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Abstract. This paper demonstrates the existence of non-trivial solutions (g, k) to
the constraint equations of the initial value formulation of the Einstein field
equations over 1R3 with gtj — dtj, ~ \x\ ~* as |x| -» oo. Using the conformal methods
of Lichnerowicz and York, this problem is divided into two parts. First, using
weighted Sobolev spaces it is shown the set of pairs (g, k) with g a conformal
metric and k transverse-traceless with respect to g forms a smooth vector bundle
& with infinite dimensional fiber. Second, it is shown that the elements of a large
open set in & uniquely determine a solution to the scalar constraint equation
with the appropriate growth at infinity, and thereby determine solution to the
constraint equations.

1. Introduction

In writing the Einstein field equations for a vacuum space-time as an evolution
system on a 3-manifold M, one finds the Cauchy data consists of a Riemannian
metric gtj and a symmetric covariant 2-tensor nah satisfying the constraint equations
(see Marsden [15]):

Our notation using the summation notation is:

lab

and R(g) is the scalar curvature ofg. Of course covariant differentiation is done with
respect to g. If M is thought of as a spacelike hypersurface embedded in a spacetime
F 4 , and gab and kah is the induced metric and second fundamental form of the
embedding, then nab = ((trgk)gab — kab). (Note, we will use tensors and not densities.)

The constraint equations form a coupled non-linear system of partial differen-
tial equations. The existence of solutions to this system has received much attention
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(see for example Choquet-Bruhat [8] for the compact case). A simplification of the
problem is due to Lichnerowicz [14] and York [20]. If we assume tvgn = 2trgk = Co,
Co constant on M, we may solve (1) by finding a symmetric 2-tensor oTT and a scalar
function 0 satisfying the partially uncoupled system:

(2)

where g is any three metric on M, Agcj) = gab(j)\ab, M = GljTGTTij. We call GTT a
transverse-traceless tensor. A solution of (1) is constructed by setting gab = ̂ Argah

n = ((j)~2GTT) + ̂ C0g. Furthermore the pair (g, n) depends only of the conformal
equivalence class of g.

For a given g and trace-free GT, GTT may be found by solving :

(2a)

where Lg is the conformal killing operator (see Section 3). If a vector field FP solves
(2a) then we may set GTT = GT — Lg(W). (2a) is often called the vector equation. The
second equation in (2) is called the scalar equation.

Note that tr̂ Tr depends on the external curvature of the embedding of M in Vi4)

(in fact it is half the mean curvature) and thus the assumption trgn = Co amounts to
assuming the existence of certain special embeddings of M in a spacetime V4. In
particular, if Co = 0 then we must assume there is a "maximal" embedding; i.e. a
critical point of the volume operator on the embeddings of M in F(4). The existence
of such embeddings has been studied by several authors (Choquet-Bruhat [9], York
[20], Cantor et al. [5]).

In the case M = IR3, physical considerations leads one to specify that the metric g
found in (1) should be asymptotically flat; i.e. it gtj — Stj = 0(\x\ ~x) as \x\-> GO (dtj = 1 if
i=j and <5fj. = 0 if i+j). It has been shown (Cantor et al. [5]) that a large class of
space-times with asymptotically flat space-like hypersurfaces may be foliated by
hypersurfaces with trgn = tvgk = 0. Thus, in finding initial data sets for such space-
times we will consider the system:

=O (3)

If (g, k) satisfies (3) then (</>4#, —cj)~2k) satisfies (1). If one interprets k to be #(0), the
initial velocity of g(X) in the evolution system, one w6uld expect fc/j. = 0(|x|~1).
(Similarly, one may interpret nab(dQtg)1/2 to be the canonical momentum of the
system.) However, the theory of elliptic operators (Section 2) requires that the
appropriate space for finding transverse-traceless 2-tensors consists of tensors with
|x|~2 growth at infinity.

These informal observations are made precise in Section 2. This section contains
definitions and important properties of the weighted Sobolev spaces M^d. These
spaces were first considered by Nirenberg and Walker [14] and Cantor [2-4]. They
have proven to be useful in studying asymptotically homogeneous elliptic operators
onR".
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In Section 3 the nature of the space 9 of pairs (g, k) where g is a asymptotically
flat conformal metric (detgo = l) and di\gk = trgk = O is studied. It is shown that
with the appropriate topology 0> is a fiber bundle over the space of conformal
metrics. Furthermore, the fibers of this bundle are infinite dimensional. Also in this
section we obtain a precise version of York's decomposition of symmetric 2-tensors.

