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Abstract. We study the decomposition A^^Aj + A^ of a 17(1) lattice gauge
field into instanton and spin wave parts. The action also decomposes,
s$ = S^I + j$sw + R. Here jtfj is a Coulomb dipplb gas, ̂ m is a zero mass free
field, and R is a higher order remainder. We pίίidy ̂  in detail, for d^4, in the
dilute gas case (which correspontfδsto the low temperature limit of the gauge
field theory). We establish the>%adin£\behavior of the free energy: f~ε~daζ.
Here ε is the lattice spacing^ is" a geometrical constant and ζ is an activity
defined in terms of a smaΠ^ni^mbej of instanton configurations. Our methods
suggest the absence oΓscΓ^fiίίig iri the dilute dipole gas, d^.4, in contrast to
Debye screening for theMilutejnonopole gas.

1. Introduction

It has been proposed by Gell-Mann and others that a gauge field coupled to
a fermion (quark) field may describe the internal structure of protons, neu-
trons, etc., as quark triplets, etc. In order to account for the strong binding of
individual quarks, as well as the observed property of asymptotic freedom of the
physical particles, a qualitative understanding of the phase transitions and critical
points of the gauge-quark system appears necessary [11]. The important properties
of the critical points are inferred from renormalization group and semiclassical
methods.

In this paper we study some steps in this program on a rigorous mathematical
level. See [8] for an introduction to the mathematics of lattice gauge fields.
Following Polyakov [9], we formally derive the instanton interaction in terms of a
dilute Coulomb gas for a t/(l) lattice gauge theory. For J^4, the gas consists of
vector charges, and a conservation law restricts the charges to occur only in dipoles.
Since the dipole-dipole interaction is not integrable at long distances, standard
methods do not apply. Nevertheless, we prove an upper and lower bound on the free
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energy of the dipole gas. The essential step is to use a cancellation between the forces
produced on a test dipole by oppositely oriented dipoles occurring in a block. Our
conclusions suggest that higher order corrections to the dipole forces do not
generate a mass (finite correlation length at sufficiently low temperature. This
is in contrast to the d = 3 dilute Coulomb gas of scalar charges for which Debye
suggested a finite correlation length, see [1].

We study in detail the action

,stf=-βΣcos(ε2gF) . (1.1)

We first separate F = Fj + Fsw into two parts: The spin wave part Fsw characterizes
the oscillations withing one cosine well, while the instanton part F7 characterizes the
transitions between different wells of the cosine function. The splitting gives rise to a
magnetic charge density Q with the geometric interpretation

Q = δSι (1.2)

namely Q is the boundary (d — 3 dimensions) of a Dirac surface S(d — 2 dimensions).
We call Q magnetic (rather than electric) since 5 is the geometric dual of [F] (a
discretization of F). The divergence of the dual of F is generally called a magnetic
charge.

For d = 3 dimensions, the monopole charge Q occurs as the boundary of the
Dirac string S. For d^4, Q satisfies the conservation law

3β = 0. (1.3)

An elementary charge configuration for d = 4 is illustrated in Figure 1. In that case
the vector charges (arrows) bound an elementary plaquette in the dual lattice.

Fig. 1. Elementary dipoles, d = 4

Because of the conservation law (1.3), the elementary charge configurations in d^
are dipolar, in fact two orthogonal dipoles for d = 4.

With the above splitting of F we obtain for the action the splitting

(1.4)

Each of the three parts in (1.4) is individually gauge invariant. Here s^l is a Coulomb
interaction for the charges β, while jtfsw is the action for a zero mass free field. The
remainder R is of order three or more in Q or Fsw, and formally vanishes at zero
lattice spacing. In the detailed analysis which follows, we neglect R and consider
the approximate action j/7 and stfsw composed of independent parts. The free field
part ^sw can be solved exactly, while the instanton part s^l requires a detailed
analysis. ̂  l also vanishes formally at zero lattice spacing.

In this manner we arrive at the analysis of a Coulomb gas of monopoles (d = 3)
and of dipoles (d^.4). The remainder of the paper is devoted to the detailed study of
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the statistical mechanics of a dipole gas, see also [12]. The basic difficulties arise
from the long range nature of the Coulomb action. We develop an expansion
method to study the free energy of the dipoles at low density, i.e. β^> 1.

