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Abstract. An infinite system of Newton's equation of motion is considered for
one-dimensional particles interacting by a finite-range hard-core potential of
singularity like an inverse power of distance between the hard cores. Existence
of limiting solutions is proved for initial configurations of finite specific energy
and the semigroup of motion is constructed if energy fluctuations near infinity
increase only as a small power of distance from the origin. In this case
uniqueness of solutions is also proved and the solution is a weakly continuous
function ,of initial data. The allowed set of initial configurations carries a wide
class of probability measures including Gibbsian fields with different potentials.
In the absence of hard cores limiting solutions are constructed for initial
configurations with a logarithmic order of energy and density fluctuations.

1. Introduction

The aim of this paper is to extend the results by Harris [1] and Lanford [2] on the
existence of non-equilibrium dynamics of infinitely many particles on the line. The
interaction is given by a translation invariant hard-core pair potential U of finite
range, thus the interparticle force is just the negative derivative of U and the
equations of motion are those of classical mechanics with this conservative force. As
it is well known (see [1, 2, 5]) a solution to such an infinite system of differential
equations exists only for a relatively small set of initial configurations, and the
solution, if any, is not unique in the usual sense.

For the purposes of non-equilibrium statistical mechanics the semigroup of
motion should be constructed in a set of configurations large enough to carry a class
of Gibbsian fields. Let us remark that equilibrium dynamics that is a semigroup
acting in the support of a Gibbsian field associated with the same potential as the
dynamics itself has been constructed by several authors ([3-7]) while Lang [8]
considers a first order system with additional white-noise terms. As regards non-
equilibrium dynamics, in Harris' collision model (zero-range interaction) U is
formally the ^-function, Lanford [2] treates the case of not necessarily symmetric,
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smooth interactions and proves existence of solutions for initial configurations of a
logarithmic order of velocity and density fluctuations.

In this paper the main condition on the interaction potential is that its
singularity near the hard core is not stronger than that of an inverse power at 0.
Solutions associated with initial configurations of finite specific energy are
constructed as weak limits of solutions to finite subsystems. Assuming that U is
repulsive enough we show that the equations of motion satisfy a quasi-Lipschitz
condition hence we deduce that solutions form a reversible semigroup e. g. in the set
Ω0 of configurations with a logarithmic order of energy fluctuation, and the motion
is a uniquely determined weakly continuous function of its initial data. Ω0 is of full
measure with respect to any Gibbsian field with potential U such that the
singularity of U is not weaker than that of U. In the absence of hard cores solutions
are constructed in the subset Ω0 of Ω0 characterized by a logarithmic order of
density fluctuation. In the proofs the conservative nature of inter particle forces is
essentially exploited, the a priori bound implying compactness of the sequence of
solutions to finite subsystems is deduced from the law of energy conservation. Such
ideas will be applied to prove two-dimensional existence theorems in a forthcoming
paper [9] by the authors.

2. Preliminaries

First we specify notation and terminology used throughout this paper. In general, xί

and vt, iel denote the position and the velocity of the i-th particle; / is the set of
integers, xt and vt are real numbers. Let Ω denote the set of all locally finite labelled
configurations satisfying the hard-core condition \xt — Xj\ >δifiή=j;δ^Q will be the
hard-core diameter of our potential U. We may and do assume that particles are
numbered in an increasing order of positions so that a configuration ωeΩ is a
doubly infinite sequence ω = {(xίy vt); iel} of pairs of real numbers such that xi+1

> xt + δ. In the special case of δ = 0 we need the condition of local finiteness as well,
i.e. only such configurations are considered where the sequence of positions has no
limit points. Configurations differing only in the way of enumeration of particles
are usually identified, but the equations of motion and some quantities will be
formulated in terms of labelled configurations. If necessary, the position and the
velocity of the ί-th particle in ω will be denoted as x—x^ω) and υi = υί(ώ)9

respectively. The configuration space Ω is equipped with the weak topology, i.e.
limωπ = ω means that limxi(ωn) = xi(ω) and lim vt(ωn) = v^ω) for each ί.

