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The Deterministic Version of the Glimm Scheme*
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Abstract. The Glimm scheme for solving hyperbolic conservation laws has a
stochastic feature it depends on a random sequence. The purpose of this paper
is to show that the scheme converges for any equidistributed sequence. Thus the
scheme becomes deterministic.

1. Introduction

We consider the initial value problem for the system of general conservation laws:

g + ̂ U , ^ 0 , -oo<*<oo, (1.1)

u(x,0) = uo(x), -co<x<oo, (1.2)

where u and f(u) are n-vectors, and / is a smooth function of u. The system is
assumed to be strictly hyperbolic, that is, the matrix df(u)/du has real and distinct
eigenvalues λί(ύ)<λ2(u)<... <λn(u) with corresponding right eigenvectors r^u),
r2(u\ ..., rn(u). Since (1.1), (1.2) in general does not have smooth solution we look for
weak solution in the distributional sense. A bounded measurable function u(x, t) is a
weak solution if

dxdt+ j uo{x)φ(xi0) = 0 (1.3)
ί = 0

for any smooth function φ(x, t) with compact support in ί^O.
In [1], Glimm introduces a difference scheme for solving (1.1), (1.2). We now

describe briefly the Glimm scheme. Choose any mesh lengths r, s, r/s bounded,
which satisfy the Courant-Friedrich-Lewy condition:

r
- > max \λXu)\
S ~ ί = l , 2 n I V n
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for any u under consideration. The approximate solution ur(x, t am) is constructed
inductively according to a prechosen sequence {αm}^=1, — l < α m < l , in the
following way. Set ur(x,0; am) = uo(ίr), ί odd, for (ί— l)r<x<(ί+ l)r. Suppose that
ur(x,t; am) is defined for t<js, then we set

ur(x9js;am) = ur((i+l + aj)r-OJs-O)9 ίr<x<(ί + 2)r. (1.4)

for any i = 0, + 1 , + 2,..., with i +j even. Thus ur(xjs αm) is a step function of x with
possible discontinuity at (zr,jfs), z +7 even. We then define ur(x,ί,am). js<t<(j+l)s,
by resolving these discontinuities, so that in the zone js < t < (j + l)s the approximate
solution is exact and consists of elementary waves issued from (irjs), i+j even.

Here we use Lax's solution [3] of (1.1)—(1.2) in the case when the initial data has a
single jump discontinuity. This problem is known as the Riemann problem and it is
sufficient to extend the solution forward by one time step, because of the Courant-
Friedrick-Lewry condition. In fact the waves in the solution of the Riemann
problem do not propagate faster than the local sound speeds λi9 and thus cannot
interact within one time step. However the solution so constructed at one time step
forward is no longer piecewise constant, and the role of (1.4) is an approximation
to restore this property. Thus in summary, the scheme pieces together solutions [3]
of Riemann problems to obtain an approximate solution for a general class of data
(restricted however to be nearly constant).

Glimm introduces a nonlinear functional to take care of non-linear wave
interactions. He shows that when the system (1.1) is genuinely nonlinear (cf. Lax [3])
and the initial data have sufficiently small total variation, then there exists a
constant independent of ί, r, and {am} such that

T . V . t φ , ί ; am)^constT.V.ι/0(x), (1.5)

where T.V. denotes the total variation over xe(— 00,00). It follows by a
compactness argument based on the Helly's theorem that the approximate
solutions converge to a function as r goes to zero. For the limiting function to be an
exact solution, it must satisfies (1.3). Since ur is not exact along t=jsJ = O, 1,2,...,
simple calculation yields:

j=0

(l.o)

,am)= £ EJr,φ,aJ,
01 01 t = 0 j = 0

00

E/r, φ, am) = { ur(xjs + 0 αm) - ur(x,js - 0 am) φ(xjs) at.

By showing t h a t \\E(r, φ, am)\\L2(A)-^0 as r->0, G l i m m concludes that for almost all
{am} in A the limit function is an exact solution. Here A is the p r o d u c t of countable
copies of interval (— 1,1) with the usual topology.