In Section 4 the scalar equation is considered. It is shown that each (g, k) in a
large open set of P uniquely determines a solution <j) of the scalar equation.
Furthermore the solution </> depends smoothly on (g, k).

A new result in this section (Theorem 4.2) is that for an asymptotically flat
metric g with scalar curvature R^0 and function R with C2R^R^R^O there is a
asymptotically flat metric g such that g is con formally equivalent to g and the scalar
curvature of g is conformally equivalent to g and the scalar curvature of g is R. A
discussion of problems of this sort may be found in Kazden and Warner [12].

The author wishes to thank Professor James W. York for his patience and encouragement during our
many discussions on this topic.

2. Mathematical Tools

Many of the results of this paper depend on finding solutions to elliptic systems
with specified asymptotic behavior at infinity. In this context the following spaces
of functions have proven to be useful:

Definition 2.1. Let | \p be the standard LP norm, and o(x) = (1 + |x|2)1/2. For seN, and
(5eRand/:IR"->Rmset

\f\p.*= I l ^ ' D V I i , .

Note that | \ptS>d is a norm on C?(Rn'IRw) and if S ̂ 0 is stronger than the usual
Sobolev norms. We use these norms to construct certain Banach spaces.

Definition 2.2. Denote by Mp
dQR"> Rm) the completion of C^(lRn

? ]R
m) with respect to

I U n -
usually, when there is no chance of confusion we shall just use Mp

s d.
We shall have need of the following lemmas whose proofs appear elsewhere:

Lemma 2.3. If p^l, and s>n/p + k then Mp
s 3CCk continuously.

Proof. This follows a fortiori from the standard Sobolev inequalities.

Lemma 2.4. Let p > l , s>(n/p\ d^.0 and 0 ^ / ^ 5 then pointwise multiplication
induces a continuous (and hence smooth) map

For a proof see Cantor [2], Proposition 1.1.

Lemma 2.5. Let Mf (̂1) = {g : 1R3 ->IR: g— 1 e M[td} be given the topology such that the
map g->g+l from MP

>d is continuous. Then for p> 1, s>(n/p) and 5^0 pointwise
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multiplication induces smooth maps:

Proof Suppose /, geMp
s d(l). Then writing f = f+1 and g = g +1 with /, geMP

 3, we
get

Which by Lemma 2.3 is in Mp
Std and the function is clearly continuous. Q.E.D.

Lemma 2.6. Let p>l, s>n/p and 5^0 and U = {f:Wl-^1R:f-leMp
)d and f{x)

>0}. Then / -» ( / ) " is a smooth function on U, for any a e R (see Cantor [2]).

Lemma 2.7. Let gab beaC1 bounded Riemannian metric on R3 with lim \gtfx) — dtj\
|x|->oo

= 0, Ag<f> = YjO^^iab (covariant differentiation with respect to g). Then if f is a
a,b

continuous positive function on R3 and Ag(j> — / • (j) ^ 0 with lim cj)(x) = 0 then <p ^ 0.
|x|->co

Proo/ In the coordinate expression for Ag we see it is a uniformly elliptic operator
with no zeroth order terms. Thus we may apply Theorem 6, Chapter 2 of Protter
and Weinberger [19] to conclude if there is a peR 3 where (j> takes its maximum and
<fi(p)>0 then <fi is constant. This easily leads to a contradiction. Q.E.D.

We will require both of the following theorems.

Theorem2.S.Letp>n/(n-2),s>n/p-\-2 0^d<-2+n(p-l)/pandAoo= £ aaD«
1*1 = 2

a second order homogeneous elliptic operator with constant coefficients. If A(x)

= Y, a<x(x)Da zs an elliptic operator on J2P
 d such that

W = 2

|a|<2

>0 |a|=2.
Then A:<J#p

d-><Jtfp_2 d + 2 is a continuous map with closed range and finite
dimensional kernal.