n n

Trajectories in Ω are always parametrized by the time £ from 0 to + oo, the set of
weakly continuous trajectories ωt = φ (ί), cot e Ω for ί'̂  0 will be denoted by Ω [0, oo).
Due to the continuity of individual trajectories Xi(ωt)9 vt(ωt)9 particles along a
trajectory ωf e Ω [0, oo) preserve their initial numbering. Convergence lim ω" = ωt in
Ω[0, oo) is defined by

lim sup [|xi(ω?)-xί(

for each T>0 and iel without any uniformity assumption. A family ωt = φ(t9ω)9

ί^O of weakly continuous trajectories is a reversible semigroup in Ω'cΩ if
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ωteΩ' for each ί, φ(0,ω) = ω and φ(t + s9ω) = φ(t,φ(s,ω)), φ(t,[_φ(t,ωj]+) = ω+,
ί,5^0 are identities; in the second one + indicates that the velocities have been
reversed, i.e. x^+) = xf(co), vί(ω+)= —v^ω) for each z.

Suppose now that we are given a translation invariant symmetric pair potential
U of hard-core diameter δ^O and range R>δ that is an even function U= U(x),
-oo<;x< + oo, such that E/(x)=+oo if |x|^δ, |l/(x)|< + oo if \x\>δ, C/(x) = O i f
\x\>R, further U is continuously differentiable for |x|><5 and \imU(x)= + oo if x
approaches δ. For convenience we assume that the derivative U' of U satisfies a
local Lipschitz condition for \x\>δ that means finiteness of

K-HSUP ^-^
x-y

for w< + oo. A weakly continuous trajectory ωfeΩ[0, oo) is called a (global)
solution to the equations of motion with initial condition ωeΩ if ω0 = ω, the
individual trajectories x—x^ωj, v^υ^ω^ ί^O are differentiable and satisfy the
equations of motion

for t Ξ^O. We have assumed here that particles are of unit mass. Let us remark that
the sum in (1) is always finite since only locally finite configurations are considered.

Owing to the law of energy conservation the initial value problem has a unique
solution to any finite subsystem of (1), thus we have a possibility to define a
sequence <pπ(ί,ω)eΩ[0,ω), n = l,2, ... of approximate solutions for each initial
configuration ωeΩ, e.g. as follows. Consider the 2π+ 1 pairs of equations from (1)
associated with particles numbered by i, |z'| ̂ n and let (x^ί), v^t); \i\^n} denote the
solution of this system with initial data xί(0) = xί(ω), vi(0) = vi(ω)9 ωeΩ; then φn is
defined by

i(t) if |/|^

f i

if

ϋ«W = 0 if \i\>n.

It is easy to check that ^(φj and — xt(φn) satisfy the equations of motion for each ί,

further ^>M(ί + 5, ω) = φn(ί, φΛ(s, ω)), φn(ί, [_φn(t, ω)] + ) = φn(0, ω + ) if ί, s ̂  0.

A solution ωt is called a limiting solution if we can select a subsequence nk such
that lim φnk(t, ω0) = ωt in the topology of ί2[0, oo). To prove existence of a limiting

ίc

solution with initial configuration ω, compactness of the sequence of approximate
solutions is needed that means a bound \v^n(t^))\^qt(t^) such that qt does not
depend on n and it is bounded in finite intervals of time. The basic problem is to find
a large enough set in Ω where such an a priori bound holds.
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3. Main Result

Integrals of motion as total energy and particle number play a decisive role in the
study of system (1). Let /0 =/0(x, σ) denote the indicator of [ — σ, σ], σ > 0, i.e. /0 = 1
if |x|^σ and/0=0 otherwise, further χ. = xf(ω), v{ = v^\ ωeΩ; then

N(ω, μ, σ) = £ /0(xf - μ, σ) (3)
ie/

and

H(ω, μ, σ) - £ /0(x. - μ, σ) \ [ t;? + £ f 0 ( χ . - μ, σ) l/(x. - Xj) (4)
iel [ j φ i

are the particle number and the total energy of ω in the interval [μ —σ,μ + σ].
An essential difference between the special cases <5>0 and δ = 0 is that the

n

number o f nonzero summands in Ut = £ U(xt — x^ can't exceed 2—if δ > 0 while it

may be arbitrarily large if δ = 0. From now on we assume that δ > 0, the case δ = 0
will be discussed in Sections.