O u r m a i n purpose is to identify the sequences {am} which assure that the limit of
approx imate solutions is an exact solution. We show that it is sufficient for the
sequence {am} to be equίdistrίbuted in ( - 1,1) (Theorem 3.1), i.e.

K }
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for any subinterval / of (— 1,1). Here B(am, fc, /) denotes the number of m, 1 :g m ^ fc,
with αme/, and μ(I) is the length of /. We now show by a simple example the
necessity of this condition.

Consider a solution which is a discontinuity along x — cf = 0 connecting uγ on
the left and u2 on the right. The approximate solution is exact for Oίgί<s. For
s < ί < 2s, the approximate solution consists of a discontinuity issued from (— r, s) or
(r, s) respectively depending on whether aγr > cs or aγr :g cs. Inductively, we find that
for t between js and (/+ l)s, the approximate solution consists of a discontinuity
issued from (irjs) where

ir = rB{am, i, ( - 1 , cs/r)) - r[i - B(am, i, ( - 1 , cs/r))] .

On the other hand the exact solution has a discontinuity at (cjsjs). Thus in order for
the approximate solution to approach the exact solution, we need ir-^cjs as j->oo
and r-»0, or, equivalently, (1.7) holds for / = (—l,α), a = cs/r. Since the nonlinear
wave speed c = λi{u) may assume arbitrary values, we see that (1.7) must hold for
arbitrary / and the sequence {αm} is equidistributed.

In the above example we need only to calculate the speed of one wave which is
constant. For general solutions, waves may change speed and strength due to
nonlinear interactions and cancellations. To minimize these effects, we take
advantage of the fact that for any equidistributed sequence {αm}, the subsequence
{am\qN Smf^pN} is also equidistributed for any fixed p > p ^ 0 as N-±oo [cf. (3.1)
and (3.14)]. Our main assumption is that the total amount of interactions and
cancellations is finite. This is the case either for initial data with sufficiently small
total variation as noted by Glimm-Lax [2], or for special systems (cf. Liu [5]). In
Glimm [1], the system (1.1) is assumed to be genuinely-nonlinear in the sense of Lax
[3] where the Riemann problem is solved and analysized. Since the Riemann
problem for general system has been solved by Liu [4] by introducing a general
entropy condition, we do not have to assume that the system is genuinely nonlinear.
Nevertheless, for simplicity, we will carry out our analysis only when the system
(1.1) is genuinely nonlinear and the initial data (1.2) have small total variation.

Our method depends on the detailed analysis of wave interactions and
cancellations which is described in Section 2. It is shown that although the change of
wave strength due to interaction is second order, Theorems 2.1, 2.2, the change of
the wave speed is inversely proportional to the wave strength, Theorem 2.3. The
main theorem, Theorem 3.1, is proved in Section 3 where we devise an elaborate
induction process to partition the elementary waves into subwaves so that the
evolution of the speed and strength of these subwaves can be traced (Lemma 3.2).

For a treatment of the general theory of conservation laws, the interested reader
may consult the excellent survey article of Lax [6],

2. Estimates

We will assume for simplicity that system (1.1) is genuinely nonlinear, i.e. r (w)
• Vλt(u) Φ 0, i = 1,2,..., n, for all u and the initial data (1.2) have small total variation.
The rarefaction curve R^u) is the integral curve of r^u) through u0 and the shock
curve S^u) is the Rankine-Hugoniot curve which is tangent to R^u) at u0, i.e. for any

(u - uo)σ(u, u0) =f(u) -f(u0) (R - H)
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for some scalar σ(w, uo\ the shock speed, which satisfies

The shock curve S^UQ) exists at least in a small neighborhood of u0, Lax [3]. These
curves, are divided into

u0) = {UGS^UQ) I σ(u, u0) ^ λt{μQ)} ,

so that u can be connected to u0 on the left by an /-rarefaction (or /-shock) wave if
ueR + (u0) [or weS~(u0)]. The shock wave (u9 uo)9 ueSf(u0) is stable in the sense of
Lax: (w0) > σ(u9 u0) > λ(u). The Riemann problem (ue9 ur) is an initial value problem for
(1.1) with two constant initial states:

for x < 0

for x > 0.

