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Abstract. Time-dependent scattering theory for a Dirac particle with highly
singular potential is developed. Criteria for asymptotic completeness of wave
operators are obtained, and an example is given of a potential which violates
asymptotic completeness and the unitarity of the scattering operator.
(Completeness breaks down for a regular sequence of values of the coupling
constant.)

1. Introduction

This paper sets out to develop the scattering theory of a relativistic Dirac particle
with potentials which may be highly singular. (For related work and references on
the Dirac operator see [1—41.) The aim is to bring aspects of the theory relating to
asymptotic completeness of wave operators and spectral properties of the
Hamiltonian into line with results for the corresponding non-relativistic
Schrddinger problem, and in particular with the results of [ 9—11]. (The existence of
wave operators for highly singular potentials of short range is a consequence of the
argument of Kupsch and Sandhas [5], cf. [1] for the necessary estimates.)
Section 2 deals briefly with the general theory of scattering by a potential which
is singular on some closed, bounded set ~ of measure zero. As in the Schrodinger
case, the Hilbert space decomposes into two orthogonal subspaces, consisting
respectively of states in which, for large times, the particle with probability 1
approaches Z, its kinetic energy becoming unbounded, and states in which the
particle escapes to infinity. Apart from technical details (for example only a local
condition need be imposed on the potential away from its singularities) this
treatment follows closely that of [10]. For short range potentials, (strong)
asymptotic completeness corresponds to the absence of states of the first kind.
We consider that the setting up of criteria for completeness logically precedes
further consideration of the more unusual situation where completeness is violated.
Section 3 proves completeness for a wide range of spherically symmetric short range
potentials, singular or non-singular, and establishes for these potentials the absence
of singular continuous spectrum. The main results, in Theorem 3, apply in
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particular to V(r)=g/r* near r=0, where g and K are arbitrary. This work parallels
that of [9] in the Schrodinger case, though apart from their common feature of
depending on estimates near the origin of solutions of the time independent
eigenvalue equation the two methods are different.

It would also be possible to deal with non-singular short range potentials which
are not necessarily spherically symmetric (see [2]). For example, the results of
Nenciu [ 7] allow one to conclude the completeness of wave operators for potentials
satisfying | V()| u/r(n < 1) near r=0, and have been extended by the same author to
include potentials dominated by a multicentre Coulomb potential ([8]). But it
seems that such results will not in general be possible for highly singular potentials,
the likelihood being that for cases in which the deficiency indices are infinite
completeness will depend on which extension of the Hamiltonian is taken.

Section 4 provides an example of a short range spherical potential for which
completeness breaks down, due to the presence of states in which the particle is
asymptotically absorbed into the origin. In contrast to [11], an explicit formula for
V() is obtained, and a spectral analysis carried out for all values of the coupling
~ constant. The situation differes from the non-relativistic case in the following
respects:

i) We can have V(r) =0 for all r (which would imply completeness in the non-
relativistic case).

ii) Breakdown of completeness occurs for discrete values of the coupling
constant, which recur at regular intervals.

iii) V(r) is “less singular” than in the non-relativistic case, and may be found such
that

t
jrSV(r)dr<oo and V()< %, e>0.

A reasonable conjecture would appear to be that, for arbitrary singular
potentials, completeness holds for “almost all” values of the coupling constant.

2. Scattering with Absorption at Local Singularities

Let H, denote the free Dirac Hamiltonian, the unique self-adjoint extension, in
[L2(1R3)]4 of the differential operator a-p-+mpB. We assume that the potential
Vir) is L§°? in the complement of some closed, bounded set 3 of measure zero.
Let A denote the differential operator a-p+mp + V, defined on CF(R*\X), the
C® functions with compact support contained in the complement of X'; and let H
denote a self-adjoint extension, in (L,(IR*)]*, of H. We first note a number of results
which we shall need in this section.
i) D(H)S DO)(H )\ DIV,
(Here, DY(T)={F; Fe[L,(R*]* and gFe D(T)Vge C3(R*\2).})

Proof. Essentially contained in [3]; cf. [10], Section II

ii) oe C2(R*\X)=>o(H +i)~? is Hilbert-Schmidt.
Proof. Certainly o(H,+i)~? is Hilbert-Schmidt. Applying the commutation
relation [o,(H,+i)"']=(H,+i)"'9'(Hy+1i)~' where ¢'= _ia";TQk’ we see that
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(Hy+i)"'o(H,+i)~* is Hilbert-Schmidt. Now choose ¢, CP(R3\X), real, with
2,(r)=1 on the support of .