Since min U(x)^. — - with α>0, fo>0 as specified in condition (E) below, any

partial sum K of Ut satisfies KΞ^-2-—, thus putting B = -— we obtain a
bo bo

nonnegative version

β(ω, μ, σ) = BN(ω, μ, σ) + H (ω, μ, σ) (5)

of the total energy. The reason why we prefer Q rather than H is that Q is a
nondecreasing interval function

σ)]1/2, (V)

U(xi-xj)^Q(ω9xl9σ) if \xt-Xj\^σ9 (D)

therefore any bound on Q implies bounds on velocities and for interparticle
distances as well. Let us remark that Q is just the potential energy in the presence of
a negative chemical potential — B.

The order of energy fluctuation at infinity (boundary condition in terms of
Lanford [5]) is characterized by a moderately increasing (MI) function g.

Definition 1. A continuous even function g = g(x) is called an MI-function if g is
increasing and concave for x ̂  0 with right derivative ί/(0 + 0) = 1 for convenience
we assume that 0(0) = 3R+16(1 + fc)2, b is given in (E) below. We say that the energy
fluctuation of ωeΩ is only of order g if

β(ω)=sup sup — β(ω,xw,σ) (6)
me/ σ^g(xm)^'O'

is finite, the set of such configurations will be denoted by Ωg.
The particular cases g(x) = 0(0) + |x| and g0(x) = 0(0) + log(lj- |xj) are of special

interest, the corresponding objects will be denoted by^, Ω and β0, Ω02 respectively
log u denotes logarithm to base e. It is plain that Ωg C Ωh if g ̂  h, thus Ωg C Ω for each
Mi-function g. Limiting solutions will be constructed for initial configurations
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ωe Ω and we shall see that the order of energy fluctuation, i.e. the sets Ωg, Ω — Ωg, is
an invariant of motion.

Let us remark that

Q(ω)^sup sup — Q(ω,μ,l + σ) (7)
μel <τ£0(|μ|-l) ^'O"

for each Mi-function g. Further, β(ω, μ, σ) ̂  Q(ω, 0, \μ\ + σ) and \μ\ ̂  σ in (7) Ίig = g,
thus the Ergodic theorem [13] implies that Ω is of full measure with respect to any
translation invariant field such that H(ω, 0, R) has a finite expectation. On the other
hand, even ΩQ carries a wide class of Gibbsian fields :

Proposition I. If P is the probability measure of a Gibbsian field associated with a
finite-range pair potential U such that

(8)

with some constants a and b, then P(Ω0) = 1.

The proof of this statement is very simple because using (8) and taking into
account that C7(x) = + oo if |x|^<5, a direct calculation shows that

with some λ > 0, c < + oo that do not depend on μ and σ. Hence P β(ω, μ, σ) > —
L

^ exp [(c — K)2σ], thus Proposition 1 follows from (7) by the Borel-Cantelli lemma
[13]. It seems that this proposition can be generalized e.g. for multibody potentials
of infinite range of interaction, but condition (8) cannot be completely removed.

We can't disprove that even in the presence of limiting solutions there may exist
further solutions oscillating rather violently at remote places of the line. Anyway,
only such solutions are tractable where the order of energy fluctuations is limited
not only at the initial moment of time, but later as well.

Definition 2. We say that a solution ωt is 0-tempered if Qθ(ωt) is bounded in finite
intervals of time, in the particular case g(x) = g(0) + \x\ the prefix g will be omitted.

In the proof of existence we need an additional regularity condition on the
interaction : There exist such constants a and b that

\(x-δ)U'(x)\£a + bU(x) if x>δ. (E)

Observe that (E) implies l/(x)^α0 + b0(x — δ)~b for x>δ and this relation is
sufficient for (E) if 17 is convex in a small neighbourhood (δ, δ + ε) of δ. Although it is
not everywhere necessary, the validity of (E) will be assumed throughout this paper.
The main result is

Theorem 1. For each ωeΩ there exists a limiting solution ωt with initial condition ω0

= ω, and any limiting solution ώt is tempered if ώ0eΩ.