Our detailed analysis involves several steps. First we define dipole clusters QL

(i.e. average or block charges) to replace the elementary dipole excitation Q of
Figure 1. We choose the dipole clusters so that the long range interaction between
two clusters is the same as the long range interaction between two elementary
dipoles, up to a quadrapole error. Here we have the lengths scales

(1.5)

ε is the lattice spacing (diameter of the elementary excitation), RL = εO(βίld~2) is the
diameter of the dipole cluster and r is the inter-cluster separation. The quadrapole-
quadrapole interaction is 0(r~(d + 2)), which is integrable at infinity and thus can be
treated by standard methods. (The possibility of charge-quadrapole interactions
actually requires a second averaging and the replacement of quadrapole by
octapole error terms.)

Each dipole cluster has a much reduced self action. The elementary dipoles have
self action O(β\ while the dipole clusters have self action 0(β~ε). This requires the
introduction of an activity

Y ~ — O(β) (Λ £\ζ = e (1.6)

which characterizes each averaged dipole cluster. The small activity results in a
dilute gas of dipoles in typical configurations, i.e. in an expected density 0(ζ)<ζ 1.

Using this typical density, we can sum the action up to a statistical length scale
'). Thus

(1.7)

For r>jR s t a t, we take advantage of the cancellation due to charge symmetry of the
dipole gas. For every dipole of positive orientation in Figure 1, there is an
elementary dipole with opposite orientation. Thus we can define the total charge δ
of a large number v of dipoles. Configurations which have a large dipole charge are
accompanied by a small statistical weight

P^e~δ2l2v . (1.8)

Here v = v + + v _ and δ = v+— v_ is the deviation from dipole neutrality. The
entropy factor (1.8) is just the binomial distribution

p=2~tvj (L9)

We use this small factor to produce conditional convergence on the distance scale

2. The Definition of Instantons and Spin Waves

We consider the simple cubic lattice Zd

ε with lattice spacing ε. The [7(1) gauge field is
a Lie algebra valued 1-cochain defined on lattice bonds (i.e. simplices connecting
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nearest neighbor lattice sites). An element γ of the £7(1) group can be written

π , (2.1)

and we define A to be the gauge field. The 2-cochain defined as the coboundary of A
is

F = 3M = ε- 1 Σ^(0. (2.2)
iedp

Thus F is defined on lattice squares (plaquettes p). Since four links bound any
plaquette,

\ε2gF\^4π. (2.3)

We have introduced the factor ε"1 in the definition of 3* so both A and F
formally have limits as ε-»0. In this limit A is a 1-form, and F = dA is a 2-form. The
deRham cohomology of differential forms on a compact manifold is isomorphic to
the simplicial cohomology of a smooth triangulation of the manifold, see [10]. See
[7] for the geometry of gauge fields.

The action j/ associated with F is defined by

d*A), (2.4)
P P

where the sum ranges over plaquettes. We note that

β = εd'4g-2 (2.5)

is a dimensionless coupling constant which is inversely related to the strength of the
interaction. Thus

(2.6)
p

We let [F] denote the discretization of F. By definition

ε2#[F]=2π7 , when ;-i<(2π)-1εV^7 + i , (2.7)

and where j is an integer. According to (2.3), the possible values of; are 0, ±1, ±2.
We note that d*F = (d*)2A = Q, which we can also write <5**F = 0. Here we

introduce the duality map *. For the purpose of geometric interpretation we let * be
the composition of Hodge duality with the metric. Hodge duality defines an
isomorphism between r-cochains on Zd

ε to (d — r)-cochains on the dual lattice *Z^.
The metric- defines an isomorphism between (d — r) cochains and (d — r) chains
(raising and lowering indices). Thus

* : r cochains ~^d~r chains

r chains ~+d — r cochains

and satisfies

**=(-iy<d-' > .

Furthermore, under the * isomorphism,

*3**=<3 , *(5** = (S ,

where d is the boundary operator, and δ is its adjoint.
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In contrast to the above, [F] does not have vanishing coderivative, and
we define the instanton charge density *β by

*β, (2.8)

or with S= [*F], dS = 3[*F] = Q, cf. (1, 2). Maxwell's equations have the form

d*F = 0, δ*F=-ωd_1J, (2.9)

which says that J is the source for F. Similarly Q is the source for *[F]. Of course
3Q = 0, or equivalently, d**β = 0, which is a conservation law for d>3. For d = 4,
the Dirac surface has its boundary Q defined on links, i.e. Q is a 1-cochain. Then

dQ = Q is a Kirkoff law: Σβ(0 = 0, where the sum runs over 2d = 8 oriented links
i

meeting at a given lattice site. Thus Q is concentrated on closed d — 3 surfaces (loops,
for d = 4) and it follows that the charge distribution consists of dipoles. For d = 4, the
corresponding quantum mechanical soliton ("boxiton") has also been studied [6].
For d = 3, however, Q is a 0-cochain, concentrated at points, which corresponds to
isolated charges.

