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Abstract. Symmetric Equilibrium States and their properties under duality
transformation are investigated. Necessary and sufficient conditions are derived
for equilibrium states to be transformed into equilibrium states by duality. It is
shown that ferromagnetic systems satisfying those conditions have correlation
functions bounded by those corresponding to the ( + ) and free boundary
conditions. It is then proved than any Invariant Equilibrium State of a
ferromagnetic system is transformed into an equilibrium state by duality and is
thus unique if the states defined by the ( + ), and free boundary conditions
coincide on the symmetric algebra. The existence of surface tension between two
pure phases is established.

1. Introduction

In this paper, we investigate some consequences of the duality transformation1

which are of interest for the study of ferromagnetic systems. It was recently
established that, for all temperature, there exists a unique, symmetric, translation
invariant, equilibrium state for the two-dimensional Ising model [2]; as was
suggested in [3] the duality transformation was indeed a key to the proof of this
result. The motivation of the following work relies upon the conjecture that for any
lattice system, there should be a unique equilibrium state, which is invariant under
the full symmetry group of the Hamiltonian, also called "Invariant Equilibrium
State". We shall then derive general properties of symmetric equilibrium states and
discuss certain consequences of the duality transformation.

In Section 3, we define symmetric equilibrium states by means of the solutions of
equations which are well adapted for the study of duality. Necessary and sufficient
conditions are then derived in Section 4 for a state to be transformed into an

* Present address: Swiss Institute for Nuclear Research, CH-5234 Villigen, Switzerland
1 Introduced by H. A. Kramers and G. H. Wannier for the Ising model duality is a symmetry property
inherent to lattice systems. See for instance [1] and references cited below
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equilibrium state by duality. In particular, for ferromagnetic systems, it is shown
that any state satisfying those conditions has correlation functions bounded above
and below by those of the states ω+ and ωf defined respectively by the ( + ) and (free)
boundary conditions it is also proved that any Invariant Equilibrium State yields
by duality an equilibrium state of the dual system. It thus follows that the
correlation functions of any Invariant Equilibrium State are always bounded by
those of ω+ and ωf and therefore the unίcity of the Invariant Equilibrium State
follows in the case ω+ —o^f. The duality transformation is also applied in Section 5
to the problem of surface tension where we prove that the surface tension between
two pure phases is well defined, non positive and bounded below.

To conclude this introduction, we shall note that we have restricted ourselves to
the case of HT-LT duality transformations it has been recently established [4] that
for HT-HT as well as LT-LT duality transformation there exists a bijection between
symmetric equilibrium states of the system and its dual.

We finally remark that J. L. Lebowitz [18], has recently derived new inequalities
which are relevant for the problem of unity of the symmetric invariant equilibrium
state. In particular it can be shown that the symmetric invariant equilibrium state is
unique whenever the energy density is continuous.

2. Notation

We consider a general spin ^ lattice system {=£?, ̂ , K] defined by a lattice <£, a
family ^C^ (Jδf) of bonds, and a real or complex function K : J*-»(C such that

KCB)=HO, ±i^9 oo 1 where K(B)=—J(B) and J(B) describe the interaction
[ 2 } kl

between the spin at sites B.
With any set <g, \<g\ denotes the cardinality of #, ̂ (ί?) [resp. 0>f(<gJ] denotes the

group defined by the subsets of ^ [resp. finite subsets of #] together with the
product defined by the symmetric difference of sets X Y=(XvY)\(Xr(Y),
X, Ye^Cίf). For anyXe^(^) [resp. ̂ (̂ )] σx denotes the function on &ffl [resp.
on &>(<$)'] defined by σ^(Y) = (-l) |Xny|.

With the lattice g and the bonds £% we associate the following subgroups Jf
and Γ of

jf = {β c 3§ Vxe JS? , 3 an even number of B in β containing x}

Γ = {y = y(χ)c@ι V5ey \Br\X\ = oάd}

together with the following subgroups ^ and J* of

}

, \B\<oo}.