On the structure of tempered solutions we prove the following.

Theorem 2. Let g denote an Mi-function, then a tempered solution ωt is g-tempered if
and only if ω0 e Ωg, further if ωt e Ωg at least for one value of t > 0, then ωt e Ωg for each
ί>0.
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Theorems 1 and 2 will be proved in Sections 5 and 6. Uniqueness of ^-tempered
solutions will be deduced from a quasi-Lipschitz condition of the following kind.
We say that the right hand side of (1) satisfies a g-Lipschitz condition with an Mi-
function g if

\imn~ 2L(vg(n)) = Q for each ι;>0, (U)
n

where L = L(u) is the Lipschitz constant of U' in the domain {x; U(x)^u}, L is
defined before (1). The principal content of (U) is that the singularity of U is not very
weak, i.e. the interparticle force is repulsive enough. For example, if U' is concave in
a neighbourhood (δ, δ + ε) of δ and U(x) ^ b^(x — δ)~c in this interval, further b1 > 0,

λ, then (U) holds with gλ(x) = 0(0) + [(1 + \x\)λ - 1]., λ
C + 2 A

Theorem 3. Suppose that the right hand side of (I) satisfies a g-Lipschitz condition with
an Mi-function g. Then for each ωeΩg there exists the limit Utω= limφn(f, ω)

of approximate solutions φn in the topology ofΩ[Q, oo). Ut is a reversible semigroup of
g-tempered solutions, and the restriction of UtΩjt-*Ω[Q9 oo) to Ωq

g={ω\ Qg(ω)^q}
is a continuous function of_ωeΩq

g. Further, ωt=Utω0 is the only tempered solution
with initial condition ω0eΩg.

The proof of this result will be given in Section 7.

4. On the Idea of the Proof

The crucial step in the proof of Theorem 1 is to verify compactness of the sequence
φ_n of approximate solutions. For this we deduce an a priori bound
Q(φn(t, ω)) ̂  q(t, ω) such that q is independent of n and continuous in t ̂  0 for each
ω e Ω. To explain on a heuristic level that how such a q can be obtained, we replace Q
by Qoo that corresponds to the constant function 00o(χ) = 0(0) Although this
situation is not very interesting because β0o(ω)= + °° a s in nondegenerate
Gibbsian fields, the general case is more difficult only in its technical aspects.

Consider Qt = Q[φn(t,ω),xJ(φJίt9ω))9r(t)] that is the quantity of Q in the r(ί)-
neighbourhood Vt of the w-th particle of φn(t,ώ). In view of the law of energy
conservation, the differential gain of Qt consists of two summands: (i) transported
energy Qtp that amounts to the sum of chemical, kinetic and potential energy carried
by particles crossing the boundary of Vt and (ii) transferred energy Qtf that is the
work of external forces on internal particles, this is a boundary effect, too. Let
0 ̂  ί g T9 qn(t, ω) = Q00(φn(t, ω)) and

Since all velocities in ω are bounded by 2 ]A(0)<200(ω), for c>2 j/#(0) we have
— r\t)^\Vi(φn(t9ω))\9 thus new particles cannot enter into Vt so that βίp^0. One
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would expect that even Qtp + Qt f ^ 0 holds if c is large enough, i.e. Qτ :g Q0, or more
exactly,

r T I
Q[<Pn(T, ω), xm(φn(t, ω)), σ] ̂ Q0 ̂ Q ω, xm(ω), σ + c J ]AM(s, ω) ds (9)

L o J

for each T^O. This heuristic argument remains in force in the ^-dimensional space,
too, where Vt is the sphere of radius r(t) and centre xm(φn(t, ώ)\ further Q00 is the
supremum o if the quantities: Q per volume the volume is bounded away from zero
in the definition of Q00. Dividing by the volume of Vt and taking the supremum of
both sides, (9) turns into

