n} be the subgroup of all g in Sp_{n} with $g J_{n}=J_{n} g$, then U_{n} is maximal compact in Sp_{n} and isomorphic to $U(n)$. We shall identify U_{n} and $U(n)$. Explicitly, if $U+i V \in U(n)$ then

$$
\left[\begin{array}{cc}
U & -V \\
V & U
\end{array}\right]
$$

will be the corresponding element of U_{n}.

Positive Almost-Complex Structures and Positive Lagrangian Sub-Bundles

Let X be a smooth manifold and (E, ω) a symplectic vector bundle over X. E is a real vector bundle of fibre dimension $2 n$ and ω_{x} a non-singular skew-symmetric bilinear form on E_{x} for each $x \in X$. A $2 n$-tuple b of elements of E_{x} is called a symplectic frame at x if $\omega_{x}(b, b)=J_{n}$. If $g \in \mathrm{Sp}_{n}, b \cdot g$ is again a symplectic frame at x, and the space $B(E, \omega)$ of all symplectic frames of E is a principal Sp_{n} bundle over X.

Since $U(n)$ is maximal compact in $\mathrm{Sp}_{n}, B(E, \omega)$ can be reduced to a $U(n)$ bundle and in this way Chern classes $c_{i}(E, \omega) \in H^{2 i}(X, \mathbb{Z}), i=1, \ldots, n$ are associated to (E, ω). They are independent of the reduction. A smooth section J of End E will be called a positive, compatible almost-complex structure (PCACS) in (E, ω) if
(i) $J_{x}^{2}=-1, \quad \forall x \in X$; and
(ii) $S_{x}^{J}(v, w)=\omega_{x}\left(v, J_{x} w\right), \quad v, w \in E_{x}$
defines a symmetric, positive definite bilinear form on E_{x} for each $x \in X$. Then we may define

$$
B(E, \omega, J)=\left\{b \in B(E, \omega) \mid b=\left(b_{1}, b_{2}\right) \quad \text { with } \quad b_{2}=J b_{1}\right\}
$$

$B(E, \omega, J)$ is a reduction of $B(E, \omega)$ to a $U(n)$ bundle and every reduction arises this way. Let E^{J} denote E regarded as a complex n-dimensional vector bundle by means of the PCACS $J . E^{J}$ has a Hermitian structure H^{J} given by

$$
H_{x}^{J}(v, w)=S_{x}^{J}(v, w)-i \omega_{x}(v, w), \quad v, w \in E_{x}^{J}
$$

If b_{1} is an H_{x}^{J}-orthonormal frame for E_{x}^{J} then $\left(b_{1}, J b_{1}\right) \in B(E, \omega, J)_{x}$ and conversely. Thus $B(E, \omega, J)$ can be identified with the bundle of orthonormal frames for E^{J} and the $c_{i}(E, \omega)$ are the Chern classes of the complex vector bundle E^{J}.

Let $E^{\mathbb{C}}$ denote the complexification of E, extend ω by linearity and let \bar{v} denote complex conjugation in $E^{\mathbb{C}}$. A sub-bundle F of $E^{\mathbb{C}}$ is called a positive Lagrangian
sub-bundle (PLS) if
(i) $\operatorname{dim}_{\mathbb{C}} F_{x}=n, \quad \forall x \in X$;
(ii) $\omega_{x}(v, w)=0, \quad \forall v, w \in F_{x}, \quad x \in X$;
(iii) $-i \omega_{x}(v, \bar{v}) \geqq 0, \quad \forall v \in F_{x}, \quad x \in X$.

In addition we say F is positive definite if $-i \omega_{x}(v, \bar{v})>0$ for all non-zero v in F_{x}, x in X. According to the proof of Lemma 3.11 in [1], if F is a PLS, F is positive definite if and only if $F \cap \bar{F}=0$, in which case $E^{\mathbb{C}}=F \oplus \bar{F}$ is a direct sum. Further, if F and G are PLS's then $F \cap \bar{G}=\bar{F} \cap G=(F \cap \bar{F}) \cap(G \cap \bar{G})$ and in particular $F \cap \bar{G}=0$ for all PLS's F if G is positive definite.