Then (i)=(H,+i)¢,(H+i)"! is bounded, by the closed graph theorem.

Hence (H+1)™" o(H +1)~ ' =[(Ho— o, (H—i)™'1* (Hy +i) ™ "e(H, +1)~* [(H,
+i)o,(H +1i)~1], and is Hilbert-Schmidt. Similarly, (H +1)~ *¢'(H +i)~ ' is Hilbert-
Schmidt. The result now follows on writing o(H+i)"2=[o, (H+i)~ '] (H+i)~ !
+(H+1i)"'o(H+i)"! and using the commutation relation

[o,(H+) " ]=(H+) " "¢H+i) .

(ili) oe CP(R3\X)=>0(H +i)~* is of trace class.
Proof. With g, as above,

(H+0) " *oH+) 3=(H+i)" o0, (H+i)""(H+i)~?

=(H+) " 'e{H+) "o, +H+) ™"y (H+1) ™"} (H+i)~*

and s of trace class. Similarly, (H +1i)~ *¢'(H +1i)~? is of trace class. The result now
follows on writing

QH+)*=(H+1) 'o+[o, (H+i) ' DH+1)>.

(iv) ee CF(R¥\Z)=0E . is of trace class.
Proof. The result follows directly from (iii), since (H + i)4E|H|<c is bounded.

We now define subspaces My, M, NI, N7 of M, (H) as follows, where
2C{r;Ir|=R}, geM, . (H),

geMy iff s-lmE, . e *g=0,Ya>R,

t>+ oo

geM; iff s-limE, e g=0,Ya>R,

t>+ oo

geNy iff slimE e #g=0,¥b>0,

t—+ oo

ge Ny (respectively N7) iff, given any >0,

36, T>0 such that |E g, .,e” Mgl <e,

Vb>B,t>T (respectively t < —T).

These subspaces are independent of the value of R.
Theorem 1. (a) M LM} My 1M .

(b) Mf=NZ, MI=N7}.

(¢) Denoting by P§ and P% the orthogonal projections onto My and MZ
respectively, we have

P; = S-lim ethE|r|<ae—thPa.c.(H), (1)
t-to

Pi= S'lim e™E,, . e "™P,  (H), 2
t=too

where a>R and P, . (H)is the projection onto M, . (H).
(d) M,  (H)=Mi®MZ and the subspaces reduce H.
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Proof. See [10], Theorem 2. The proof of (1) and (2) depends on the existence of

s-lim efge = E,,, _ P, . (H), where now o(r)=1 for |r| sufficiently large and supp
t—+ oo

-9 CIR*\Z. This result follows from a trace theorem ([ 12]), since (iv) above = ¢'E j <
is of trace class. The remainder of the proof follows [10] precisely.

We also have
Theorem 2. Suppose that, for [¢r|>a>R and for some ¢>0,

|V(r)| S const|r]~2F9,

Then if Q.(H,H,)= s-lim e™'e™ " we have range (2. (H,H,))=MZ.
t— Foo
Proof. See [10], Theorem 3. With g as in the proof of Theorem 1, we have to prove
the existence of
s-lim etge~HIE | <cPa.c.(H), where H is a self-adjoint extension corresponding

t— t o0

to a potential
Vir)=V(r), |r|>a
=0, otherwise.

(Note that o(V — V) vanishes for suitable 2)
The asymptotic completeness of Q, (H, H,) follows from [2].

Corollary. If V(r)=V(|r|)d;; is spherically symmetric, and the self-adjoint extension H
is taken to commute with total angular momentum, |V(r)|< const-r~ 1 *9 is sufficient
for the conclusion of Theorem 2.

Remark. Theorem 2 shows that (strong) asymptotic completeness is equivalent to
MF ={0}. This forms the basis for the proofs of completeness for singular
potentials given in the following section.

3. Criteria for Asymptotic Completeness,
and Spectral Properties

A state having quantum numbers J, M of total angular momentum, and parity
(— 1) T2y = + 1) may be represented (with a suitable choice of the matrix f8) by
the 4-spinor

o (FOYY
iGO) Y}

and Y)Y, Y are appropriate functions of polar angles and of z-component of spin,
combining a spherical harmonic of order L with spin angular momentum 37 (see e.g.
[6], Chapter XX).