This distinction of loop charges (or closed d— 3 surfaces, d> 3) vs. point charges
(d = 3) is basic to the study of phase transition in (7(1) gauge theories, see also [9]. In
particular, the d = 4 loop charge explain the expected occurrence of an ordered phase
at sufficiently low temperatures T>0 for d^.4, and the absence of this phase for
d = 3. The mechanism, that an appropriate boundary first has dimension greater
than zero, and that its entropy is thus dominated at low temperature by its energy, is
the same as the mechanism governing phase transitions in the Ising model. Thus we
expect that the critical dimension for phase transitions in (7(1) gauge theories is
dc = 3, in contrast to the critical dimension άc — \ for the Ising model. The inequality
dcΞ>3 was established in [3].

Now consider the transformation A(x)^A(x)-\-2πnx(εg)~1, with nx an integer.
Under this change of variables,

F(p) = (3M)(p)->F(p) + 2π(sgΓ '(3

and

dp

Since 3*5* = 0, Q is unaffected, as is the action j/. It follows that S, regarded as a
d — 2 surface, can be deformed by such a change of variables, to an arbitrary d — 2
surface with the same boundary Q. Unfortunately, there does not seem to be a
natural determination of a unique *[F].

The lattice Laplace operator is

A = -δ*d*-d*δ* , (2.11)

and its dual is

A = -δd-dδ.

Because the topology of Rd is trivial, we can form A'1. The same is true for a finite
lattice with Dirichlet boundary conditions or with periodic boundary conditions.
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(In the latter case, the topology is trivial except in dimension one.) Consider

FI = lF]+δ*Δ~1*Q . (2.12)

Then

(2.13)

Since the topology is trivial and / is a 2-cochain, we can define Aj by the equation

d*AI = FI = [F] +<5*zΓ1*β . (2.14)

This is the vector potential for instantons. Finally we define the spin wave potential
Asw = A — Aj and Fsw = F — FP

For the action we now have

= — β ]Γ cos(ε2gd*AI) cos(ε2gd*Asw) + βΣ sm(ε2gd*AI) sin(ε2gd*Asw).

(2.15)
Observe that

d*(-AΓ1*Q) .

so the Dirac surface S or * [F] does not contribute to the action. Also note

Based on the φ4 analysis [4], we expect that the dominant effect on long range
order will be given by the decoupled instanton and spin wave fields, i.e. from the
terms in (2.15) which are lowest order in εg (and formally ε, g independent as ε-»0).
Thus following Polyakov [9] we introduce the approximate action

= const + s^j + sdsw .
(2.17)

After decoupling, we will have long range order only if it occurs in each of the fields
Aj and Asw. Since the approximate action for Asw is Gaussian, it can be explicitly
computed that long range order occurs in Asw for d^4, but not for d^3 (cf. [3]).
Thus for the remainder of the paper we consider only the instanton field generated
by the charges Q. Since

(Q,(-AΓ1Q>, (2.18)

we see that the instanton action is

(2.19)
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Thus the [/(I) instantons interact with Coulomb forces in the approximation (2.17).
Returning to the exact action (2.15), we expect that the Coulomb forces are the
leading long distance parts of the instanton action.