If J is a PCACS, extend it to $E^{\mathbb{C}}$ by linearity, then $P^{J}=\frac{1}{2}(1-i J)$ is a field of projections; let $F^{J}=P^{J}\left(E^{\mathbb{C}}\right)=P^{J}(E)$. It is easily checked that F^{J} is a PLS and is positive definite. $P^{J}: E^{J} \rightarrow F^{J}$ is a complex linear isomorphism and the kernel of P^{J} on $E^{\mathbb{C}}$ is $\overline{F^{J}}$. But $F \cap \bar{F}^{J}=0$ for any PLS F by the remarks in the previous paragraph so P^{J} regarded as a map from F into F^{J} is also an isomorphism. Thus as complex vector bundles $F \cong F^{J} \cong E^{J}$ for any PLS F and PCACS J. In particular the Chern classes of a PLS F are $c_{i}(E, \omega), i=1, \ldots, n$. Further the Hermitian structure H^{J} on E^{J} transports, via the above isomorphisms, to F. It follows that fixing a PCACS J gives an isomorphism of a $U(n)$ bundle of orthonormal frames of F with a $U(n)$-reduction of $B(E, \omega)$.

Let F be a PLS of $E^{\mathbb{C}}$ and F^{0} the sub-bundle of the dual $\left(E^{\mathbb{C}}\right)^{*}$ of all linear forms vanishing on F. Let $v \mapsto v^{\omega}=\omega(v, \cdot)$ be the isomorphism of $E^{\mathbb{C}}$ with $\left(E^{\mathscr{C}}\right) *$ determined by $\omega . F$ is Lagrangian when $F^{\omega}=F^{0}$, in particular for a PLS, F, and F^{0} are isomorphic. Thus F^{0} has dimension n and $K^{F}=\Lambda^{n} F^{0}$ is a line bundle, which we call the canonical bundle of F (denoted N^{F} by some authors). It follows K^{F} has $c_{1}(E, \omega)$ as its Chern class. If $b=\left(v_{1}, \ldots, v_{n}\right)$ is a frame for F_{x}, set $b^{\omega}=v_{1}^{\omega} \wedge \ldots \wedge v_{n}^{\omega}$, then b^{ω} is a frame for K_{x}^{F} and for all $g \in \operatorname{GL}(n, \mathbb{C}),(b \cdot g)^{\omega}=\operatorname{Det}[g] b^{\omega}$.

Square Roots, Metalinear and Metaplectic Structures

The groups Sp_{n} and $\mathrm{GL}(n, \mathbb{C})$ have the same fundamental group as $U(n)$ which is \mathbb{Z}. All three groups have thus unique (up to isomorphism) connected double covering groups $M p_{n}, M L(n, \mathbb{C})$, and $M U(n)$ respectively, and $M U(n)$ may be regarded as a maximal compact subgroup of both $M p_{n}$ and $M L(n, \mathbb{C}) . M L(n, \mathbb{C})$ has a unique character Det ${ }^{1 / 2}$ such that if $\sigma: M L(n, \mathbb{C}) \rightarrow \mathrm{GL}(n, \mathbb{C})$ denotes the covering map,

$$
\left(\operatorname{Det}^{1 / 2}[g]\right)^{2}=\operatorname{Det}[\sigma(g)], \quad g \in M L(n, \mathbb{C}) .
$$

The reason for introducing these groups is the existence of this square root ; see [3].
Let (E, ω) be a symplectic vector bundle of dimension $2 n, B(E, \omega)$ the Sp_{n} bundle of symplectic frames and $\pi: B(E, \omega) \rightarrow X$ the projection. A metaplectic structure on (E, ω) is an isomorphism class of double coverings $\sigma: \tilde{B} \rightarrow B(E, \omega)$ by principal $M p_{n^{-}}$ bundles $\tilde{\pi}: \tilde{B} \rightarrow X$ such that