If the potential V(r) [i.e. V;(r)=V(r|);;] is spherically symmetric, we may
consider self-adjoint extensions of a«-p-+mfi+ V(r) which leave each J, M, w
subspace invariant. In each subspace the Hamiltonian will then be some self-adjoint

), where [=J+3w,l'=J—3io,
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extension, acting now in [L,(0, 00)]?, of the differential operator t defined on C*
functions of compact support in (0, c0), where

—d—G+w(J+2)G+(V()+m)F
T(F(r))= dr 3)
6) ‘fi—l:+ (J+2)F+(V(r) G|

To investigate spectral properties and the related question of asymptotic complete-
ness, we first consider self-adjoint extensions H, acting in L, (0, a) of = defined on
C® functions of compact support in (0,a). In constructing the corresponding

resolvent (H,— 1)~ !, we shall estimate near r=0 solutions (i) of the equations
r<¢) =l<¢), (A real). )
v p

If solutions <¢1), (¢2) may be found with
Y1/ \¥2

b1, —dyp, =1 (5)
and

(0t)erzsoan?,
Y1
we may formally define a resolvent by
-1 (g)= (1) ©)
with
ur)=—¢, (V)I (92 F(t +,(0)G(0))de

— (1) g (@1 (OF(0) +y,()G(1)dt

a ()
v(r)=—p,(") [ (,(DF (D) +w,()G())dt

—%(r)(})(«pl(r)F(r)wl(t)G(t»dr

This corresponds to the boundary condition

pa(@ula@)—¢,(a)p(a)=0, at r=a.

In (7), ( ) may be verified to be a solution of (t—2) <v> = (g) Moreover, if

( )e C3((0,a)) and ( ) (t—4) ( ) then (7) is satisfied.
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If on the other hand no solution to (4) exists in [ L,(0, a)]?, apart from the trivial
solution, then 4 lies in the essential spectrum of H,,, and the resolvent is unbounded.
A potential for which this happens is given in Section 4. We shall obtain conditions
on V(r) which will guarantee that the mapping defined by (7) is Hilbert-Schmidt, in
which case the resolvent of H, is compact.

Given a non-trivial solution <¢) of (4), we define 0(r), up to a multiple of 2z, by
¥

¢(r)=R(r)cos B(r)}

8
p(r)=R(r) sinO(r) ®)
More exactly, 6(r) is defined to satisfy
dp  d¢
aw "a Ve
dr (97 +vy?)
Equation (8) defines the Priifer transformation for the Dirac equation.
From (3), (4) we have
dy dp 2w(J+1/2) 2 2
b~ = T Gy — (A= m— V)~ (A m— VY,
which on substituting (8) on the r.h.s. becomes
d 1/2
49 _ U+ G99 4 meos20— (- V). )
dr ¥
We also have
d _, . d¢ dp 20(J+1/2) , .,
which becomes
- 1/2
;—r(logR)= Mcos29+msin20. (10)

Equations (9) and (10) may be used to estimate R and f near r =0. From (10) we have
[logR| <const +|w(J +1/2)logr|,

so that
R=0(r"Y*12)  (r-0) (11)

independently of the potential.
We can obtain more precise estimates in two cases, which include examples both
of singular and non-singular potentials.

Case I. [rV(r)<g O<g<J+1)2.
First choose g, with g<g, <J+1/2.



The Dirac Operator with Highly Singular Potentials 123

Then from (9) we see that, for r sufficiently small,
do
(-

whereas
de
(=)
This enables us to deduce that, for r sufficiently small,
sin®20<g3(J+1/2)"2, so that either
®€0820>(1—g3(J +1/2)2)H/? (12)

——<0 whenever wsin20=g,(J+1/2)7",

———>0 whenever wsin20< —g,(J+1/2)7 .

or
wcos20 < —(1—g3(J+1/2)" )2, (12)

either the first inequality always holding, for small r, or the second.

Suppose first that (12) holds. Then on integrating (10) we find R >constr# as
r—0, where B, =((J +1/2)> —g%)'/%. Take first the case w = + 1. Then (12) =|cos0)
>const >0, so that, using (8), we can take a sufficiently small that

|p(r))>const-r #t  (0<r<a) (13)

Let (z,) be a second solution of (4), satisfying ¢y’ —ype¢'=1.