Moreover, we denote by J>Γf the subgroup defined by tff = tfr\0>

f(U8) and by
Γ(/) the subgroup of Γ defined by those γ(X) with \X\ < oo.

The interest of these groups for duality and phase transition have been
previously discussed [5-7].

A state ω is by definition a positive, linear, normalized form on 21, the algebra of
continuous functions on &(<£} moreover ω is an equilibrium state for { =£?, «̂ , K} if
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for every Λe^f(^) there exists a probability measure ώΛ on £?(<£/ Λ) such that:

exp

ω[A] = J o

-2
£exp[-2 Σ

for all >1 in ̂  =
In the following discussion we shall restrict ourselves to the case of finite range

potential only.

3. Symmetric States and Symmetric Algebra

A state ω is said "symmetric" if it is invariant under the internal symmetry group 5̂ ,
i.e. for all S in 9>

ω[A]=ω[τsA] where (τsA)(X) = A(S X).

A symmetric state is thus a positive, linear normalized form on the "symmetric
algebra SI8?™", where :

This symmetric algebra 9lsym can be defined as the closure of the linear span of any
of the following families of observables :

!) {°β}βepf(!*) with σβ = Π σB σΦ=l
Beβ

2) {μβ}β**w with μβ=l\e-2K^σ- μφ=l
Beβ

which have the following properties :

Beβ

σβ= γ[ [ch2X^(β)-sh 2K^(B) σβ] where e~2K*(B) =
Beβ

In conclusion, any symmetric state ω will be uniquely defined by any one of the
functions σ(j8) = ω[σ^] or μ(j?) = ω[μj8] on 2Ps(β\ functions which are related by

μ = Dκσ σ = Dκ^μ

and for any function φ on ̂ .(̂ )

(Dκφ) 08) = Π ch2K(5) Σ Π th( - 2K(B))φ(β) .
Beβ βCβ Beβ

Proposition 1. The following statements are equivalent
1) ω is a symmetric equilibrium state.
2) The function σ on gPf(&} is a solution of

i) σ(0) = l,σ(β) = σ(β κ) for all βe0>f(&), κeJ4Tf (3.1)
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ϋ) ω[_σβ\=ω\σβlhΣ K(B)σB] for all βe0>f(@) and yeΓ(f)

[ Beγ \

such that \βnγ\ is odd
defining a positive form ω.

3) The function μ on έPf(&) is a solution of
i) ,ι(0)= 1, (DKfμ)(β) = (DKtμ)(β κ) for all

ii) μ(β) = μ(β γ) for all βε2Pf(®\ yeΓ(Λ (3.2)

defining a positive form ω.

Let us note that it follows from the Equations i) of (3.1) [resp. (3.2)] that the
function σ (resp. μ) defines a normalized, linear form ω on 9Isym which gives the
meaning of the Equation ii). The proof of this proposition follows by direct
computation from the equivalence previously shown in [8, 9]. We remark moreover
that in Equations (3.1) and (3.2), we could just as well consider only those γ of the
form γ(x) any solution of this reduced set of equations will also be a solution of the
full set of equations.

4. Symmetric States and Duality

Let {£?, 88, K} be a general spin ^ lattice system satisfying the condition
Γ(/) ΞΞΓn^/^) and let {&*, @*, K*} by any HT-LT dual for {&, <#, K} defined by
means of a injection d : B\-+B* of J1 onto ̂ * such that K* = K^°d~ 1, which induces
a bijection of Jf} onto Γ*n&>f(&*) [5].

It follows from a general argument on duality theory [5] that d induces an
isomorphism from Jfj onto Γ*n^.(^*); moreover the conditions that d is a
bijection together with the fact that Γ(f} = Γr\^f(^) implies that d induces also an
isomorphism from Γ(/) onto jf/ indeed Γ(/) = Γc\&f(β) iff Closure (.#}) = JΓ and
therefore d induces an isomorphism from Jf onto Γ* using the relations Jf1 = Γ(/),
r*L = 3rf concludes the argument.