To solve the Riemann problem (ue,ur)9 we find vectors ui9 i = 0,2, ...,n, uo = ue,
un = ur, ute Sf (ut_ 1 )uK + (u t _ J , so that the solution consists of elementary /-waves
(wf _ ί91/ ). Given any parameter μ. along S[ vR*, we set the strength of the /-waves in
(ue9ur) as :

We always choose μf so that shock waves have negative strengths and rarefaction
waves have positive strengths. Sometimes it is convenient to set μ^λ^ The
following theorem on wave interactions is due to Glimm.

Theorem 2.1. For any nearby states ue, um, ur9 there exists bounds 0(1) depending only
on the system (1.1) so that

(κβ, ur\ = {ue9 um\ + (um, ur\ + 0(l)Q(ttβ, um, ur), (2.1)

where Q measures the potential amount of interaction and is defined as follows:
Aj-wave on the left interacts a k-waυe on the right if either j>k9 orj = k and at

least one of the waves is a shock wave. We set

QK um, ur) = X (tιβ, ujjiu^ ur)k

the summation being over all interacting waves.

The above Theorem is proved by the implicit function theorem, [1]. The
following theorem gives a more detailed description of wave interactions.

Theorem 2.2. Suppose that ue, ur = ve, and vr are nearby states and the Riemann
problems (ue9ur), (ve9vr), and (ue9vr) are solved respectively by i-waves (Mf_1? wf),
\vi_vv^ and (w^^w^ i = 0,l,...,w. We set a^^-u^^ βi = vi-vi_1 and yi = wi

— wi_1. Then

wi = vi--ocn-<xn_1-...-ati+1+0(l)Q(ue9ur9vr)

,ur,vr), (2.2)

( 2 3 )
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Proof. We note that (2.3) is equivalent to Theorem 2.1 and is an easy consequence of
(2.2). Estimate (2.2) is proved by the implicit function theorem. For brevity, we will
use Theorem 2.1 to prove (2.2) by induction. Suppose that (2.2) holds when u0 = uλ

=... =up, pe{l,2, ...,rc}. This is obviously the case when p = n. We have to show
that it also holds when uo = u1 =... =up_ί and up_ί may not equal up. Denote by
(w^pW;), Ϊ = 1,2, ...,n, the elementary waves which solve the Riemann problem
(up, vr). By induction hypothesis, we have

(up,ur,vr), for i<p9 (2.4)

and

wί = vί-an-ocn_ί-...-otί+ί + 0(l)Q(up,ur,vr)

(up,ur,vr), for fep. (2.5)

We note that (up_1,up) interacts with (wt_ v wt), ί= 1,2,...,n to produce (wf_ 1? wt\
i = l , 2 , ...,n. Thus it follows from Theorem2.1 that for f=j=p

yi = wi-wi_l+O(l)Q(up_1,up,vr).

It follows from the definition of Q and Theorem 2.1 that Q(up_v up, vr) ^ Q{up_ 1? ur,
vr) = Q(ue,ur, vr), and so

γt = wt - wt_ t + 0(l)Q(ue, ιιr, ι;Γ). (2.6)

Since wo = wp_1 and wn = ι;ί., we conclude from (2.5) and (2.6) that for i ^ p

n

= - Σ

This proves the second part of (2.2) for i^p. Other cases are proved using
(2.4)-(2.6) in a similar way. Q.E.D.

The following theorem describes how wave speeds change due to interactions
and cancellations.

Theorem 2.3. Assume that same hypothesis as in Theorem 2.2 hold. When (w^ , ut) is a
shock wave (or a rarefaction wave) we write oίi = ui — ui_1<O (or α£Ξ>0) etc. We have

(i) ifa^O and ftgO, then either \\yi\\ =0(l)Q{ue,ur,vr) or y ^ O and

\Φi -1»wί) - Φi -1 > ui)\' II αί II + \Φί -1 > wi) ~ Φi -1 > vi)\' II βi II = 0(1) 6K> un υr) >

(ii) if α ^ O and ft^O, ίten βίίΛβr ĤH =0(l)β(we,w,,ι;r) or y f ^
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(iii) ϊ/α f <0, jβi = 0, and y. = 0, then

(iv) i/a f <0, β/ = 0,

\Φi-i>Wi)-Φi-i,ut)\' \\<*i\\=0(i)Q(ue9 ur,υr),

(v) ϊ/a^O, βi<0, and y. = 0,

(iv) ι/a / = Ό, ^ < 0 ,

I Φ i - i ^ i ) - ^ . ! , ^ , ) ! . 11)8,11 =O(l)QK,Mr,t;r).