We have
P PR - o'+ 5 ’

and substituting from (4) for Q“"_’;"_V)w gives ciii; @i%:@ N % %% ot
()=o) (Const+ { M@YL@ d)

Hence, corresponding to every solution (¢> of (4) satisfying (12) we can find a
U3

solution (g) of (4), such that ¢>(r — () f (l+m2(t)V(t)) dt.

For this solution, (13) gives ¢ = 0(r2”1¢) as r—0. If ¢ satisfies (12) we can
construct a further solution which is 0(r*/1¢) as r—0, and ultimately [because of

(11)] we must, continuing in this way arrive at a solution (d)l) for which (12) and (13)
1

are not satisfied. ( 1) must then satisfy (12"). Using (10), we then have

V1
R=0(r*") as r—0, so that
$,()=0("1) and y,(r)=0(").
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From (11) we also have ¢,(r)=0(r~Y*¥?) and y,(r) =0 ~Y*1/?) for any solution

(iz), and the operator defined by (7) is Hilbert-Schmidt provided g* < 2J. The case
2
w= —1 is similar, with ¢ replaced by v in (13).

In the case V(r)=g/r, |g| <(J +1/2), eliminating y(r) from (4) and making the
change of variables z= [(A+m— V)dr we find solutions ¢, (r)=0(r*), p, =0(*) and

& ,(r)=00r"#),,(r)=0(r#), with B=((J +1/2)* —g*)'/%. For |g| =(J + 1/2), (iz) has

a logarithmic singularity. In both cases the operator defined by (7) is Hilbert-
Schmidt.

Case II. |rV(r)|>g, g>(J +1/2), and (rV(r))”* of bounded variation. In (9), let us
write

Ar)=sin20+ f: 3y [mcos20— (=7}
=0(r+Z(r), (14)
where
. mawr cos20
Q(r)=sin20 + (—J;W (15)
and
_or(A=V) /

so that (9) becomes

do _ olJ+1/2)
&= . (16)
From (10) we have

[logR];=

dr+0(1),

. do . .
and since ym +0 we may make a change of variable to obtain

9@ cog 26
[logRli=~ |
6(r)

do+0(1). (17)

In (17) we substitute

1_ 1 —1 Q ( 1)nQn (_1)n+1Qn+1
A°Zv0 z 2Tt Ty

and estimate each of the resulting terms.

OSzede [sze - jsin20d(%)=0(1) since |Z|>1 and Z~

For example, | 7

is of bounded Variatlon.
Moreover, Q™cos26 is a linear combination of terms having the form
r*(cos20)* (sin20y"~* with k=0, 1, 2,...,m
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For k=1, we have
%@ yk(cos20)* 1(sin20)™ ¥
Zm +1
o(r)

akl

<constf m+1Adr 0(1), since 4/Z™*?

do

is bounded. x
For k=0 we have j (cos26) (sin20)"d6 =0, so that we can write (cos20) (sin26)™

|
=70 where I is bounded giving

1
jlzm+1 d9 Zm+1

since 1/Z™* ! is of bounded variation.

We have, finally, from (17),

%@ Ont 1(cos 20)d0
[logRe=(—1y | Z—{e0s200
o) Z A

Q"+ 1 cos26

Since |Q/Z] <const<1 (for small), we can take n sufficiently large that
[logR}¢=0(clogr), or
R=0(r"%, r—0, ¢ arbitrarily small.

A o =[1/zm 17— jld( =0(1)

+0(1)

=(— 1)"w(J+1/2)§ dr+0(1).

In this CflSe we have, for all solutions (i) of (4), p=0(r"%), p=0(r"%), and the
operator defined by (7) is Hilbert-Schmidt.

Remark 1. With further conditions on V(r), one may obtain ¢(r)= (a+0(1))
-COS f V(t)dt+(b+0(1)) smj V(t)dt, which applies in partlcular to V(r)- =, n>1.
A sxmllar estimate holds for w(r).