commutes, horizontal arrows being given by group actions and where two such coverings $\tilde{B}_{1}, \tilde{B}_{2}$ are isomorphic if there is a diffeomorphism $\tau: \tilde{B}_{1} \rightarrow \tilde{B}_{2}$ such that

$$
\begin{aligned}
& \tilde{B}_{1} \times M p_{n} \rightarrow \tilde{B}_{1} \xrightarrow[\sigma_{1}]{\tilde{\pi}_{1}}{ }^{\tau \times \text { id } \downarrow} \\
& \tilde{B}_{2} \times M p_{n} \rightarrow \tilde{B}_{2} \xrightarrow[\tilde{\sigma}_{2} \not \sigma_{2}]{\sigma_{2}(E, \omega)} \tilde{\pi}_{2}
\end{aligned}
$$

commutes.
The notion of metalinear structure in a PLS F is defined analogously in terms of double coverings of its frame bundle $B(F)$ by principal $M L(n, \mathbb{C})$ bundles.

Let F have a metalinear structure $\sigma: \tilde{B} \rightarrow B(F)$ (it is convenient to work with representatives rather than isomorphism classes). Pick a PCACS J, transfer H^{J} from E^{J} to F as before and reduce $B(F)$ to a $U(n)$ bundle $B(F, J)$. Then $\sigma^{-1}(B(F, J))=\tilde{B}^{J}$ is an $M U(n)$-bundle and hence $\tilde{B}^{J} \times{ }_{M U(n)} M p_{n}$ a principal $M p_{n}$ bundle. Using the isomorphisms $B(E, \omega) \cong B(E, \omega, J) \times{ }_{U(n)} \mathrm{Sp}_{n}$ and $B(F, J) \cong B(E, \omega, J)$ it is easy to exhibit $\tilde{B}^{J} \times{ }_{M U(n)} M p_{n}$ as a double covering of $B(E, \omega)$ giving (E, ω) a metaplectic structure. This sets up a bijection between the metaplectic structures on (E, ω) and metalinear structures on F. The condition for these to exist is $c_{1}(E, \omega) \equiv 0 \bmod 2$ and $H^{1}\left(X, \mathbb{Z}_{2}\right)$ acts simply-transitively on both sets of structures. The bijection we have outlined intertwines this action.

If $\pi: K \rightarrow X$ is a complex line bundle over X, a square root of K is an isomorphism class of pairs (Q, i) where Q is a line bundle over X and i an isomorphism of $Q \otimes Q$ with K. Two pairs $\left(Q_{r}, i_{r}\right) r=1,2$ being isomorphic if there is an isomorphism $\tau: Q_{1} \rightarrow Q_{2}$ of line bundles with $i_{2} \circ \tau \otimes \tau=i_{1} . K$ has a square root if and only if its Chern class is zero modulo 2 , and $H^{1}\left(X, \mathbb{Z}_{2}\right)$ parametrizes the set of square roots.

Let (E, ω) be a symplectic vector bundle, $F \subset E^{\mathbb{C}}$ a PLS then F has a metalinear structure if and only if K^{F} has a square root, since both conditions are equivalent to $c_{1}(E, \omega) \equiv 0 \bmod 2$. In fact there is a bijection of metalinear structures and square roots as follows: We have $K^{F} \cong B(F) \times_{\mathrm{GL}(n, \mathbb{C})} \mathbb{C}, \mathrm{GL}(n, \mathbb{C})_{\tilde{B}}$ acting on \mathbb{C} by the character Det, so that if $\sigma: \tilde{B} \rightarrow B(F)$ is a metalinear structure, $\tilde{B} \times_{M L(n, \mathbb{C})} \mathbb{C}$ is a square root where $M L(n, \mathbb{C})$ acts on \mathbb{C} by $\operatorname{Det}^{1 / 2}$. Conversely, let (Q, i) be a square root for K^{F} and set

$$
\tilde{B}=\left\{(b, q) \in B(F) \times Q \mid \pi b=\pi q, \quad b^{\omega}=i(q \otimes q)\right\} .
$$

Let $M L(n, \mathbb{C})$ act on \tilde{B} on the right by

$$
((b, q), g) \mapsto\left(b \cdot \sigma(g), \operatorname{Det}^{1 / 2}[g] q\right)
$$

and define $\sigma: \tilde{B} \rightarrow B(F)$ by $\sigma(b, q)=b$, then $\sigma: \tilde{B} \rightarrow B(F)$ is a metalinear structure on F. At the level of isomorphism classes this sets up the required bijection.