3. The Landau Length Scale and the Activity

In the approximation of §2, the pure instanton action is

^ι=έΣfid«i(-ΛΓV (3.i)
We recognize q{ as the charge density and εdqi as a charge. Each q. takes values which
are integer multiples of 2πε~3g~1, by virtue of (2.7). We let β = εd'4rg~2 define the
Landau length scale RL by the formula

β = (RL/£)d-2. (3.2)

RL characterizes the size of individual contributions to (3.1). In other words,

and the interactions in (3.1) on a length scale less than RL are strong, while those on a
length scale greater than RL are weak. In particular, if RL>ε, then the self
interaction is large compared to the interaction between distinct charges. The self
interaction of a single dipole loop is of the order

ε2dq2ε-d+2 = 0(ε2d-6g-28~d + 2) = 0(β) . (3.4)

It is convenient to modify the definition (3.3) in order to make RL/ε an integer.
We set

RL = e[jί1/(d-2)], (3.30

where here [ ] denotes the integer part. With this definition, the Landau lattice Z*RL

is a sublattice of Zf.
Given a charge configuration g, we will define a decomposition into a typical

part Qt and an atypical part Qfl,

Q = Qa + Qt> (3.5)
see Chapter 4. The main property of Qt is that it is a union of connected components
of Q, and that Qt has a low density of d — 3 lattice elements. (Here we consider Q as a
d — 3 chain, and hence as a d — 3 surface in Rd.) Since d is a local operator, we have

Sβf = 0 . (3.6)

We now show how to replace the charge distribution Qt by an averaged charge
distribution Qt L on the Landau lattice. Each elementary dipole of Qt in the dual Zf
lattice will be replaced by a large number of weaker dipoles in the dual Landau
lattice. In making this replacement, we define the error term δQt by the equation

*β, = β,-a.L (3.7)

The physical interpretation of δQt is a quadrapole interaction to compensate for the
shorter distance (quadrapolar) forces which differ in Qt and Qt L. The long range
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(dipolar) forces arising from Qt to Qt L will agree, since we define them to have equal
(average) dipole densities. We also define Q by

Note

Since <£/j(β) is quadratic in g, for two charge configurations Q{, Qj it is convenient to
define their mutual action j^j(βf, Q) by

^r/(βi)-^ι(βj)) - (3.10)

Proposition 3.1. For any charge distributions β, Qp

(3.H)

= Σ ^/(β^β,). (3.13)
j=ι / U=ι

Proo/ These identities follow by expanding the quadratic function j//9 for example

^/(β, β) = έWfl) - Is/Xβ)) = i(4 - 2)^(β) .

Corollary. For Q = Qa + Qt = Qa + QttL + δQt = Q' + δQt ,

«? ^flί) (3 14)

Thus the change in action due to replacing typical ε-dipoles by averaged RL-
dipoles is the sum of a quadrapole remainder term, 2jtfj(Qa, δQt\ and the change due
to the typical configurations. We estimate (3.14) in Chapter 4.

We now define Qt L. Using (3.6), we write

Qt = SSt (3.15)

for some d — 2 lattice surface St. (Henceforth we assume d ̂  4.) This surface St is the
Dirac surface for the typical charges. We choose St to have minimal d — 2 area. It
follows that if {Q^} is a collection of charge configurations supported in lattice
volumes of bounded diameter, then the area of {S(

t

j)} is also bounded. Define

Sa = S-St (3.16)

SO

dSt = Qt, 3Sa = Qa. (3.17)

We first assume that St is a single d — 2 cell in the dual ε lattice, and we define St>L.
In the general case where St is the sum of a bounded number of elementary d — 2
cells, we define St L by linearity.
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Let St be a single d — 2 cell in *Zf, and consider the collection of (RL/ε)d~ 2 dipoles
(i.e. d — 2 surfaces) in *Zf, which both (i) lie in a single d — 2 cell in Zd

R]L parallel to St

and (ii) are closest to St. We define St>L to be this d = 2 Landau lattice cell, and we
assign a charge strength as follows: Since St has strength 2πjεd~2g~ί, we take the
strength of each weak dipole (ε lattice dipole making up St L) to be

2πjεd-2g-1(ε/RL)d-2 = 2πjεd-2g-1β-ί . (3.18)

Thus the dipole charge is scaled down by β~l.
We justify this choice by calculating the long range part of the interaction

between two pairs of dipole charges, oriented as in Figure 2.

Fig. 2. Two dipole pairs on a line, separated by distance r, illustrated for d = 4

Before averaging, the mutual action, up to quadrapole corrections is

~d

where q, q1 are the charges, ω is a constant and ε is the charge separation within a
dipole pair. After averaging, there are (RL/s)d~3 charges on each face of the
boundary of SL9 and each charge is scaled down by β~1. The dipole charge
separation is RL in place of ε. Thus for r^>RL, the mutual action is

up to quadrapole corrections namely the action is unchanged up to a quadrapole
error.