Remark 2. A perturbation W(r) may be added to V(r), in which case a solution (i) of

(4) with the perturbed potential is given in terms of the original solutions with
potential V(r) by the integral equations

B(r)=¢(1)+¢,(1) ff (@(OW(O)P, (1) + p,(OW(O) ¥, (1))de
+¢,() i (@, (OW ()P, (1)+w,OW(O)¥ (1))t
V() =y, (r) +9,(r) ; (@(OW(O)P, (1) + v, (OW(O) ¥, (1))dt

+w2(r)j)(¢1(t)W(t)¢1(t)+wl(t)wawl(t»dt.
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For a suitable class of perturbations these equations may be iterated to derive

¢4

. AN L .
estimates for (lp) similar to those for < ) Extending in this way the class of

V1
potentials with which we can deal, we state the following:

Theorem 3. Let V(r) satisfy either (i) V(r)= % + W(r), where 0=<g=(J+1/2) and
[Iw(@)\dr< (f |W(r)logrldr< oo for |g|=(J+ 1/2))
0 0

or (i) V(r)=V(r)+ W(r), where [rV,(r)|<g <|/2J. and
} PV T+1/2)2=¢gH) - + 1/2)| W(r)|dr <
0

or (iil) V(r)=V,(r)+ W(r), where [rVy(r)|>g>(J+1/2), (rV,y(r))"' has bounded
variation, and

[r=eW(r)dr< oo  for some ¢>0.
0

Then solutions of (4) exist, where 7 is defined by (3), such that (6) and (7) define the
resolvent of a self-adjoint extension H , of t, acting in L,(0, a). Thisresolvent is Hilbert-
Schmidt and the spectrum of H , is purely discrete. If in addion V(r) is defined for 0 <r

< o0 and satisfies f r|V(r)ldr < oo for all ¢>0 and some £>0, the wave operators

Q. (H,H,) corresponding to every self adjoint extension H of T acting in L,(0, c0),
where H, is the Free Dirac Hamiltonian, are asymptotically complete.

Proof. 1t is straightforward to verify that (H,—A)"! is self-adjoint and that the
inverse of (H,—A)~! is a self-adjoint extension of t—41 acting in L,(0,a). The
Hilbert-Schmidt property and discrete spectrum follow from previous arguments.

Now if ¢ is C* such that g(r)=1 near r=0 and ¢(r)=0 for r>(1/2)a, we have

feD(H)=ofeD(H,) [cf. (i) of Section 2].
Hence (H,—A)o(H—i)"! is bounded (by the closed graph theorem) and the

compactness of (H, —A)~ ! implies that o(H — i)~ ! is compact. If ge M, _ (H) we then
have s-lim ge™"#(H — i)~ 'g=0, and since the domain of H is dense it follows that

t—>t o0

M?, (H) is just the zero element, which suffices, by the results of Section (2), to prove
asymptotic completeness.

Remark. The above theorem applies in particular to V(r)=g/rX near r=0, where g
and K are arbitrary. Essential self-adjointness holds only with K <1 or with K =1,

lg1<)/3/2 (see [4, 8]).

4. A Potential Violating Asymptotic Completeness

We have seen that the “normal” situation for self-adjoint extensions in [ L,(0, a)]* of
the differential operator = defined by (3) is that the spectrum is purely discrete. We
now obtain a potential which gives rise to absolutely continuous spectrum.
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The potential V(r) will be constructed from a series of d-type singularities. We
first consider the behaviour near r =r,, of the solution of (4) for a potential which
“approximates” go(r—r,).

Let V(r)=0, |r—ro|>¢&(e <a<1) and suppose

rote
[ Vrdr=g.
Integrating (9) we find, as ¢—0,
0(ro +¢)— 0(r, —g)=g+0<ri). (18)
0

Now fixing the value of (r, + ¢), 0 is also a differentiable function of A, satisfying the

integral equation
rote

g(ﬂ: —(ro+e—r)—2 !

do

di
from which by iteration we may deduce

do

di
Using (10) we may make similar estimates of R and Z—I; For the matrix M, ro, 9)
defined respectively by

(a) S +r1/2) cos20 —msin 20) dr,

=0(e) (ro—esr<ry+e).

d(ro—e)\ _ o(ry+e)

(oo o) =eroa (7]
we have

M(e, o, 9)=M,(g) +0(e/r,), (19)
where

=1 500) =

We suppress the dependence on A, but note that
d
EZ M6(87 Fos g) = 0(8) . (21)

We shall also require an estimate, in the case V(r)=0 and in the limit a—0, for the
matrices M,(4,a) and M,(4, a), defined respectively by

@Wﬂ=Mﬂm@@}

w(ca®) y(a)
P(c?a)) $(ca?)
(M&J-Mﬂ@@wﬁ’

where ¢ is a constant.
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We take the simplest case w= — 1, J=1/2. Solving Equation (4) and expanding
in powers of a we find