In [1] Blattner constructs specific metalinear structures and square roots for PLS's F and their canonical bundles K^{F} starting from a metaplectic structure on (E, ω). This construction is compatible with the bijections described above. We denote this particular square root for K^{F} by $\left(Q^{F}, i^{F}\right)$. Corresponding with $F \cong G$ for two PLS's F and G we have $Q^{F} \cong Q^{G}$ as line bundles if they arise from the same metaplectic structure on (E, ω). Indeed, one may consider a metaplectic structure on (E, ω) as a consistent assignment of square roots of the canonical bundles of all the

PLS's of $E^{\mathbb{C}}$. This consistency is necessary for the pairing. Sections of Q^{F} are called half-forms normal to F.

Densities and Pairings

Let GL_{n} denote $\mathrm{GL}(n, \mathbb{R})$ or $\mathrm{GL}(n, \mathbb{C})$ according to context. By complexifying one need really only consider the complex case. Let D be a real or complex n dimensional vector bundle and $B(D)$ the principal GL_{n} bundle of frames of D. Let $\alpha \in \mathbb{R}$, then $\mu: B(D) \rightarrow \mathbb{C}$ is an α-density or density of order α on D if

$$
\mu(b \cdot g)=|\operatorname{Det}[g]|^{\alpha} \mu(b) \forall b \in B(D), \quad g \in \mathrm{GL}_{n}
$$

Let $\mathscr{D}^{\alpha}(D)$ denote the complex line bundle $B(D) \times{ }_{\text {GL }_{n}} \mathbb{C}$ where GL_{n} acts on \mathbb{C} by the character $|\operatorname{Det}[\cdot]|^{\alpha}$. Then the α-densities on D can be identified with the sections of $\mathscr{D}^{\alpha}(D)$. We identify $\mathscr{D}^{\alpha}(D)$ with $\mathscr{D}^{\alpha}\left(D^{\mathbb{C}}\right)$ in the obvious way for any real bundle D.

If μ is an α-density, ν a β-density on D then the pointwise product $\mu \nu$ is an $(\alpha+\beta)$ density. If $D \subset E$ is a sub-bundle and $\lambda \in \Gamma \mathscr{D}^{1}(E)$ a nowhere vanishing section, there is an isomorphism of $\mathscr{D}^{\alpha}(D)$ with $\mathscr{D}^{-\alpha}(E / D)$ given by

$$
\tilde{\mu}(\tilde{b})=\mu(e) / \lambda(e, b)
$$

where $\mu \in \mathscr{D}^{\alpha}(D), \tilde{b} \in B(E / D),(e, b) \in B(E)$ such that b projects onto \tilde{b}. In particular, if (E, ω) is symplectic one can choose the Liouville density λ defined by $\lambda(b)=1$ for b in $B(E, \omega)$. This is consistent since $\operatorname{Det}[g]=1$ for all g in Sp_{n}.

Let (E, ω) be a sympletic vector bundle over X, F, G PLS's. We shall suppose $F \cap \bar{G}$ has constant dimension and then $F \cap \bar{G}=D^{\mathbb{C}}$ for some real sub-bundle D of E. D is isotropic:

$$
\omega_{x}(v, w)=0 \forall v, w \in D_{x}, x \in X
$$

If $D \subset E$ is any isotropic sub-bundle and

$$
D^{\perp}=\{v \in E \mid \omega(v, w)=0 \forall w \in D\}
$$

then $D \subset D^{\perp}$ and D is the kernel of the restriction of ω to D^{\perp}. Hence there is an induced symplectic structure ω / D on D^{\perp} / D by setting