Proo/ We will only prove (i), (ii), and (iii) other cases are proved similarly. Since the
shock speed depends continuously on its states, we have from Theorem 2.2 that in
the case (i),

which is 0(l)Q(ue,ur,vr) according to the definition of Q. The second part of (i) is
proved similarly. Similarly in case (ii) we have

= 0(l)Q(ue,ur,vr).

In case (iii) we have

= 0(l)Q(ue,ur,vr). Q.E.D.

The following lemma will be used later for the partition of waves and is an easy
consequence of the continuous dependence of Ri(u0) and Sf(w0) on u0. The proof is
omitted.

Lemma 2.4. Suppose that all states are close to each other. Then
(i) if WjERi(wo% UJER^UQIJ =1,2, and λ^wβ - λt(w0) = X^uj) - kt{u0\j =1,2, then

(ii) if wjeSi(w0)J= 1,2, u^S^) and λi(w2)-λi(wί) = λi(u1)-λi(u0), then
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For any given sequence {αm}, the xί-plane consists of diamonds AtJ with center
(ίrjs) and vertices ((i + fl/_1)r,(/--l)s), ( ( i - l + α ^ r j s ) , ((i+ί+ajjrjs), and
((/ + aj+ί)r,(j + l)s). An /-curve is a space-like curve connecting vertices of the above
form. An /-curve J2 is an immediate successor of/-curve Jx iϊJί and J2 pass through
same vertices except two and J2 lies toward larger than Jv The waves entering each
diamond Δ are solutions of two Riemann problems, say, (ue9 um) and (um9 ur). We
denote by Q(Δ) = Q(ue, um9 ur) the amount of interaction in Δ and C^Δ) = ̂ (\(ue, wJJ
-f |(wm, Mr)f| — |(wβ, MOT)f + (ww, M^I) the amount of cancellation in A Estimate (2.1) can
be rewritten as:

I K , " m ) i | = |(«e!Mm)il + l ( ^ ^ ) i l + C i(^)+O(l)β(/l) (2.7)

The following theorem on wave interaction and cancellation is due to Glimm
[1] and Glimm-Lax [2],

Theorem 2.5. Suppose that the initial data (1.2) has sufficiently small total variation
T.V. Then

(i) total variation {ur( ,ί)|-oo<x<oo}<^2T.V.

(iii) C =

Proof. Given any /-curve J, we set

Q(J)= Σ {\ab\ I a and Z? are strengths of interacting waves crossing J},

L(J)= ^ {|α| I a is the strengths of waves crossing J},

where K is a large constant. For any /-curves J x and J 2 , J 2 an immediate successor
Jl9 it follows from Theorem 2.1 that

1 ) ] Q(A)9

where J is the diamond between Jx and J 2 . Thus by choosing K large we see that
F(J2) S F(Ji) provided that F(JX) is small. This argument implies inductively that if
T.V. is small then F(J) is small for all J and (i) holds. Similarly, we have

which is less than — \ Q(Δ) if T.V. is small. Summing the above inequality over all Δ9

we have

Σ
Ji,Ji

where 0 is the /-curve in the zone O^ί gs. This proves (ii). Finally, estimate (iii)
follows from (2.7) by summing over all A. This completes the proof of the
theorem. Q.E.D.
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3. The Main Theorem
2