Furthermore, suppose one of the following conditions hold:
i) Z kelp s-2 2-|a |+ Z K~^a\ps-2 o <s for sufficiently small positive s.

|a |<2 ' ' |«| = 2

ii) There is a continuous curve c on [0,1] into the space of bounded linear operators
between Jip

d andMp_ 2 d + 2 such that c(0) = AQ0, c(l) = A and c(t) is an injection for all
te[0,l].

Then A is an isomorphism of Mld and Jil_2 d + 2.

For a proof see Cantor [3], Theorem 1.4.
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Theorem 2.9. Letp, 8, and A^ be as in Theorem2.8. Letk^2 A{x) = £ ax{x)9* be
|a|£2

an elliptic operator such that aaeCk 2 and for each multi-index y, 0^|y| ^fc — 2

limsup |(^yfla(x))(7(x)m"|a| + |y|| <£ |a| <2
|x|->oo

limsup|^(aa(x)-a>|y|(x)|<8 for |a| = 2

/or sufficiently small s > 0. 77zen 4̂ maps ̂ ^ 5 into e ^ _ 2,5+2 continuously with closed
range and finite dimensional kernel. Furthermore if (i) of Theorem 2.8. holds then
A is an isomorphism.

This is proven in Cantor [3], Theorem 1.3.
We would like to make several remarks concerning the use of these theorems.
1. Nirenberg and Walker [16] have shown the given ranges of p and 8 are

essential for the theorems to hold. Thus we may use these inequalities to study
typical growth at infinity of solutions to homogeneous equations.

2. For n = 3, note that p > 3 and the range of 5 is such that functions of growth
\x\ ~* are included [actually slightly faster growth such as ln(|x|)/|x| is allowed]. Thus
ifA^f = geC£ then heuristically one may expect / to have |x| ~1 growth at infinity.

3. Derivatives of functions in MP
 3 fall successively faster at infinity. Thus if n = 3

and A^feC^ then if |a| = l, Daf would fall like \x\~2 at infinity.

3. Conformal Metrics and York's Decomposition

In this section we will construct a candidate for the parameterization space 0* of
initial data. This space will consist of pairs (g,k) with divgk = trgk = 0. Of course
these pairs satisfy two of the three constraint equations. The topology will be chosen
to be both physically reasonable and to give 0* the structure of a vector bundle.

In the following section we will show that members of a large open set in 0* do
uniquely and smoothly specify solutions to the initial data equations.

Definition 3.1. Let y = dtj be the Euclidean metric on IR3 and let 0tp
 b = {Riemannian

metrics g on R3 such that g-yeMv
s^. Also let SP

t5 = {covariant 2-tensors in Jtp
5}.

Note if 5 > 3/p since the positive definite property is open in C°, 0tp^b is open in Sp
jb

+ {7} and therefore has a natural manifold structure. Also it follows for ge&P
 3 the

tangent space T ^ f d ~ S£ d.
Let dV= dx1 A dx2 A dx3 be the volume form associated with y. lig is any metric

on IR3, it is well known there is a relative scalar function \g\ such that the volume
form fig associated with g may be written as \xg= \g\dV. In fact, |gr| = (detg^)1/2.

Definition 3.2. Let ̂ ^{geSt^ : \g\ = 1}.

It is easy to check that ^f 5 represents the set of conformal structures for metrics
in 9tp

tb. Every conformal equivalence class in Stp
td has exactly one representative in

^p
tb. In fact if ge£$p\8 and g = \g\~2/3g, then \g\ = 1 and g is conformally equivalent to

9-
Proposition 3.3. Let p > l , s > 3 / p + l , and 3^0. If ge@% then \g\~2/3ge%p

Sfd.
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Proof. This is an immediate application of the product and composition theorems
found in Section 2.

Proposition 3.4. Let p>l9 s>3/p+l, t^s, S^O and S'^0. Then if geStp
Std

Proof We call Et = {heSfiS.:trgh = O}.

Let gij = $ij + hij with htjeJip
d. Also write gij = dij + hij. It follows from

Cramers formula that hijeJf?d. Now forXeS*3.

3 t * d + d. Jt*6. and
Thus we may write

and conclude

where both summands are subspaces of 5f 5,. It is easily seen that trg(S
P

d,)nKQr(trg)
= {0} and the summands are closed.