$$
(\omega / D)_{x}(\tilde{v}, \tilde{w})=\omega_{x}(v, w)
$$

where $\tilde{v}, \tilde{w} \in\left(D^{\perp} / D\right)_{x}$ and $v, w \in D_{x}^{\perp}$ project to \tilde{v}, \tilde{w} respectively. It may easily be checked that if $F \cap \bar{G}=D^{\mathbb{C}}$, then $F \subset\left(D^{\perp}\right)^{\mathbb{C}}$, as is G, and F and G project to PLS's F / D, G / D of $\left(D^{\perp} / D\right)^{\mathbb{C}}$ where $F / D \cap \overline{G / D}=0$.

If F, G are PLS's of $E^{\mathbb{C}}$, we say F and G are transverse if $F \cap \bar{G}=0$ (this is not consistent with the usual notion of transverse, $E^{\mathbb{C}}=\bar{F}+G$, but should not cause confusion). In the general case where $F \cap \bar{G}=D^{\mathbb{C}}$, we reduce to the transverse case by passing to the quotient ($D^{\perp} / D, \omega / D$). Let $F \cap \bar{G}=0$ and $\beta \in K_{x}^{F}, \gamma \in K_{x}^{G}$ then $\beta \wedge \bar{\gamma} \in \Lambda^{2 n}\left(E^{\mathbb{C}}\right)^{*}$ and is non-zero if β and γ both are, so K^{F} and K^{G} are non-singularly paired by $(\beta, \gamma) \mapsto \beta \wedge \bar{\gamma}$.

If $F \cap \bar{G}=D^{\mathbb{C}}$ we need some way of passing from K^{F} to $K^{F / D}$. Observe that if b is a frame for F_{x} and $\beta \in K_{x}^{F}$ then $\beta=f b^{\omega}$ for some $f \in \mathbb{C}$. If e is a frame for D_{x} it can
always be extended to a frame $\left(e, b_{1}\right)=b$ for F, and $b^{\omega}=e^{\omega} \wedge b_{1}^{\omega}$. Thus $\beta=e^{\omega} \wedge \beta_{1}$ where $\beta_{1}=f b_{1}^{\omega}$. Moreover b_{1} projects to a frame \tilde{b}_{1} for $(F / D)_{x}$. We set

$$
\tilde{\beta}_{e}=f \tilde{b}_{1}^{\omega / D}
$$

One may easily check that $\tilde{\beta}_{e}$ depends only on e and not the choice of b_{1} extending e to a frame of F_{x}. Clearly $\tilde{\beta}_{e} \in K_{x}^{F / D}$ and

$$
\tilde{\beta}_{e \cdot g}=\operatorname{Det}[g]^{-1} \tilde{\beta}_{e}, \quad g \in \mathrm{GL}_{k}
$$

where $k=\operatorname{dim} D$. Since $K^{F / D}$ and $K^{G / D}$ are non-singularly paired we obtain, for each $\beta \in \Gamma K^{F}, \gamma \in \Gamma K^{G}$ a function $\langle\beta, \gamma\rangle_{0}$ on $B(D)$ from

$$
\langle\beta, \gamma\rangle_{0}(e) \lambda^{D^{\perp} / D}=(-1)^{n-k} \tilde{\beta}_{e} \wedge \overline{\tilde{\gamma}}_{e}, \quad e \in B(D)
$$

where $\lambda^{D^{\perp} / D}$ denotes the Liouville volume on $D^{\perp} / D\left(\lambda^{D^{\perp} / D}(b)=1\right.$ if $\left.b \in B\left(D^{\perp} / D, \omega / D\right)\right)$. $\langle\cdot, \cdot\rangle_{0}$ is a nonsingular sesquilinear pairing of $K^{F} \times K^{G}$ into $\mathscr{D}^{-2}(D)$. Let $\langle\cdot, \cdot\rangle$ be the corresponding pairing into $\mathscr{D}^{2}(E / D)$ obtained from $\langle\cdot, \cdot\rangle_{0}$ using the Liouville density to identify $\mathscr{D}^{2}(E / D)$ and $\mathscr{D}^{-2}(D)$.