In what follows {am} is an equidistributed sequence in (— 1,1). N= - and M are
o

large integers. We divide the interval (— 1,1) into N subintervals with equal length ε.
Let {Ii}f~ι be the collection of unions of any such subintervals. We set [cf. (1.7)]

o = sup —-———±LtI± — (
I<P<N M 2 v

ί=T,.~2N

which tends to zero as M->oo for each fixed N.
Let φ(x, t) be a test function supported in 0 ̂  t ̂  T. We choose M so that

It is noted that for each fixed N

M^oo, NMs^lT, and Ms^Tε (3.2)

as the mesh length s->0. Since φ is smooth and has compact support, we have

\φ(x,t)-φ(x\t')\ = 0(ε)

if |x-x ' | + | i- i ' |=0(e), as ε^O. (3.3)

To express the error term (1.6) in terms of elementary waves, we will partition the
elementary waves in the following way. Suppose that elementary k-waves (uk_ί9 uk\
fc=l,2, ...,n, issue from (ίrjs), 1+7 = even. If (uk_ί9uk) is a /c-shock wave, then we
choose any vectors yo,yί9...,yl9 yo = uk_1, yt = uk9 yheS'iu^^ λk(yh)<λk(yh_1l
h = 1,2,...,/, and set

vh

k(iJ)=yh-yh-ί. (3.4_)

If (uk_ l 5 uk) is a /c-rarefaction wave, we choose vectors yQ9 yl9..., yl9 y0 = uk_ l9 yι = uk,

yhε
Rk+(uk-il λk(yh)>λk(yh-il ft = 1 , 2 , . . . , / , and set

In the second case we require that

\λk{yh)-λk{yh^)\^^ / z = l , 2 , . . . , / , (3.6)

and to make sure that {vk(ίj)} is not partitioned further at t = (j+ί)s9 we also
require that

iUM Λ = l,2,...,/. (3.7)

In what follows, for brevity, we will write the approximate solutions as ur(x, t) and
the error term (1.6) EJr9φ9aJ as E(j9r) etc. It follows from (3.3)-(3.7) that

Σ (U)s + r sign(rαj+ x - ^ ( i j » ] vh

k(ίj)φ(ίrjs)
i,h,k

i ) [ ε + Φ Σ \\vk(ij
i,h,k

= Σ ίλl(iJ)s + rsign(raj+1-λh

k(iJ)sM(i,j)φ(ir,jS) + O(ί)εsτ.Y., (3.8)
ί,h,k
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where T.V. is the total variation of the initial data (cf. Theorem 2.5), and

1 if x>0

1-1 if x^O.

Theorem 3.1. Suppose that the total variation T.V. of the initial data (1.2) is small.
Then for any equidistrubted sequence {am} in (— 1,1), the Glimm scheme converges to
yield an exact solution of (1.1) and (1.2).

The proof of the theorem depends on the following lemma which states that
elementary waves can be partitioned so that their speeds and strengths can be
traced.

Lemma 3.2. There exists a partition of elementary waves {v%(ij)9 λl(ij)} which
satisfies (3.4) ~(3.7) and, moreover, {vh

k(i,j\ λ*(ij)} is a disjoint union of {v%(ij)9

λh

k(ij)} and {ϋh

k(ij\ λh

k(ij)}, so that for any j , (p-l)M^j^pM, pe{l,2,..., JV},

(i) Σ Mϋh

k(iJ)\\mi)ίQ(Λp) + C(Λp)-],
i,h,k

and there is a one-to-one correspondence between {vh

k{i,j), λk(i,j)} and {vh

k(i, (p — 1) M),

\{i,(P- l)M))~(vh

k(ipj),λh

k(ipj))

such that

i,h,k

(iii) £ | |^(i,(p-l)M)|| max \λh

k(ijJ)-λh

k(i,(p-ί)M)\=O(ί)Q(Λp),
i,h,k (pl)MSJgpM

(iv) \i-ij\ί\j-(p-

Here the bounds 0(1) are independent of i, j , r, and Λp is the zone
l)

The above lemma, whose proof we will postpone until later, will now be used to
prove Theorem 3.1.