Theorem 3.5. Let p> 1, s>3/p + 1 and (5 >0. Then %>?8 is a smooth submanifold of
®lb. Also for

Proof Let <P \&p
8id-+J(l&{V) (see Lemma 2.5)

Note ^f 5 = 4>": (1) and it follows from Lemma 2.5 that 0 is C00. We need show # is
a submersion. Applying the classical formula

we see D(p(g)(V) = trgV. This is clearly a surjection from S£><5 to Jtp
Std and by

Proposition 3.4 (setting ^r = (5) it has a splitting kernal. This result follows then from
standard manifold theory (see Lang [13]). Q.E.D.

Definition 3.6. LetXf 5 be the vector fields on IR3 in je*d. LetX be vector field on R3

and Lx represent Lie differentiation with respect to X. Then if g is a metric on ]R3 we
have the conformal killing operator Lg '-XP

fd^S^_1)d+1 Lg(X) = Lxg— fdiv^X.

Theorem 3.7 (York's Decomposition). Let p>3, 5> 3/p + 2, 0 ^ 3 < -2 + 3(p- l)/p.
/or ge0tp

St6 and t = s — l or t = l

where Jt = {keSf 8+1 :tvgk = divgk = 0}. Furthermore each Jt is infinite dimensional.
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Proof. We first note that Proposition 3.4 allows us to write for t ̂  2

^ + i = t r , ( S f i a + 1 ) 0 £ t , (1)

where Et = {heSfo+ x:trgh = 0}. Also notice that Lg(Xf+ U3)CEt. Let Lt = Lg{Jit
p
+11d)

and Jt = {heEt:divgh = 0}. We claim that for t = s-1 or t = l

Et = Lt®Jt. (2)

To show this let /JeLf and consider the system:

d i V L, (a ) = div,j8. (3)

Following York [21], A = divg°Lg is an elliptic operator and since ge$p
s d, the

coefficients of A satisfy the conditions of Theorem 2.8. Also by standard Sobolev
arguments A satisfies the hypotheses of Theorem 2.9 with fc = 2.

Thus, in either case we have

is an isomorphism. Since divj8eX t_M + 2
 w e ^ a v e 0Le^t+i,5- ^ e m a y write

p = Lg(a) + (p-Lg(0L)).

Note div^(jS-Lg(a)) = 0. Thus

Et = Lt + Jt. (4)

If iff = L/a) and div0(j8) = 0 then d i v ^ ( a ) = 0 which implies a = 0 and thus 0 = 0.
The summands, Lg(Jff+ ld) and Jt are kernals of continuous maps and hence closed.

We shall now show Jt is infinite dimensional. We will follow the argument of
Bourguignon et al. [1].

Note that f] Lt is dense in Lt for all t = 1. Let J = f] Jt. Since the summands in

(4) are closed, we have that J is dense in Jt. In particular if J were finite dimensional
it would follow that J = JV The same argument shows if Js were finite dimensional
then JS = JV

Note div^ : Lx -+Xp
)t5 + 2 is

 a n isomorphism and thus there is a constant Cx such
that for each heLv

p d i v ^ U ^ . (5)

Let heE1. We may write h = h' + h" where h'eLl and h"eJv Then

If J j were finite dimensional there would be a constant C2 such that

Thus we would have
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Let h be any symmetric 2-tensor in C^(IR3). For £0#0e(]R3)* and AeR, set hy

= ea<x^°yh. Also let og be the principle symbol of div^. Then we have

r1e-iX<x-*°>diwg{hy)-+Gg(x9Z0)h as 2->oo. (7)

Also, there is constant C4 such that

Now

If X>l/C5 we have

It follows for any symmetric 2-tensor /zeC^(R3) and xeR3 , £oe(jR3)* there is a
constant C6 such that

This implies og is an injective symbol when restricted to E1. However, as pointed
out in Proposition 3 of Bourguignon et al. [1], this is impossible. Q.E.D.

Corollary 3.7.1. Under the assumptions of Theorem 3.7 there are an infinite number of
linearly independent solutions to divgk = trgk = O with keS^_1 d+1.

The decomposition in Theorem 3.7 arises naturally when studying the quotient
space of ^p

sd under the action of the diffeomorphism group (Coordinate Changes).
Js represents infinitesimal changes of conformal geometry (see Cantor [3], Fischer
and Marsden [11], or York [21] for details).