Proposition 3.3. Let Qt contain at most a bounded number N of charges. Then the self
action ^(QtίL) is of magnitude 0(β~ll(d~2)).

Proof. The charge strength per elementary charge in Qt L is of the order sd~3g~1β~1,
since Qt}L = dSt>L, and the dipoles have strength εd~2g~1β~l as explained above.
Summation over relative separation of the charge pairs yields the factor ε~d + 2,
while for fixed relative separation there are (RL/ε)d~3 charge pairs. Thus the self
action has magnitude

(εd-3g-lβ-ί)2(RL/ε)d'3ε-d + 2 = 0(ε/RL) = 0(β-ίl(d-2}). (3.19)

Note the bound (3.19) uses the fact that St L contains a bounded number N of
dipoles, since N2 terms occur as a multiplicative factor in the bound.
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As a consequence of this argument, each small charge cluster Qt can be replaced
by weaker averaged charge clusters Qt L without changing the long range
interaction. Aside from the necessity of introducing a quadrapole interaction
(which we denote by J), it is also necessary to introduce an activity ζ to compensate
for the large change in self action. For a single ε lattice dipole, the self action is c0β,
cf. (3.4). Since the averaged dipole has self action 0(β~ lj(d~ 2)), the activity ζ = e~0(β}

is associated with a single charge. Likewise, each small dipole cluster S(

t

j} will have an
activity ζ. = e~0(β) to compensate for the large change in self action. We discuss this
issue in detail in Chapter 4. In terms of the above equations, the change in self action
(yielding the activity) arises from the term ^/(6f) — J/j(βf'L) in (3.14).

We give a lower bound on ̂ (β) in terms of the charges in Q which have density
2π/ε~30~1, i.e. ε lattice charges. We can apply this bound to Q' defined by (3.8),
where Qa are the ε lattice charges.

Proposition 3.4. Let Q = Qa + Qt where Qa are ε lattice charges. There is a constant
c>0 such that

, (3.20)
Qα

where ^ denotes the sum over all d — 3 cells with nonvanishing charge Qa, and where
Qa

the charge density q. in Qa takes on values 2πε~3g~1j, for |j|^12.

Proof. Let B = (-Δ)~1Q and observe that

For a given charge q in Q, let ]Γ(9) denote the sum over all d — 2 cells of the dual lattice
for which q lies on the boundary. By definition

Note that

and hence

dδB = dS = Q. (3.21)

In other words, δB satisfies a conservation law, δδB = Q, and in particular for a
charge qeQa,

Σ(q}δB = 2πε-2g-1j . (3.22)

However, each d — 2 cell occurs at most 2(d — 2) times in the iterated sum £ £(g), and
Qa

so omitting terms from Qt L,

(3.23)
Qa

Each sum ^](g) contains 6 = 2(d — (d — 3)) terms, and so by the Schwarz inequality
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Thus by (3.22)-(3.23),

wherec1-π2/36(d-2).
We end this section by remarking that a further change in the charge

configuration eliminates the long distance part of the quadrapolar interaction Ά. In
fact, replacing each array of (jRL/ε)d~ 2 piecewise constant dipoles in SttL by a linear
combination of 2d translates, we eliminate the quadrapole interaction up to an
octapole correction &. So that all error terms arising from linear contributions to
charge minus average charge can be estimated with octapole remainders, we
perform this one additional averaging in the definition of Qt L.

4. The Dilute Dipole Gas for d^4: Upper Bound on Z

We study s4l defined in (2.19) for a dipole (instanton) gas and establish bounds on
the partition function

Z = J]^ι(Q). (4.1)
Q

We obtain the leading contribution to the free energy

fv = V~1\nZ, β->ao . (4.2)

To any finite configuration of charges β, we associate the action

CQ = *-"'«» (4.3)

defined by (2.19). As in (3.4), we see that

*Ί(Q) = cQβ, (4.4)

for a constant CQ which can be expressed explicitly in terms of ( — A)~ l via (2.19). The
constant CQ is invariant under scale transformations, and thus (if we use scale
transformations to identify charge configurations Q on different lattice spacings)
the constant CQ is independent of ε.