Proof of Theorem 3.1. It follows from (3.8) and (i), (ii) of Lemma 3.2 that for any j ,

Σ
i,h,k

Σ lλh

k(h(p j
i,h,k

-λh

k(ipj)s)-]vh

k{i,(p-ί)M)φ(ψJs)

+ 0(1) (εsT.V. + rQ(Λp) + rC(Λp)). (3.9)
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Because of the domain of dependency condition (iv), Lemma 3.2 and the
smoothness of φ, (3.3), we have

φ(ijrJs) = φ{ίr,(p-l)Ms) + O(l)(Ms). (3.10)

We note that sign (ra:+1 - λh

k(ipj) s) differs from sign (raj+1 - λj(z, (p — 1) M) s) only
if aj+ x lies between λk{ipj) s/r and λ\{i, (p — 1) M) s/r. Thus it follows from (3.1) and
(iii), Lemma 3.2 that

pM

X X sign(rαm -^(/7,j)5)^(/,(p- l)M)φ(ϊ/js)
j = ( p - l ) M ί,Λ,k

= X Σ ύga(raJ+ί-λk{i,(p-l)M)s)%{i,{p-ί)M)φ(ijrJs)
j = (p-l)M i,h,k

+ 0(1) Σ B(am_(p_l)M,M,IiXk)~vh

k(i,(p-i)M)
ί,h,k

pM

= Σ Σ sign(rα j+ x - Ik(z, ( p - 1) M) 5) t5j(ί, ( p - 1)M) φ(i/Js)
j = (p-l)M i,h,k

X max |X^(i.J)-^a(p

Σύ$n(raj+1-λl(i,(p-ί)M)s)ϋh

k(i,(p-ί)M)φ(,ίjr,js)
i,h,k

m i n fSpil m a x

We have from (3.8)-(3.10),

pM

Σ £:0»

It follows easily from (3.1) that for any y

pM

Mys + r Σ sign(raj+1-ys)SM(δ + ε)r,
j ( l ) M

and thus we conclude from (3.11)

pM

(3.11)

= Σ to(i,(p-l)M)5 + r X sign(raj+1-λh

k(U(p-l)M)s\
i,h,k [ j = (p-ί)M \

. (3.12)

(3.13)
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Summing (3.13) over p=l,2,..., ΛΓ, we finally obtain

] , (3.14)

where we have used (3.2) and the following inequality

which is bounded, by Theorem 2.5. Since δ and r approach zero as M-> oo for each
fixed ε, and ε can be chosen arbitrarily, we conclude that E(φ, am) goes to zero as r
goes to zero. This completes the proof of the theorem. Q.E.D.

Proof of Lemma3.2. For each fixed pe{l,2,..., JV}, the sequence {vl(ίj), λl(ίj)},
(p—l)M^j^pM, is defined as follows: First, we will construct inductively the
sequences {υh

k(ίJJ\ λh

k(ίjj)}, (p- l ) M ^ / ' < ^ p M , which satisfy (3.4)-(3.7) and,
moreover, the sequence is a disjoint union of {vh

k{hj\j\λ\{hj\])} and
{Sh

k(ίJfJ)Jh

k(iJJ)} such that for (p-l)M^f^j^pM

Σ \\%(Uf,j)\\
i,h,k

= 0(1) [β((p - l)Ms g ί </s) + C((p -l)Msίt <,s)], (3.15)

and there is an one-to-one correspondence

ί& W ' Λ M β (P - i)^/). (p -1) Af ̂ / ύi,
such that

Σ ll^>,/j)-^(i,(p-l)Mj)||

(3.16)

(3.17)

Σ ]λh

k(ij,f,j)-λh

k(i,(j>
i,h,k

= 0(l)Q((p-l)Ms^t^fs). (3.18)

To prove the lemma, we simply set {v^(ij)9λ^(ij)}9 (p—l)M^j^pM, to be
{vh

k(iJ,pM\λh

k(ίJ),pM)} and (i)~(iv) follows from (3.15)^(3.18).
We now establish (3.15)^(3.18) by induction on; . For j = {p- 1)M, we let