Proposition 2. With any equilibrium state ω of {£?,$, K}, we can associate a
normalized linear form ω* on 2I*sym defined by:

which is a solution of the Equilibrium Equation of Proposition /. Moreover the
mapping ωπ>ω* is injective and satisfies :

The proof of this proposition follows immediately from Proposition 1 and we
omit the details of it.

The next problem one would like to investigate is under what conditions does ω
yield an equilibrium state ω* for the dual {JS?*, J**, K*}, i.e. under what condition
will ω* be a positive form on 2I*8?1".

A linear form ω on 9ίsym is positive if and only if, for any βε0*f(3S) and β1eΓ(f\

ω\ Π (i-^i) Π (1 + σs)] =° (4 !)
eβnβi Beβ
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By using this property, we conclude that ω* is a positive form on 2I*sym if and
only if for all βe0>f(@] ana

ω Π d-ftΛΠ
Beβ

(4.2)

Using then the relations :

we obtain the following result:

Lemma 1. The linear form ω* associated with the symmetric equilibrium state ω of
{<£,£&, K} defines a symmetric equilibrium state for {<£*,&*,K*} if and only if for
any β£g?f(έ%) and any κe3ff we have:

In conclusion the set of symmetric equilibrium states satisfying the condition of
Lemma 1 is precisely the set of equilibrium states to which duality can be applied.

In particular it follows immediately from GKS inequalities that for fer-
romagnetic systems,

— the state ωf defined by means of "free boundary conditions" satisfies the
condition of Lemma 1.

— the state ω+ defined as the restriction to $Isym of the state obtained by means
of " + boundary conditions" satisfies the condition of Lemma 1.

Therefore, ωf and ω+ yield by duality symmetric equilibrium states of the dual
moreover, we have the following result :

Theorem 1. Let {&,^,K} be a ferromagnetic system such that2

ii) there exists a sequence of finite volume A{-^^£ such that for any Λi and \X\ < oo
the conditions σB(X) = + lVBc<¥/Λί imply X=YSf with YcAt and Sfe^π£
then

1) for any HT-LT dual {=£?*, J**, K*} defined by means of a bijection d : ί
we have:

\ +/ /

2) If moreover the dual system satisfies the same condition then

and any equilibrium state ω for {<£, $, K} which yields by duality a state ω* for
{g1*^*^*} satisfies the inequality:

σ^ ΠBeβP

2 Remark that these are exactly the conditions which are needed for the Peierls argument [6,10]
3 It is expected that for Zv-invariant systems, this condition is always satisfied
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Proof. A finite subsystem {Λ^ + (A\K} [resp. {Λ^f(Λ\K}~\ of {&,3S,K} with
" + " boundary conditions [resp. "free" boundary conditions] is defined by

and the corresponding set of bonds

Let {J2?,^,K} be a ferromagnetic system satisfying the conditions i) and ii) of
Theorem 1. For any Ai9 condition ii) implies

and we have

dΓ(Λύ = tffr\&(ΛΆ + (At)) .

Defining Af = (J B* the system {Λf , d&*(At)9 K*} is a HT-LT dual for
Be38 + (Λi)

{Λi9a*(ΛJ9K} 9 therefore [11]

=l

σBj =

where Bje^ + (Aί) j=l, ...,n and ω{yl.^+(^ι)jK} [resp. ωf^^.^ κ,}] denotes the
Gibbs states of the finite systems {Λi^

 + (A^K} [resp. {Λf,dόS + (Λi)9K*}'].
Let if C Λf be a largest volume such that SSf(λf) Cd3$ + (Λt). Since [Λf, d@ + (Λt)9