Theorem 3.8. Let p > 3, s > 3/p + 2, and 0 ̂  8 < - 2 + 3(p - l)/p. Then

is a smooth sub-bundle

Proof. We apply Proposition 6, Theorem III of Lang [13] which states if/ :n->n" is
a vector bundle morphism of vector bundles over a Banach manifoldX such that for
each xeX, fx :EX-^EX is surjective and has a kernal that splits. Then the sequence

f
7i->7r"-»O is exact.

It follows that K e r / = u K e r ( / J is a sub-bundle (see Lang [13], p. 43).
We first consider

(g,k)\->(g9trgk).
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It follows from Proposition 3.4 that tr satisfies the conditions of the above
proposition so that ker tr = E is a sub-bundle.

We now consider

d i v : £ - > * * , J 2 f , + 2

(g,h)->(g,divgh).

This is clearly a vector bundle morphism and it is shown in the proof of Theorem
3.7 that on each fiber Eg, div^ is a surjection with a splitting kernal. Thus
^ = ker(div) is a sub-bundle of E. The theorem follows immediately. Q.E.D.

4. The Conformal Factor

In this section it is shown that members of a large subset of & uniquely and
smoothly determine a solution of the scalar constraint equation. The problem we
wish to solve is

(E)

where R is the Scalar curvature ofg,M = k-k = kijktj and p, s, 3 are as in Theorem 3.8.
Note <j)—l has M " 1 growth at infinity.

The scalar constraint equation has been studied by Choquet-Bruhat [7] who
obtained similar results to the R ^ 0 case below. She used her notion of asymptotic
Holder spaces and had to assume globally small C° norms for R and M. We need the
weaker assumption that R(g)9 and M are in Mf_2>d + 2.

In what follows {Ag$) = gabVaVb(j) and so it is sufficient that gtj — S^eM^ in order
to apply Theorem 2.8 to Ag.

Theorem 4.1 (Positive Curvature). Let p > 3, 0 <* 3 < - 2 + 3(p - l)/p and s>n/p + 2.
Let g^3t\yb have nonnegative scalar curvature R(g) and let MeMf_2 5 + 2(IR

3
)IR) have

the property there exist positive constants Cx and C2 such that 0^C1i^(x)^M(x)
S C2R(x)for all xelR3. Then there is a neighborhood U of(g, M) in 9t\%b x Mf_ 2tb+2

such that if (g\M')eU there is a unique (j) satisfying:

^ (C)

for all xelR3.

Furthermore, (j) depends smoothly on {g\ M') in U.

Proof We prove this in several steps. First using a monotone convergence scheme
we solve the equation using the given g and M. We then complete the theorem using
the implicit function theorem. Throughout this proof let R = R(g). Note
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Let cj) = 1 + u we substitute into (C) to obtain the following reformulation:

I ueMZ, (C")
Iu(x)>-1 for all xeR3.

Set /(M) = 8 " 1 ( R ( M + 1 ) - M ( M + 1 ) " 7 ) . Note using Lemmas 2.4 and 2.5 we see

/:Ml\d-+Mp
s_2(5+2 smoothly. Also j-(x) = 8 ~ ^ ( x ) + 7M(x)(u(x) +1)" 8^Owhen

M(X)> — 1. Thus / is increasing in u for the functions under consideration.

Step 1. Uniqueness.

Let v1 and v2 be two solutions of (C"). Then w = v1 — v2 is continuous. Suppose
w(x)=l=0. Then we may assume without loss of generality that there is a set DcIR3

such that w > 0 on D. But on D,Agw = /(t^) — /(f 2) ̂  0 a n d therefore w cannot take a
maximum on D. Thus D is contained in the interior of a larger set with w > 0. In fact,
it follows w^OonlR 3 and Agw^0 on IR3. Then using Lemma 2.7, we see w must
vanish everywhere.

Step 2. Monotone convergence.

We first establish the following: There exist constants e1 > — 1 and e2 > e1 such that
for all xeIR3,

Proof. Let C 1 =( l + e1)8 and C2 = (l + e2)
8 then clearly e2>e1 and dividing the

inequality

by (1 +e1)
1 yields the first inequality. The second inequality is obtained similarly.