K(*>(P-1)M, (p-l)M), λ% (p- l)M, (p-l)M)} be any partition satisfying
(3.4)-(3.7). Suppose that {i%(i,j',j), λh

k(ίJJ)} has been constructed for (p
^j^pM. We have to construct {^(i,/j + l, λJ(i,/J+l)} for ( p - l)M
For a given point (ir,(/+ l)s) let (wfe_ ί9 wk\ k= 1,2,..., N be the elementary fe-wave
issued from the point. Suppose that these waves are produced by the interaction in
the diamond Δ of waves (uk_vuk), fc=l,2, ...,n, issued from ((/— l)rjs) and
(vk_ ί9 vk),k = l,2,..., nissued from ((i-f l)rj*5). Since {v*(i9jj)9 λftiJJ)} satisfies (3.7),
there exist points γ0, yl9...,yhί on S k"K-i)^Λfc+K-i) a n d V ^ Jfc2

 o n

^ K - i ί ^ ^ K - i , yo = uk-i> %,="» % = υk-v Ph2

 = vk> s u c h t h a t a f t e r

renumberings,

JrVi=i(i- Ui), ^ = 1,2,...,̂ ,
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We now construct the sequence {vk(iJ'J + l),/l^(z,/j +1)} according to the various
cases in Theorem 2.3.

Suppose that both (uk_ίfuk) and (vk_ί9vk) are shock waves and (wfc_l5wk) is a
rarefaction wave. Then it follows from Theorem 2.2 that

\\uk-1-uk\\ + \\υk_1-υk\\ + \\wk_1-wk\\=O{ί)Q(A). (3.19)

In this case we simply partition (wk_vwk) according (3.4) ~ (3.7) and classify

{ityij+ίj+l)} as {8J(0'+1,7+1)}. Furthermore, we classify all waves

Sf^j relating to {υh

ki~lJJ)}h

hli, K(*'+ U j)}£ii:

as members of {vk\ίf

f,fJ-\-1)}. We note that because of (3.19) the total amount of
waves reclassified is O(1)Q(Δ) plus

and thus (ii) of the lemma still holds for K ( Ϊ , / J +1), λk

t(ίJ'J+1)}. Other statements
of the lemma holds trivially.

We next suppose that (uk_ί9uk), {vk_l9υk\ (wk_1,wk) are shock waves. Accord-
ing to Theorem 2.2, there are three cases: (a) 0^λk(wk_1) — λk(wk) — (λk(uk_ί)

); (b) O ^ ^ . J - l ^ ) - ^ . , ) - ^ ) )
); (c) O^^K.J-λ^ + Ât ^J-A^)

— (^(w^.J — /lfc(wfc)) = 0(l)β(zJ). In Case (a) we choose yheSk(wk_1\
ft = 0,l,2,...,Λ1+ft2> 3>o = w*-i> ^(^Λ) — ̂ jtCVo) = ̂ (^h) — Λk(Po) f o r ft = l,2,...,ft l9

4(Λ)"4() ;ft1) = 4(Λ-Λ 1)-4(^o) f o r h = l,29...,h29 and Λ - Λ - I ^ Λ - Λ - I f o r

h = l,2,...,Λ1, Λ + ^ - ^ + ̂ . ^ Λ - ^ - i for Λ=l,2, ...,Λ2. We note that if yΛ

- V i ^ 2 ( ί o , ( p - 1 ) M J ) t h e n O+i = ZΌ a n d l ϊ ' - ϊ ' o l^N- 1 - ί ' o l + 1 which, by in-
duction hypothesis, is less than [/ — (p — 1)M| + 1 ̂  [/ + 1 — (p — ί)M\ and so (iv) of the
lemma holds. It follows from (i), Theorem 2.3 that

hi

Σ lσK-i>W/e)-σK-i>wfc)l Wh-h-iW
h=ί

ύ2\σ(wk_vwk)-σ(uk_ί,uk)\\\uk_1-uk\\=0(l)Q(A)

and thus (iii) of the lemma holds. Finally, we classify t?J1+h2 + 1 ( i J + 1 ) = wk-yhί+h2