To obtain an explicit formula for $\langle\cdot, \cdot\rangle_{0}$, choose a frame e for D, an extension $\left(e, b_{1}\right)$ to a frame for $F,\left(e, b_{2}\right)$ to a frame for G with $\omega\left(b_{1}, \bar{b}_{2}\right)=1$, then $\left(\tilde{b}_{1}, \tilde{b}_{2}\right)$ is a (complex) symplectic frame for $D^{\perp} / D^{\mathbb{C}}$. Thus

$$
\begin{equation*}
\langle\beta, \gamma\rangle_{0}(e)=(-1)^{n-k} \tilde{\beta}_{e} \wedge \overline{\tilde{\gamma}}_{e}\left(\tilde{b}_{1}, \overline{\tilde{b}}_{2}\right)=\beta\left(f, \overline{b_{2}}\right) \bar{\gamma}\left(f, b_{1}\right) \tag{*}
\end{equation*}
$$

where $\left(e, b_{1}, f, \bar{b}_{2}\right)$ is an extension to a (complex) symplectic frame of $E^{\mathbb{C}}$. In [1] Blattner constructs pairings

$$
\langle\cdot, \cdot\rangle_{0}: Q^{F} \times Q^{G} \rightarrow \mathscr{D}^{-1}(D),\langle\cdot, \cdot\rangle: Q^{F} \times Q^{G} \rightarrow \mathscr{D}^{1}(E / D)
$$

and Theorem 3.20 of [1], together with the formula (*) shows

$$
\left\langle i^{F}(\varphi \otimes \varphi), i^{G}(\psi \otimes \psi)\right\rangle_{0}=\langle\varphi, \psi\rangle_{0}^{2}
$$

for $\varphi \in \Gamma Q^{F}, \psi \in \Gamma Q^{G}$. Thus the pairing of canonical bundles determines the halfform pairing up to a global sign. This may be sufficient in many applications.

Flat Partial Connections

A partial connection is a covariant derivative ∇_{ξ} defined only for ξ in a sub-bundle F of the tangent bundle. Let F be a sub-bundle of $T X$ or $T X^{\mathbb{C}} . F$ is called involutive if $\xi, \eta \in \Gamma F \Rightarrow[\xi, \eta] \in \Gamma F$. If $f \in C^{\infty}(X)$ let $d^{F} f$ denote the restriction of $d f$ to F. It is a section of F^{*}, where F^{*} is the dual bundle of F. Let E be a real or complex (it must be complex if F is) vector bundle. An F-connection in E is a linear map $\nabla: \Gamma E \rightarrow \Gamma F^{*} \otimes E$ with

$$
\nabla f_{s}=f \nabla s+d^{F} f \otimes s
$$

for all $f \in C^{\infty}(X), s \in \Gamma E$. Then for $\xi \in \Gamma F$ one may define ∇_{ξ} by

$$
\nabla_{\xi} s=(\nabla s)(\xi)
$$

regarding $F^{*} \otimes E$ as $\operatorname{Hom}(F, E)$. The F-connection ∇ is said to be flat if

$$
\left[\nabla_{\xi}, \nabla_{\eta}\right] s=\nabla_{[\xi, \eta]} s
$$

for all $\xi, \eta \in \Gamma F, s \in \Gamma E$. Some properties of flat F-connections in line bundles are studied in [5].

The Lie derivative in any bundle associated to the frame bundle of the normal bundle of F defines a flat F-connection. In the case F is real and integrable this is the flat connection along the leaves due to Bott. Two special cases in the symplectic situation are $D \subset T X$, isotropic and $F \subset T X^{\mathbb{C}}$, a PLS on a symplectic manifold (X, ω). Then $\mathscr{D}^{\alpha}(T X / D)$ has a flat D-connection. Since $F^{0} \cong\left(T X^{\mathbb{Q}} / F\right)^{*}, K^{F}$ has a flat F connection. But ΓK^{F} consists of differential forms so the Lie derivative is given by