T \d
(10)

where c depends only on c and d. It is easy to check that the maximal solution q(t, ω)
of this integral inequality is bounded in finite intervals of time if d^2 and
<200(ω)<+ 00, while g(£,ω)= + oo for large values of t if d>2, see Bihari's
Inequality in [10,11]. Therefore we have a possibility to prove existence of
solutions if d= 1 or d = 2, but such an argument does not work if d^3. Moreover,
some examples indicate that (9) cannot be improved essentially, so that there is no
hope for extending Theorem 1 in its deterministic form to three-dimensional
particle systems.

Let us now turn to our main hypothesis Qtp + Qtf ^0. Unfortunately this is not
true in general because Qtf may be arbitrarily large if many particles are close to
each other near the boundary of Vt. It is possible, however, to replace Q by such an
additive, energy-like quantity W that the transport of W overbalances its transfer
even if particles interact very strongly near the boundary of Vt. For this our system
will be transformed into a new one by removing the intervals occupied by the hard
cores, the definition of P^for this new system will be essentially the same as that of Q
for the old one. Due to this contraction of the system, the formal transport of energy
has been considerably enlarged in case of strongly interacting configurations so that
we shall have Wtp+ Wtf^0. In the absence of hard cores and in the two-dimensional
space such a method does not work, some new ideas are needed then, see Section 8
and [9].

5. The a priori Bound

In this section we translate into mathematics the ideas outlined above. Let/=/(x, σ)
denote such a continuously differentiable version of the indicator /0 of [ — σ, σ] that

Λ /* *\Γ

the partial derivatives fί = — and /2 = — are continuous in the domain

— oo<x< + oo, σ>0, further

(i) 0^/(x,σ)^l for each x and σ>0,
(ϋ) f(x,σ) = l if \x\£σ,f(x,σ) = 0 if \x\^

(in) \fl(x,σ)\^f2(x,σ} for each x and σ>0,
(iv) \f1(u9σ)\^f2(x9σ)+f2(y9σ) if
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For example if e(x) is a continuously differentiable nonincreasing function such
n

that e(x)=l if xrgO, φc) = 0 if x^2R, e(x) is concave for x^3— and convex for
n n

x^—, i.e. it is linear if \χ-R\ ^ —, then f ( x , σ ) = e(\x\-σ) satisfies (i)-(iv). Now we

introduce a smooth and additive version Woϊ Q satisfying our hypothesis on the
balance of transport and transfer. For notational convenience the reduced positions
Λ=3>ί(ω) = Xi(β>) —# will be used simultaneously with the original co-ordinates
x—x^ω). Wis defined as a function of ωeΩ, σ>0 and me/ by

Wm(ω9 σ) =
ίel

vf + Σ U(xt - Xj)
jφi

(11)

Let us remember that the constant B = — is so large that each term on the right
bo

hand side of (11) is nonnegative, thus Wm is a nondecreasing function of σ, and

|- Wm(ω, σ) = Σ /2(Λ - ym, σ)\2B + vf + Σ U(xt - Xj)} (12)

is also nonnegative. Let ωf denote a solution of (1), then differentiating W with
respect to ί, and exploiting U'(x)= — U'( — x) and the equations of motion, an easy
calculation yields

Σ U(xt-Xj)
iell j φ ί

Σ Σ Uίyj-y^-fίyt-y^mvt+vjmxt-xj)- (13)

It is very important that the sequence φn of approximate solutions has been
constructed in such a way that (13) holds even if ωt = φn(t,ώ). In case of a finite

dW
system we can put /= 1 for each x9 then (13) reduces to -r— =0 that is the law of

ot
energy conservation.

Let us remark that the first and second sum in (13), respectively, are just the

intensity of transport and transfer of W, further F— Wm(ωt9σ) is the intensity of
oσ

transport that results from compressing [xm — σ, xm + σ] with velocity V. Therefore
Lemma 1 describes how transport overbalances transfer.