Our main assertion is that it is sufficient to examine a finite number of <2's to
determine fv to leading order. Let Ά be the set of all finite charge configurations,
and let

Since ζQ is translation invariant, the sup above is taken over the finite set JM/Zd.
Here M is a constant to be chosen later. Let α0 denote the multiplicity of the
maximum, i.e. the number of β's for which ζQ = ζ0. In counting α0, we identify two
charge configurations if they are related one to another by a lattice translation. We
state our main result.
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Theorem 4.1. There is a y>0 and a choice of M in (4.5) such that

, (4.6)

for V> V(β) sufficiently large and for β sufficiently large.

Remark. The choice V> V(β) eliminates surface boundary effects in leading order.
Fabrizio De Angelis, de Falco and Guerra [2] have shown that limF fv exists for
the lattice gauge theory, and Griffiths [5] show this for d = 3 magnetic dipoles. For
the instanton gas considered here, we believe that lim/F = / also exists and that
/ = ε ~d Σ C<2 + 0(Co + e\ for θ < 1. In this section we prove a lower bound on fv of the
form (4.6).

First let us explain the significance of Proposition 3.4. Let c0 be the coefficient CQ

in (4.4) for Q consisting of a single ε lattice charge loop (charge with density of order
ε"3^"1). Let Q = Qa + Qt be a decomposition into ε lattice charges Qa and disjoint
charges Qt. If Qa contains L^c0/cί charges, then Q does not contribute to the
maximum in (4.5). Thus only a bounded number of charges will contribute to the
maximum in (4.5), independent of M.

We now specify precisely the typical configurations and the application of the
construction of Section 3. Decompose the lattice into hypercubic blocks A with side
length 2RL. Let Q be a charge configuration, and let N(Q, A) be the total number of
charges in A and in A, the union of A and the 3d— 1 blocks adjacent to A. If

, (4.7)

then Q f A is called typical otherwise β M is called atypical. The typical charge
configurations are more complicated than the bounded charge configurations (4.5).
In fact a typical configuration may contain several widely separated clusters.

Proposition 4.2. Let δ > 0 be given and let Q = ̂  Q . be a typical configuration,
composed of clusters Q having minimal separation Dε. Then for D^.D(N,δ)
sufficiently large

\^(Qi,Qj)\^δβN-2 , (4.8)

for ίφj.

Proof. From the definition (3.10), we have

.^(e^-X-i Σ e'vj'+v
QieQi
ijeQj

Summing over charges 2πjε~3g~1 and rtj^Dε gives

βD-**2 , (4.9)

where cQ.,Q is a constant. In fact cQι Q ^0(N2). Thus (4.8) holds for D(N,δ)
sufficiently large.

With the choice of D = D(N, δ) as required by Proposition 4.2, we divide Q [ A
into clusters separated by at least Dε. Each cluster Qj (as Q ϊ A itself) has at most N
charges, so each cluster has diameter at most NDε. Choose M = ND in (4.5). Thus if
Q is typical in A,

β7.eJ2M, (4.10)
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and (4.8) holds. In case the cluster Qj lies in two or more of the 3d blocks of A, we
assign Qj to the block containing its "lower corner" in some lexicographic order of
lattice sites in Zd. For β sufficiently large (RL > ε) each Qj associated with A satisfies

8Qj=0 . (4.11)

Let J(A) index clusters associated with A. For typical blocks A let

QA = Σ Qj. (4.12)

Then QA is the configuration to which we apply the construction of Chapter 3,
giving QΔ L, which agrees with QΔ up to the octapole remainder. Let

A Δ (4.13)
SQΔ=QΛ-QΛ.L

Lemma 4.3. For β sufficiently large,

sΆQJ- *Ί(QA,ι)* Σ rf&jW-δ-β-1). (4.14)
jeJΔ

Moreover we may take δ = Q if J Δ contains a single element.

Proof. Using Proposition 3.1,

J*I(QA)= Σ *ι(Qt,Qj)=Σsiι(Qi)+ Σ *fι(Qi,Qj).
I,J^JA ieJ Δ i^j

i, JeJA

By Proposition 4.2, we bound the intercluster action by

Since Qj belongs to the finite set up to translations, of typical charge clusters,

β ̂  const Σ^/(e7 ) , (4.1
jeJ^

using the constants of (4.4). Thus with a new δ,

Clearly we may take δ = 0 if J Δ contains a single element.
We bound ^I(QfΔ L) using Proposition 3.3 Thus

and by (4.15)

^β~'Σ *fι(Qj) (4-17)
jeJΔ

for β large. The desired bound follows from (4.16-(4.17).
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Lemma 4.4. There exists y > 0 such that for β sufficiently large,

*ι(Qt)- *Ί(Qt,ι)^Σ Σ ^ι(βj)(l-^-Γ7) (4.18)
A jeJA

where δΔ=Q if only one cluster is associated with A.