K*} is a ferromagnetic system with d& + (Λi)C&*f(Λf) it follows from Griffiths
inequalities that for any β^

*,@f(A*),K*} Lσβ*\ =ω{ΛΪ,d08 + (Λi),K*}\-σβ*l =ω{Af,SBf(Λ:f),K*}\-σβ*\

but A^y implies Λf-+&* and λf^>&*\ therefore

lim ω*Λitdia+(Λj,κ*jL°β*~\ =ω|[σ^*]
ylf-^JSf

and inally for any β*e^f(^S*)9 we have

(ω+)*[μ/ϊ*]ω + [σd-1^]= lim ωMι>Λ + (λl)>x}[σd-ι^]

= lim ω{*ylί>dΛ + (yli)>x,}[μ/ϊJ=ω}5[μ/ϊJ
Λ*-+g>*

i.e.

(ω+)* = ω*.

Moreover if the dual system also satisfies the conditions i) and ii) of Theorem 1,
the above result reads

(ωίξ.)*=ω^* = ω/

which yields, since (ω^)* is a state, (ωf)* = ω*j..
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Now let ω = lim ωΛ γ where ωΛ γ is the Gibbs state for the system defined on Λ
Λ-+&

with boundary condition Y, then

\ΛyY -β*— / \ \β*Λ*,f
\σb*/Λ*,f

where Λ*= (J B* and b* = {dB', σB(Y) = - lit BnΛφ{09B}} therefore:
BnΛΦ Φ

and for any equilibrium state ω of the ferromagnetic system {&,$$, K} we have:

ωlμβ]^ω + lμβ].

If moreover ω* is an equilibrium state of {y*90$*,K*}, we must have

ω*[μr]^ω*[μr]

which yields :

An important class of states which yield by duality states of the dual systems is
the class of translation invariant states which we now discuss.

Theorem 2. Let {<£, $, K} be a TD '-invariant, ferromagnetic, lattice system satisfying
the conditions of Theorem i ana let ω be any Έ* -invariant equilibrium state. With
{<£*,$*, K*} a HT-LT dual which is Έ* -invariant ana such that the bijection
d :&-*&* commutes with translations, then the linear form ω* associated to ω by
duality is a symmetric, TLV -invariant, equilibrium state for the dual system.

The proof of this theorem is a generalization of the technique used in [1] and
gives in fact the natural setting for the result established there.

Proof. By definition {«£?, 3β, K} is 2Zv-invariant, if Zv acts as a group of translations of
<£ such that aeZv and Be $ imply B + ae Si with K(B + α) = K(B) moreover ω is

said Zv-invariant if ω[σί+ J =ω[σz] for any aeTLv, Xe^f(Sf).
For the sequence of volumes Λ^^, we consider the unperturbed finite systems

{Λi,^
 + (Ai), K}, together with the HT-LT duals {Af, d^+(Ai), K*}.

With β an element in & f( @] we associate the systems Σt = {Λi9 8ti9 Kt], Σf = {Af,
$f, K?} defined respectively by the perturbed Hamiltonians :

HΛ..I=- Σ
Be^ + (Λτ) αeM t

HM=- Σ K*(B*)σB«-λ
B*edm + (Λi) aeMί

where M is the set of those aeZv such that B + aCAt for all B in β.
We denote by Zt(K, λ), Zt(K*9 λ) and p(K, λ), p(K*, λ) the partition functions and

the infinite volume free energies associated with the systems Σt and Σf.
The system Σf is not the dual of Σt except for λ = Q in which case both systems

reduce to the original unperturbed systems. We see however from its definition that
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the derivative of p(K*,λ) at λ = Q formally gives the dual expression of the average
correlation function ω^] (up to a multiplicative constant). The proof of the
theorem consists then in establishing that p(K*, λ) approaches in a suitable way the
free energy of the infinite system associated with the dual of Σt.