Lemma 1. Let ωt denote either a solution or an approximate solution φn(t, ω0) defined
in (2), and suppose that we are given such a bound V that

holds for some m, ί, σ then

Wm(ωt, σ) ̂ 2(b+l)V- Wm(ωt, σ).
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Proof. Using property (iii) to estimate the first sum in (13) and (iv) for the second one
we obtain that

Σ Σ
iel j φ ί

= 2V~ Wm+ X f2(yi-ym,σ) Σ
iel jφi

iel j Φ i

αR
at the last step (E) and \yt - y^\ g \xt - x}\ - δ were used. Since B = — , this inequality

proves the statement.

The next step is to show that fluctuations of Ware of the same order as that of Q.
Set

Wg(ω)=sup sup —Wm(ω9σ) (14)
mel σ^g(xm) Z tf

for each Mi-function g and ωef};_if #(x) = #(0) + |.x|Jthen the simplified notation
(̂ω) will be used. It is plain that 2Qg(ω) ̂  ΐ^(ω), i.e. Wg(ω) < oo implies Qg(ω) < oo

the converse statement is less trivial.

Lemma 2. There exists an increasing function w = w(g), q ̂  0 depending only on U
such that Qg(ω)^q<co implies ί^(ω)^w(g)<oo.

Proof. Let σ^g(xm) and

(15)

then Wm(ω,σ)^2β(ω,xm,ρ), thus

-̂ WJω, σ) ̂  2^ max 1 1, 4 . (16)
2 σ ^ σ j

We may assume without any loss of generality that ρ^2σ + 4R and the maximum in
(15) is attained at i = m + fe, fc>0, then ρ^σ + 2R + kδ, whence ρ^2kδ follows
directly, thus from (D) we obtain that

1 1 m+k

ί^ j— β(ω,xw,ρ)^— X l/fa-Xi-i).

On the other hand, let V= V(x\ x ̂ 0 denote the supremum of all convex functions
h = h(x\ x ̂  0 such that h(x) g U(x) if x ̂  0. As a supremum of convex functions, Fis
convex again for x>δ, and F(<5 + 0)= + 00 as U(δ + 0)= + 00. Thus by Jensen's

Inequality we have 4<5g^Fί^]as Q = xm+k-xm, and this is possible only if there

exists an ε = ε(#)>0 such that ρ^k(δ + ε). Since ρ^σ + 2R + kδ, it follows that
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k^-(σ + 2R\ i.e. ρ^ί 1 + -) (σ + 2R). Therefore - remains bounded if q is fixed,
ε \ ε/ σ

thus (16) implies the statement.
We are now in a position to deduce the a priori bound implying existence of

solutions.

Proposition 2. Let ωt denote either a g-tempered solution of (1) or an approximate
solution ωt = φn(t, ω0), and suppose that β^(ω0) ̂  q < + oo g is an arbitrary Mi-
function. Then

for ί^O (Q)

with w = w(q) as specified in Lemma 2. Further

σm(ωt)= max |xm(ωs)-xm(ω0)|

satisfies the inequality

Ld(\Xm(ωθ)\ + σm(ωί))]1/2 = [^(xm(ωθ)] ̂ ^ + 9'(\Xm(ωθ)\ + Φ (βί]/W(ί)— 1) (X)

/or eαc/z m and t ̂  0 g'(w + 0) denotes the right hand side derivative of g.

Proof. Observe first that in view of υf ^ W^ω^R),

V= Vm(ωt9 σ) = \_2WJ,ωt)g(\xm(ωt}\ + σ + 3R)]1/2

satisfies the requirement of Lemma 1. Further, any approximate solution is a g-
tempered one, i.e. Wg(ωt) is bounded in finite intervals of time; consequently the
integral equation

r(t) = σ + 2(b +1) J Fm(ωs,φ))ds, O^tίT, (17)
ί

has a unique solution r = r(ί) for each σ > 0, T> 0 such that r(T) = σ and r(ί) decreases
so rapidly that the partial differential inequality of Lemma 1 turns into

(18)

Suppose now that σ^g(xm(ωτ)); since -j-xm(a

\xm(ωt)\Z\xm(ωτ)\ + r(t)-σ if O^T. (19)