Given R,M,ex and e2 let u1eMp
d be the solution oiAgu1 =f(e1) guaranteed by

Theorem 2.8. Also let Av1=f(e2\ Note since SA(u1 -e1) = 8A(u1) = R(e1 + 1)
— M(e1 + l ) ~ 7 ^ 0 we have by the maximal principle that u1^e1> — 1. Similarly
vx^e2. It is clear there is a constant C sufficiently large so that with e1 <u<e2

df(x)
du

Set X(x) = C(R + M)(x). Note that XeMp_2>d + 2, and X^O. Let T:Mp^Mld be
given by

This makes sense since if veMp
s 8 then /(f) — Xv may be taken to be in MP_ 2><5 + 2

and Theorem 2.8 applies. To see that Tis monotone let wx ^ w2. Then since/ — X is
decreasing we find
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and so T(wi)^T(w2) by the maximum principle. Now letting w.= T(Mi_1) and
v- = T(vi_ x) we get a pair of monotonic sequences of functions —l<e1^u1^u2Sui

^••-•'^Vj^Vj_i^...'£e2 converging (at least) point wise to u(x)f^v(x). Note that
both u and v are formally fixed points of % i.e. using continuity of T

T(u(x)) = T Jim uix) = lim T(M,(X)) = u(x).
\i->oo / i->oo

Using the following and Step 1 we can conclude u = v and v is a solution to (C).

Step 3. Regularity; {vt} converges in Mp
s5.

First a note for each i, vta
deLp thus using the monotone convergence theorem

vo3 e LP. Similarly f(v) as + 2eLp since f(vt) a
s + 2 is a monotonic sequence o f functions

in U. Now note for any solution </> to (C") and any s = 2, there is a constant B

and so letting 5 = 2 and 4> = v we may conclude veMp
2>d. Now 2>3/p and so

/(p)eM5 j5. Thus we may make repeated use of (1) to establish veMP
d.

Step 5. The neighborhood U.

Let 0 be a solution to (C") with given g and M and define a function F:

Note F(cj),g,M) = 0. Also it follows from the coordinate formulas for Ag and R(g)
and Lemmas 2.4-2.6 that F is C00 at (<^,^,M). Also

and it follows from Theorem 2.8 and the maximal principle that —(d),g,M) is an
c<p

isomorphism from MP
 d onto Mp_2 d + 2. Thus it follows from the implicit function

theorem there is a neighborhood U of (g,M) in &P
9d*Mp_2 d + 2 and a unique

function 0 : U-^Mp
d such that (j)(g,M) = (j) and F(c/>(#',M),^,M) = 0 for (g,M)eU.

Thus for (g',Mf)e U, (l)(gf,Mf) is the desired solution. Q.E.D.
Since if JR = M = 0, g = y, the Euclidean metric, then 0 = 1 is a solution of (E),

Theorem 4.1 tells us we may solve (E) when M is near 0 and R has a small amount of
negative curvature. This along with the remark that the solution of the constraint
equation associated with g only depends on g's conformal structure will allow us to
find solution the constraint equations associated to members of ̂  with non-positive
curvature. This program is based on the following theorem:

Theorem 4.2. Let gej$p
sd and R(g)S0- Let R be any function in Mp_2>3 + 2 such that

C1R(x)^R(g)(x)^R(x)S0 for some C x ^ 0 . Then there is a unique positive
(j)eMp

8(l) (see Lemma 2.5) such that if g^^g the scalar curvature of g is R.
Furthermore, 4> depends smoothly on g.
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Proof. It is well known that if g = 04g and R and R are the scalar curvatures of g and
g respectively then

Thus to prove this theorem we need show (*) has a unique positive solution (j>
with cj)—leM^d, and also that 0 depends smoothly on g. We will break the proof
into several steps:

Step 1 (Existence and uniqueness). We use a monotonic convergence scheme as in
Theorem 4.1 and thus must establish existence of upper and lower solutions:

There is a constant upper solution eY > 1 iff — Re1 + Re\ ^ 0, i.e. if Re\ ^ R. Since
R and R are both negative and c^^R, such an e1 clearly exists. A constant lower
solution e2>0 must satisfy Re\^R. Since R^R any 0 < e 2 < l will suffice. The
existence proof proceeds exactly as in Theorem 4.1.