( ca+0(a?); —(A +m)a+0(a2))
M (A, a)=| (A—m) 2y. 1
T+O(a ), 54‘0((1)
and
ca+0(a*); —c(A+m)a?+0(a?)
M0, a)=| (i—m)

1
v 3). = 3
3 a+0(a’); a +0(a”)

We now have

M, a)=M,(A, a)Ms(rn/2)M (4, a) = M(A)+ 0(a) (22)
and
dM(J, dM(2
d(/l 2 d}f )40, (23)
where
0 1
M@A)=| _ { 224+ m) |, (24)
3¢

M(A, a) is the matrix relating (i) atr=c?a® and at r = q, for the potential g&(r —ca?).
Now let w(r) satisfy

w()=0 for |[r|>1, and

} w(rydr=1.

-1
Then the estimates we have made for §-approximating potentials show that (22) and
_ 2
(23) are also satisfied for the potential %a‘ Sw (r_a(s:_a), where M(4, a) is defined by
the condition
o(c? 03)) (d)(a))
=M(1,a) .
(w(c2a3) w(a)

2
For a potential % a~Groy (%), with >0, (22) and (23) are satisfied to order a°.

Now define the potential V by

V(r)=g i ak“sw(r_(;a’%), (25)

k=1 a

where

ca,,,=(ca)*" (26)
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and
cta<l.

With the potential defined by (25), we have

dlagy 1)\ _ P(a)
(w(ak+ i)) =M <w(a:))’ @7
where
M 4y(A) =M (1) +0(a,) (28)
and
M d
w29 o). (29)

(Note that a,  , =c%a}.)
V(r) is an “approximation” to the potential

T Y 8(r—ca?).
2,5

For — (m;%) <i< (‘m;' 39 the matrix M(J) defined by (24) has complex
. Ligl) 2A+m .
eigenvalues e**" with cosu(d)= 3 We may summarise as follows the

conclusions which may be drawn from the estimates of M ;,(4) (for the method of

proof see [11]), where now () plays the role of ¢'(r):
m| 3¢

(@) WA)= lim (M(2))""M (DM s - 1)(D)--- M 1,(4)

exists, is differentiable with respect to 4, and has uniformly bounded inverse in any
closed subinterval.

(ii) Every solution (Z) of (4) satisfies

¢(an+1))~ inp —iny ¢(‘11))
(w(a,,ﬂ) (€"E, +e E"W(w(ao’

where E, are the (two dimensional) projection matrices corresponding to the
eigenvalues e*™,
There is no (non-trivial) solution in [L,(0,a,)]*
N
(iii) lim - [ (> +y2dr

B0 a, .y

(L )]
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(iv) The spectrum of H, (within this interval) is absolutely continuous.

m| 3¢
II: —>—.
A+ 5 > 5

In this case, M(4) has real eigenvalues. Again W(A) exists and satisfies (i) above.
Moreover,

(i) Every solution (z) of (4) satisfies

[t <07 +y-eE (e,

where E* are the projections corresponding to eigenvalues yand y ~ !, with 0 <y < 1.
If H, is defined by the boundary condition sinf ¢(a,;)—cosp y(a,)=0, the
cosf
sinf3
exactly one linearly independent solution of (4) in [L,(0, a,)]*
(iii) For this range of values of A, the spectrum of H, is purely discrete.

eigenvalues of H, occur whenever E~ W( ) =0. For each value of 4 there is

Change of Coupling Constant
We consider the effect on the spectral properties of H, of a change in coupling
constant, replacing n/2 by g in (25). In that case, instead of (28), the matrix M ;,(4),
defined by (27), now satisfies

(1/3)a(A—m)sing +0(a?); sing+0(a,)
M(k)()') = (}' - n12) Cosg + 0(1) : Cgsg 0 (i) . (30)
3c*a, ctay a
For simplicity, we take cosg >0, sing >0, and choose positive constants d,, d,, such
that d, <cosg <d,. ¢
Using mathematical induction, we may show that a solution < ) of (4) exists
such that ¥
d*~lsing 2d%~ tsing
W P4 1) 75wt (c2ay "
k k s (kzko)
1 2
@ <P 44)< @

where o, '>1 and §, f'<1.
o, o, B, B’ depend on k; in fact

w1 =1/3) (4 +2), Bir1=(1/3)(B+2),
Uy 1 =0, B+ 1="Bx-

Hence a, o', B, f’ converge to 1 as k— co. The induction begins with an initial (large)
value of k, with values of «, o', §, ' close to 1.