Proof. We expand using Proposition 3.1,

Σ
The first terms in (4.19) are bounded below by Lemma 4.3. The sum over Δ ΦzΓ is
split into two parts : the sum over adjacent pairs and the sum over nonadjacent
pairs. The sum over adjacent pairs is bounded using Proposition 4.2 and the
argument in the proof of Lemma 4.3. For nonadjacent pairs we write the terms as

Δ,Δ'

= Σ *lVQA,Q*+QA l) (4 2°)
Δ,Δ'

The sum (4.20) contributes to the octapole remainder. Due to the subtractions in the
definition of δQΔ,

where

This bound follows as in the proof of Proposition 4.2, cf. (4.9). The additional
powers of D in the denominator arise from the multiple differences which occur in
the definition of δQΔ.

The summation over Δ and Δ' is achieved by taking dist(/l, Δ') — 2nRL where n is
a vector with integer components, and summing n over Zd. Thus, using (4.15) and

Σ Wl(δQA,QA +QA'.l)\^0(β-*)Σ Σ *fl(Qj) '
A, A' A j<=JA

Lemma 4.5. There exists y > 0 such that for <5 > 0 and β sufficiently large

Σ Σ ^ι(Q^-?>A-β-y} - (4.21)
<2α

Proof. We write

^/(β) = ̂ ι(β') + ̂ ι(α) - *fι(Qt.ι) + 2^/(2«> <*&) - (4-22)

The action ^j(Q) is bounded below using Proposition 3.4, with Q' = Qa + Qt L. Thus
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The difference ^I(Qt) — ̂ I(Qt L) is bounded below by Lemma 4.4. The remaining
term ^j(Qa9δQt) contributes to the octapole remainder, and it is bounded by

Qa

Proof of Theorem 4.1 (upper bound on Z). By Lemma 4.5,

We substitute ζj = e~^l(Qj\ In order to simplify the sum over configurations, and to
make the <2α, Qt sums factorize, we introduce some spurious terms. We allow
overlapping Qφ Qt configurations, and we regard two or more elementary clusters in
the same or adjacent blocks as separate events with activity

(^v U1^^,..;,- (4-23)

We then allow arbitrary multiplicities of these ζ^, ζjιJ2 . . . events in any block. This

allows us to bound the summation over charge configurations, £5 by independent
{Q}

sums Σ Σ over atypical and typical charge configurations. Thus
(Qa] {Qt}

{Qα) / \{Qt) Δ J

( \ / iΏ \d

Σe-*.«<u. I+Σ^ k+Σ
{Qa} 7 \ j \ β / 7172

Here we remark there are a finite number of terms for the typical summation in a
given block A. The factors (RL/ε)d, (KL/ε)2d, etc. arise from possible locations of the
clusters in A. Since (RL/έf = βdίd-2, and ζ.£ζQ9 ζhh^l(l~δ-\... ,

' \{Qa}

= t Σ e~iCίβΣQaj2}eaoζo(ί+0(Γγ})Vε~d .
\{Qa} I

Here we have used the fact that δΔ does not appear for a single cluster, to identify the
leading term in the exponent as α0£0.

The sum over atypical configurations can be carried out explicitly. Since Qa has
at least 4 3dc0/c1 charges on the ε lattice, the activity of each atypical configuration
in Δ is at least ζjξ. Thus the atypical terms can be included in the error 0(β~δ).

5. The Lower Bound on Z

In this section we prove the lower bound on Z = ]Γ e~ ̂ J, which completes the proof
{Q}

of Theorem 4.1. Since each term in the sum over configurations is nonnegative, we
achieve a lower bound by omitting certain configurations Q. The remaining
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configurations, called typical, differ from the typical configurations of Section 4
(and in any case are a set of measure zero in the infinite volume measure).