We may show uniqueness by picking keMp
s_ 2 8 + 2 such that k >0 and such that

Ru — Ru5—ku is decreasing in w. Solving (*) is equivalent to solving SAgu — ku = Ru
— Ru5—ku and thus the uniqueness argument of Theorem 4.1 applies.

We now show </> depends smoothly on R.

Step 2. Let J < C < 1 and suppose R^CR. Then the solution cj> found in Step 1
depends smoothly on g.

Proof. We use the implicit function theorem. Fixing R for the moment, we set

where Rg is the scalar curvature of g. Since Ag and Rg depend on at most two
derivatives of g and 5 —2^3/p we see F:^xMf>a(l)->Mf_2>5+2 is smooth.
Furthermore, a solution of (*) is given by F(g0,4>0) = 0. Thus, we need show if

F
(g0, cp0) is a solution of (E) then -rj(g0, 0o) :^sP<5~^?-2 5+2 is a surjection with

d(p
splitting kernal. In fact

dF

is an isomorphism if — R + 5R(J)Q ̂  0. If (g09 4>0) satisfy the hypothesis of this step
we have 5R^^5CR §{ and so 5R(/)^Rgo if 5 C # ^ 1 (Recall Rgo <0). Thus we

0' n 1 / 4
need to show that 0O = — • Since C > - this reduces to showing 4>0>B for any

\5C/ 5
B < 1. An inspection of Step 1 shows such a 5 is a lower solution of (E) and the proof
of this step is complete.

Step 3. The solution (j> of (*) found is Step 1 depends smoothly on geMp
sb.

Proof. Since R is bounded we may choose a finite sequence of functions R = Ro ^ R1

^...^Rn = R such that for each i,2Rt +1^Rt. Applying Steps 1 and 2 we may for
each i find a unique positive (j)i + 1eM^d(l) satisfying
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where gt = (j)*...(l)fg. Setting (j) = (j)1...(l)n and g = (j)Ag it is clear g is conformally
equivalent to g. Also note that the fact 0 does not depend on the choice of the
functions Rt follows from the uniqueness part of Step 1. Q.E.D.

We may combine the above results with those of the previous section to
establish the following theorem:

Theorem 4.3. Let (g,k)e£P. Suppose further that the scalar curvature R of g and
M = k-k satisfy one of the following conditions.

1) There exist positive constants Cx and C2 such that 0^C1R{x)^M(x)
SC2R(x)for allxeik3.

2) R and M are sufficiently near 0 in MP_2 3+2.
3) R ^ 0 and M is sufficiently near 0.
Then there is a unique positive function 4>eMP

d(l) depending smoothly on (g,k)
such that the pair (04#, <j)~2k) satisfy the constraint equations.

Proof. For (g, k) satisfying Conditions 1) and 2) this is a restatement of Theorem 4.1.
Note if keSP_ld+1 then a fortiori, k-keMP_2d + 2.

For (g, k) satisfying Condition 3) let C > 0 be sufficiently small so that Condition
2) applies to CR. Let <j)1 be the function guaranteed by Theorem 4.2 to give gx = §\g
scalar curvature CR. Applying Condition 2) gives us a factor cj)2 such that
9 — i^i^ifQi k = ((j)1(l)2)~

2k satisfy the constraint equations. Q.E.D.
Finally, since s > 3/p and 1), 2), and 3) are open conditions in C°, it follows the set

of (g, k) in & satisfying any one of the conditions is open.
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Note Added in Proof

The proof of Step 2 of Theorem 4.1 should be modified as follows:

We may choose e1<0 and e2>0 so that for f(x,u) = %~1(R(x)(u+l)-M(x)(u + l)~1 we have
/ f o e J ^ O andf(x,e2)^0. For Tas in the proof in the paper let M1 = T(e1) and v1 = T{e2). We claim
ex ^u1 and u1 ̂ e2. To see this note

Also note u1(x) — e1-* — e1*zO as x-*co thus by the maximal principle

u^x) — ex ^ — ex^0 for all x.

The proof that vt ^e2 is similar. Since Tis monotone and e1^e2 it is clear that u1 ^v1 and in fact if un

= T{un_1) and vn = T(vn_1) that un^vn for all n. The proof proceeds as in the paper.