We have:

XCΛt l' aeMi

XC ΛI ScMl

where /?[S] = f j (β + a) the product being taken in
αeS

Applying the duality transformations [11] we obtain:

Σ (thλf'exp -2 X K*(β*)
SCM,

By taking into account the identity,

-2 Σ K*(B*)σ» = Σ (~2) |κ| Σ K*(B*)σB*
B*eβ[S]*

we can write

(4.3)

where ZM(ΦX*, thλ) is the partition function of the system {M , Φx*? thλ} defined in
the lattice gas language by Mf C 2£v, the activity th A and the interaction potential Φx*
given by :

K*(β*K*(**) (4 4)

We thus obtain from Equation (4.3) and the definitions introduced:

T [PΛ,(K, X) - PAl(K, 0)] - [p^K*, A) - p^X*, 0)]

(4.5)

with

4= Σ
X^y

5,= Σ
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The potential Φ^*, function on &f(TLv), depends on the configuration
X*e0*f(£'*) and is not translation invariant; however, it follows from Equation
(4.4) that Φx* is a finite range potential and that the norm || Φ^H which is defined by

can be uniformly bounded independently of X*. This allows us to use the low
activity properties of the system {Mί? Φx*, ihλ} in order to study the behaviour of
ZM.(Φx*,thλ). The basic results needed for this study are those of [12].

The arguments to continue the proof do not differ essentially from those
employed in the proof of the theorem in [1] and we will not repeat them here. The
main point is to notice that

thλ dt

and to use the low activity expansion

ω{Zv,Φχ.ff}[σ J = ίμ,, + β(ϊ*) + R2(t)

to control the difference between the terms logZMι(Φz*,thA) and λ ]Γ μβ*+a(X*).
aeMi

As a consequence, one obtains that:

*, λ) - β(K*, 0)}- {p(K, λ) - p(K, 0)} -

where ε(μ|)->0 as μ|->0, and α = |
Since p(K, λ) and ρ(K*9 λ) are convex functions of λ, the right and left derivatives

of these functions exist and from the formula above, we deduce that:

.dp(K*,λ)
dλ

<α
dp(κ9λ)

dλ
.8p(K*9λ)

dλ

Therefore

dp(K,λ) dp(K,λ)

dλ

implies that

dp(K*9λ)

dλ

dλ

But these conditions written for all are just the conditions for the ΊLV-

invariant linear forms -co and -^ω* to respectively define tangent planes to the

graph of the free energies p(K,λ) and p(K*,λ) at λ = Q. Moreover, it is known that
these tangent planes are in one to one correspondence with the Zv-invariant
equilibrium states of the systems (j§?, $,K] and {=£?*, J**,K*} [13]. It should only
be remarked that this last statement is derived in ref. [13] only for the case
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££ — Έ? which gives α = 1 however, this result extends to the more general case
which we have considered up to the multiplicative factor a~1 which arises from

the fact that lim f— = \Sf/Zv\. This achieves the proof of the theorem.
Λi +se |M£|

Corollary. // {&, $9 K} is a Ή?-invariant, ferromagnetic, lattice system satisfying
conditons of Theorem i, then any Έ?-invariant, symmetric equilibrium state ω satisfies
the inequality

(i) ω^σ^ωCσ^ω^Vβe^).(ii) The symmetric equilibrium state is unique at /ow temperature.

Part (i) follows immediately from Theorems 1 and 2.
Part (ii) is a consequence of Theorem 2 where we recover the known results

concerning the unicity of symmetric Invariant Equilibrium State at Low
Temperature. This follows from the unicity of the equilibrium state in the dual
model at high temperature. In general the bounds given by means t>f duality
improve those previously obtained by means of the Asano's contraction method.