We introduce an infinite sequence R1 =ε, R2=RL,

(5.1)

of length scales. The first restriction defining a typical configuration Q is that Q
must be a sum of translates of the a0 distinct Q e &M with activity ζ0 = ζQ as in (4.5).
Furthermore we allow only one such elementary cluster in each block of length .R3

within this block, the cluster must have a distance at least ζQδRL = ζδ

0R3> from the
boundary of the block.

Let

where the sum runs over all elementary clusters Qj Φ Qι in Q at a distance between R
and .R' from the cluster Qt. For typical configurations,

Λ//(βi,0,CSK3) = 0 (5.3)

because the minumum intercluster distance is 2ζδ

0R3.

Lemma 5.1. For β sufficiently large and for a typical configuration Q,

μ^ίβ^KJI^KS (5-4)

Proof. At separation r,

K(β, ,βj)I^O(r/l?L)-<i/Γ1/('i-2).

At minimum separation r = 2ζδ

0R3> = 2ζQδRL

For Q/'s separated by one or more intermediate block of size #3, the discrete sum
can be estimated by an integral, giving

K(ft, 0, R4)\ ^ OOΓ 1/(d- 2) + 0(R3/RLΓ"β- w-v ln(R4/RL)

Here we have substituted R^d as an upper bound on the density of charge clusters.
For distances R>R4, the bound on j/j^ , 0, #) depends on cancellations

between oppositely oriented dipoles. To achieve this cancellation, we impose
further restrictions on the typical configurations. The map q-+ — q is a symmetry of
j/j which reverses the orientation of the elementary dipole clusters. Thus the
number a0 of these clusters is even, and we can label them as Q ±jj = 1, . . . , α0/2, with
Q-j= — Qj the orientation reversed image of Qj. We divide Rd into J-cells (block
spins) of length Rn, for each length scale Rn, n ̂  5. In any block spin of length Rn, let
V y be the number of times the elementary dipole cluster Qj occurs. Our final
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restriction defining a typical configuration is that

^4 (5.5)

for each j = 1, . . . , α0/2, each .Rw-block and each n = 5, 6, . . . .

Lemma 5.2. For β sufficiently large and for typical configurations,

Wfli.O.ooJI^CS. (5.6)

Proof. Write

^/(β/,0, co) = .s*'/(Qί,0,K4)+ Σ ^(Q/.^Λ.+ i)
M = 4

We divide the spherical shell contributing to s/j(Qi9Rn9Rn+1) into 0(Rn/R4[n/5])
d

blocks of length R4[n/5]. In each block

is the deviation from neutrality. The dipole interaction strength for a dipole with
separation R is bounded by 0(β~1/(d-2})(R/RLΓ". Thus

Summing over n, and choosing β large,

Σ KCβ^^i)!^
n = 4

so that Lemma 5.1 completes the proof.

Proof o/ Theorem 4.1 (completed). We now let £' denote the sum over typical
configurations. In a bounded region A of volume K a typical configuration β is
specified by the number N = N(Q) of dipole clusters, the choice of ± orientation for
each cluster, the (a0/2)N choices of \j\ and the

,/ε)dN(^-0& (5.7)

possible positions of the clusters. Here the factor (l-0(ζδ

0)
N results from the

excluded boundary region for the location of each cluster in its block of length R3.
Thus

z=Σ*-^Σ'*-^Σ Σ Σ*~*W2)"Cϊ[ -
Q Q N {Q:N(Q)=N} ±

Substitution of (5.7) and £ =2N in (5.8) would give
±

))]1' (5.9)

and complete the proof. Thus it remains to analyze the restriction placed on Σ' by
the restriction to typical configurations.



212 J. Glimm and A. Jaffe

For a particular Kπ-length block, the number of choices of + which violate (5.5)
is bounded by

Thus the complementary set occurs for at least

|-l_£-0("/2ζ8e±ζ° )]2'vJ + v - j l

Ώ \d l(Rn/R3)d

_1 ,,-0(2«/2ζgeKo ) ^K + v - j l

RJ \
choices. Multiplying these values, we see that (5.5) is satisfied on all ̂ -length blocks
at once for

(
D \ d

A) e"°<2"/2ζ"eK°"

choices of ±. Multiplying over n shows that

Γ //? \d

Σ^ ι-o(i)Σ(— e-w/'ζβaco- 2N^
± I n \Rn/ J

Substitution in (5.8) now yields (5.9) and completes the proof.
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