Note that —2 ACESY < s1ng( ) (c2a)# =433 50 as k— oo.
( k+1) dl
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For this solution, we have, for any ¢>0 and for k sufficiently large,

1 1
(a)t —3k-1 <Pl@i,)< (Pa)TFa3T
(31)

1
21 —93% <playy 1)<

(C a 2 )(1+s)3k

(c*a

Writing now (d)(a" 1 ) = (x"), so that (x“ 1) =M.y (xk), a second solution of
Gy Yk Ye+1 Yk

this recurrence relation is given by the following

M21
Lemma. Let X, = —1/y, +x, Z 0+ ond
n=k ynyn+1
9] M21
Y____y (n+1)’
‘ k"gk YuVn+1

where M} |, stands for the i,j element of M, ;/(4). Then

Xk+1 Xk
=M . 2
(Y woly, (2
Proof.
ML it Mzn1
Mlkl+1)Xk+Mk+1)Y—_ e Xk+1 Z —etl)
yk n=k ynyn+1
o M21
= — +x __(Ll)
yk+1 k+1n=;+1 ynyn+1

1
_M(1k+1)+xk+1M(2nl+1)+ 1 .
Y YiVr+1 Vie+1

Now detM{], ;,=1, so that

M(1k1+ 1)(M(k+ l)xk+M(2k2+ N
+M(k+ 1)(M K+ 1) %k T M(1k2+ V) +1=0
Le. =Ml ) Viss +MGY %1+, =0, so that on dividing throughout by y,V;
we find
Mg, XML =X, .

The second component of (32) follows similarly.

We can define a solution of (4) by &(a,. ,)=X,, Y(a,,,)=Y,, and using the
Lemma together with the estimates (31) of x,, y,, and the estimate (30) for M}, , ), we
have

Q(ak + 1) = 0((62‘1)(1 - 6)3k)

k .
Y’(ak+ 1)=0((c2a)(2-£)3k) as K— oo
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Integrating (10) between g, , ; and g, where a, , ; <q < a, we find that the elements of

. . (Pa )) (‘D(CI))
the matrix sendin k171 to are of order
e (W(am) ¥(g)
(020)3

@ this gives

P(g) =0((c*) =) =0(af17%),

with a similar estimate for ¥(q).
But always g=a,, ;, so that we now have

P)=001R), () =041 ~9P3),

(These estimates are not the best possible.)
The results of Section (3) may now be used to define a resolvent for H,, and

1 1
noting that for every solution (¢> we have ¢ =0(;), () =0(;), we deduce that the
Y

at most. Since
A+ A+

resolvent is Hilbert Schmidt.

Hence with a general value g of the coupling constant the spectrum of H, is
purely discrete ; the only exceptional cases are g=5+nn (n=0, +1, +2, ...). Our
conclusions concerning asymptotic completeness may be summarised as follows:

Theorem 4. Let
V(r)=g Z a; (
i

=0, r>a,,
where ca, , , =(c*a)*", cta<1, and w(r) satisfies

r—ca;

) rea

w(r)=0, [r[>1,
1

[w(rydr=1.

Let H be the (unique) self-adjoint extension, in [L,(0, c0)]* of t [given by
Equation (3)] and let H, be the free Dirac Hamiltonian.

Then the wave operators Q,(H, H,) exist and

(i) g=3+nn, m<3c=range (Q )=+range (2_), S=Q*Q_, is non-unitary,
MZ(H) are non-trivial,

2

(i) g=%+nn, m>3c=range (Q,)=range (Q_)+M, _ (H), S is unitary, M5 (H)
are non-trivial, My (H)=M; (H),

M ) M5 (), ()= = (=552 | . .

O o (H)=(— 00, —m)u (“”’2* 30),(‘"1;3")) om, 0).

(iil) g =%+ nn=>range (Q,)=range (2_)=M_ _(H), S is unitary, M§(H)= {0},
0, . (H)=(— 00, —m)u(m, c0).
In all cases there is an absence of singular continuous spectrum.
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Remarks. (i) Taking w(r) =0, we have
1
V()20 and [rV(rdr<oco (e>0).
0

(i) Replacing, in V(r), ai > by a;if “*?, the conclusions of the theorem hold with
V(r)=0(1/r2+9)
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