Let us note that it is expected that this unicity property holds for all temperature.
It thus follows from the above conclusions that it would be sufficient to show that
" + " and "free" boundary conditons yield states which coincide on 2Isym to
establish this conjecture. Such a result has been proved however only for the 2-
dimensional Ising model [2] it is a consequence of the theorems above and the
Lebowitz's results showing the unicity of the equilibrium sΐate above the critical
temperature [16].

5. On the Surface Tension

In this section we give an application of duality relations to the study of the surface
tension. For simplicity, we shall restrict ourselves to the case of crystal lattice
systems, i.e. ̂  = 7L\

The problem of the surface tension for the Ising model in a low temperature
region has been extensively studied by Abraham, Gallavotti and Martin-Lof (see
[14] and the references quoted there). They have, in particular, proved the
equivalence of several difinitions which can be proposed for the surface tension. We
shall choose here Fisher's definition [17] and our aim will be to prove the existence
of the infinite volume surface tension. As we shall see, this result can be deduced
rather easily from Griffith's inequalities and standard techniques in the study of the
thermodynamic limit. By this methods the existence of the infinite volume surface
tension can be proved at any value of the temperature.

Let {TL\ Si, K} be a lattice system and let us decompose Zv into Z^uZJ where Zv

u

stands for those x e Zv such that xv > 0. With S in ̂  4, we consider the finite system A
with boundary conditions Y = SπZv

d where A is taken to be a parallelipiped with
sides (L 1 5...,LV_ 1 ?2M) symmetric with respect to the plane xv = l/2, and the
boundary condition is such that σx(Y)= +1 if xeZ*rvlc σx(Y) = σx(S) if

4 We recall that for ferromagnetic systems the elements of Sf are the "ground states" of the infinite
system
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Fig.l. Finite system Λ = ΛduΛu with boundary condition Y = Sr\Tίv

d

The Hamiltonian HΛY of the finite system A with boundary conditon Youtside of A
is given by :

K(B)σB(X)

where YA =
We denote by Z^+ 'S) and Z^+ } the partition functions corresponding respectively

to (7) and ( + ) boundary condition.

Theorem 3. Let [TLV, ̂ , K} be a ferromagnetic lattice system satisfying the conditions
of Theorem 1 for any Set? the following limit :

lim lim
1

exists and is called the "surface tension between the phases (+) and (5)". Moreover
τ(+ S) is non-positive and bounded below.

Proof. It follows from the above definitions and the duality relation, that:

π
Using the identity (SnΛc

d) YΛ = SnZv

u with Λd = ΛnZv

d it follows that

where :

we thus have by definition of duality

{Λ*, am + (Λ),K*} \

where βΛ is independent of M, for large M. [Since βΛ is a subset of bonds in
with non empty intersection with the upper and lower half-space.]
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It then follows from Griffith's second inequality that ω{

increasing function of M and therefore

C. Gruber et al.

+ (Λ),κ} [°> J *s an

exists. On the other hand, it follows from the Corollary that

1^ <.,,»+< Wσ/U^ Π
B*eβ

Therefore, we have :

Beβ

where X = sup|j£(£)| and C is some finite positive constant.
Be@

This shows that τ(+ s)5 when it exists, in non positive and bounded below.
Next we introduce the parallelipipeds A', A", and A = A'^jA" of sides

(L1,...,L;,...,Lv_1,2M),(L1,...,L^...,Lv_1,2M)and(L1,...,L; + L^
We then have

where δβA is a subset of those bonds in J> + (/l/

intersection with upper half-space and lower half-space.
Using again Griffiths' second inequality, we get :

with non empty

+ (Λ),K*} *

ω'

Introducing the function

1 9.. . ,L V _ 1 )= lim l
M->oo

the above inequality gives :

Beδ

Therefore the function

is a function which is super additive separately in each variable L1? ..., L v_ x . On the
other hand, its absolute value has a bound proportional to L1? ..., Lv_ ̂  With these
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conditions the limit

ί=l ί=l

exists (see for instance [15]), which concludes the proof of the theorem.
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