= O(1)Q(A) as a member of {0£(ij+l)}. We now turn to Case (b). We choose
yheSk (wk_ .J, h = 0,1,..., h3,0 ^ /ι3 ̂  ft1? and choose ye5^(uk_ x) between yh3_ ί and
^ 3̂o = w/c-i5 ^ W - ^ k C V o H ^ φ - ^ o ) for ft = 1,2, ...,ft3 - 1 , and O^λp^-i)
~^k(yh3)

 = K(y)~K(yh3-i)' ^ e π r s t r^fine the partition of (uk_vuk) with the
addition of the dividing point y. We also refine the vectors vh

k{i\j\j\ (p - 1)M ̂ / ^j,
which are related to yh3 — yh3_ί:

yh3 - Λ 3 -1 <-«£(*(» (P - i ) M , ; ) ^ ( r , / j )

in a similar way. We note that when a partition is refined, condition (ii) — (iv) of the
lemma still hold because of (ii), Lemma 2.4.
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The vectors yh — yh-n ft = 1,2, ...,h— 1, and yh3 — yh3-ι are then related to
h-h-i and y-yh3-1 respectively. Finally, the vectors yh3-y, yh-yh-u
h = h3 + l, ...,hί9 and yh — yh-ι, ft = l,2, ...,h2 are reclassified as members of
{*>£(* +1>7> 7 + 1)} n o matter how they were classified in {v$.(i± 1,7,7*)}. The total
amount of waves reclassified is O(1)Q(A), Theorem 2.2. Case (c) is dealt with in a
similar way. Details are omitted.

We now consider the case where (uk_vuk) is a shock wave, and (vk_k9 υk) and
(wfc-i>w/c) a r e rarefaction waves. There are two cases: (a) λk(wk) — λk(wk_1)^λk(vk)
— λk(vk_i) and (b) λk(wk) — λk(wk_ 1)>λk(vk) — λk(vk_ J. For brevity, we only treat
Case (a). Thus there exists yeRk{υk_1) between %3-x and ph3,1 ^ ft3 ^ ft2, with λfc(y)
— ^k(fk) = Ak(wk_1) — λk(wk). If αJ + 1 lies between λk(wk_ί) and Λ,k(wk), we choose
yfeRk(vk_1) such that Λ,k(y') — /̂c(̂ c) = α j+i r~Λ(w/c) We first refine the partition of
(vk-i> vk) by the additional dividing points y and f. For simplicity, we denote this
refined partition as {%-%-i}, ft=l,2,...,h2 with λk(yh)-λk(vk) = λk{wk_ί)
-λk(wk). The partition {vh

k(i'JJ)}, (p-i)M^fg>j, which is related to K ( ί + 1JJ)},
is also refined in an obvious way. We now partition (wk-l9wk) by choosing

y^K^u-il h=°> i»2, ...,ft 2-ft 3,4CyΛ)-4K)= ; ιΆ+Λ3)- λfc( t ;fc) A s w e s e e

?

 t h e

dividing point, y7 was added in the partition of (ffc_1?ι;k) so that (3.7) holds for
{fJjO'J-f 1J+1)}. To check (iii) of the lemma, we see from (iii), Theorem 2.3 and (i)
Lemma 2.4 that

= \λk(wk)-λk(vk)\hγ\\yh-yh+1\\
h = 0

^2\λk(wk)-λk{vk)\ | |w k-w k_, | |

Other parts of the lemma are proved using Theorem 2.1 ~ 2.3 and the induction
hypothesis. Details are omitted. Finally, the waves in {vk

ι(i± 1,7,7)} which partition
(uk_ v uk) and (vk_ l 5 ^ 3 ) along with those related wave in {vk(ϊJ'J)} are reclassified
as members of {^(/± 1,7,7+1)} and {^(ί',/,7+1)}, respectively. The amount of
waves so reclassified is 2C(A\ Theorem 2.2, so that (ii) of the lemma holds.

Other waves interaction (cf. Theorem 2.3) are treated in a similar way. This
completes the proof of the lemma. Q.E.D.

Remark. The rate of convergence depends on how well distributed the sequence {am}
is in (— 1,1), [cf. (3.14)]. It seems that our method does not yield optimal rate of
convergence. The rate is always less than first order, and in general, is algebraic.
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