$$
\theta(\xi)=i(\xi) \cdot d+d \circ i(\xi), \quad \xi \in \Gamma F .
$$

However for $\beta \in \Gamma K^{F}, i(\xi) \beta=0$ so that

$$
\nabla_{\xi} \beta=i(\xi) d \beta, \quad \xi \in \Gamma F
$$

defines the natural flat F-connection in K^{F}.
Let (X, ω) be a symplectic manifold, then a positive polarization is an involutive PLS $F \subset T X^{\Phi}$. If ($T X, \omega$) admits a metaplectic structure, we have the square root $\left(Q^{F}, i^{F}\right)$ of K^{F}. As observed by Gawedzki in [2], a flat F-connection ∇ in K^{F} induces a unique flat F-connection $\Gamma^{1 / 2}$ in Q^{F} such that

$$
\nabla_{\xi} i^{F}(\varphi \otimes \psi)=i^{F}\left(\nabla_{\xi}^{1 / 2} \varphi \otimes \psi+\varphi \otimes \nabla_{\xi}^{1 / 2} \psi\right), \quad \xi \in \Gamma F, \quad \varphi, \psi \in \Gamma Q^{F} .
$$

Let $D \subset T X$ be isotropic, and $D^{\perp} \subset T X$ its orthogonal complement with respect to ω as before, so that $D \subset D^{\perp}$. If $\operatorname{dim} D=k, \operatorname{dim} X=2 n$ then $\operatorname{dim} D^{\perp} / D=2(n-k)$. For $x \in X$ choose any neighbourhood U with a $2(n-k)$-tuple b of vector fields in D^{\perp} on U with $\omega(b, b)=J_{n-k}$ at each point of U. Then b spans a complement of D in D^{\perp} on U and projects to a symplectic frame field for ($D^{\perp} / D, \omega / D$) on U. Writing $b=\left(v_{1}, \ldots, v_{n-k}, w_{1}, \ldots, w_{n-k}\right)$ we define

$$
\theta_{x}^{D}(v)=\sum_{j=1}^{n-k} \omega_{x}\left(\left[v_{j}, w_{j}\right], v\right), \quad v \in D_{x} .
$$

Then θ_{x}^{D} is independent of the choice of frame-field b with the above properties and defines a smooth section of D^{*}. This is Blattner's obstruction to projecting the halfform pairing to X / D. One may compute

$$
\nabla_{\xi}\langle\beta, \gamma\rangle=\left\langle\nabla_{\xi} \beta, \gamma\right\rangle+\left\langle\beta, \nabla_{\xi} \gamma\right\rangle-\theta^{D}(\xi)\langle\beta, \gamma\rangle
$$

where $\beta \in \Gamma K^{F}, \gamma \in \Gamma K^{G}, F \cap \bar{G}=D^{\mathbb{C}}, \xi \in \Gamma D$. We thus obtain the obstruction at the canonical bundle level.

References

1. Blattner, R.J.: The metalinear geometry of non-real polarizations. In: Differential geometric methods in mathematical physics. Lecture notes in mathematics, Vol. 570. Berlin-HeidelbergNew York: Springer 1977
2. Gawedzki, K.: Fourier-like kernels in geometric quantization. Dissertationes Mathematicae No. 128, Warsaw 1976
3. Kostant, B.: Symplectic spinors. Symposia mathematica, Vol. 14. London: Academic Press 1974
4. Kostant,B.: On the definition of quantization. CNRS Colloquium on Symplectic Geometry in Mathematical Physics, Aix-en-Provence 1974
5. Rawnsley, J. H.: On the cohomology groups of a polarization and diagonal quantization. Trans. Am. Math. Soc. 230, 235-255 (1977)
6. Simms, D.J., Woodhouse, N.M.J.: Lectures on geometric quantization. Lecture notes in physics, Vol. 53, Berlin-Heidelberg-New York: Springer 1976
7. Sniatycki,J.: Geometric quantization and quantum mechanics. Part I. Elements of geometric quantization. Research Paper No. 328: Department of Mathematics, University of Calgary, December 1976

Communicated by J. Glimm

Received October 14, 1977