On the other hand, any MI- function satisfies

if χ,y^Q, (20)

whence g(xm(ω0))^g(xm(ωτ)) + r(Q)-σ^r(0). Therefore Wm(ω0, r(0)) ̂  2r(0) Wβ(ω0)
so that dividing by 2σ and taking the supremum of both sides in (18) we get

, (21)
σ 0"

where r(0) and σ are related by (17).
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From (19), (20) and r(t)<*r(Q) we obtain that

g(\xm(ωt)\ + r(f)+ 3R)^ g(xm(ωτ)) + 2r(0) — σ + 3R

^2r(0) + 3R if O^ί^T,

thus (17) implies that

r(0)^σ + 4(b + l)u(T) |/r(0) + |R, (22)

where

u(t)=\]/Wg(ωs)ds.
o

Since r(0) ̂  σ ̂  0(0) = 3R + 16(fe +1)2, we have

/ /- Γ ^ί? Ί 1/ 2

l/Kθ)^]/ί+4(ί>+i)w(r) i

whence

ίV
(23)

cr

follows by an easy calculation. Therefore (21) turns into

\ ]/Wg(ωs)ds] , ί^O, (24)
o J

where Wg(ω0)-ζw(q) by Lemma 2. This means that v(t)= }/Wg(ωt) satisfies the
integral inequality

for each ί^O. The maximal solution of this inequality is just q(t)
I - i

— yw(q)exp(t |/w(^)) (see a variant of GronvalΓs lemma in Section 4.4 of [10]),
thus (Q) follows from the trivial relation Qg(ω) ̂  Wg(ώ).

To prove (X) observe that (V) implies

(25)
o

thus σm(ωf) satisfies

whence by Bihari's inequality (see [1 1] or Section 4.5. in [10]) and by (Q) we obtain
that

"T [#( KK)I + ")] " 1/2 du ̂  2 1 [ρ,(ωβ)] ̂  ds ̂  7&V*® - 1) .
0 0
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Multiplying this inequality by g'(\xm(ω0)\ + 0) and taking into account that
0 < g'(\xm(ω0)\ + u + 0) ̂  gf(\xm(ω0)\ + 0) if u ̂  0 we get

σ m(ωt) 1

ί ΐβ'(\xm(<»o)\ +
0 z

the integral on the left can be calculated explicitely, the result is just (X).
In the proof of uniqueness of tempered solutions the following assertion will be

needed.

Proposition 3. A tempered solution ωt is ^-tempered with an MI- function g if and
only if ω0eΩg.

Proof. g(x)^g(ϋ) + \x\ implies that any 0-tempered solution is tempered. Let ωt

denote a tempered solution with Qg(a)0) = q< + 00 and define the sequence gn,
w =1,2,... of even functions by 9n(x) = g(x) ^ M^H— 1,
gn(x) = g(n—l) + g'(n—l+Q) (\x\ — n+i) if \x\>n— 1; each gn is an Mi-function
such that g(x}^gn(x\ whence Qgn(ω0)^q follows by the definition of Q. On the
other hand, for each n there exists a constant ρn < oo such that #(0) + |x| ̂ Qngn (x)9

thus the monotonicity of Q as a function of σ implies that Qgn(ωt) ^ρnQ(ωt) for each
n and ί^O; i.e. ωt is ^-tempered. Therefore (Q) of Proposition 2 yields

— β(ωί5 xm(ωt\σ) ^ Qβn(ωt) ̂  w(ί) exp(2ί [Λφ)) (26)

for ί^O, mel and σ^gn(xm(ωt)). Since β(ω,μ,σ)= inf Q(ω,μ,ρ) and g(x)= inf
ρ>σ n

gn(x\ (26) holds even if σ^g(xm(ωt)), which proves the statement.

6. Proof of Existence

Let us rewrite (1) into the concise form

d d
— t;ί(ωf) = Fί(ωf), ^ Xi(ωt) = ̂ (ωt) > ie/, (Γ)

where

and observe that (Q) and (X) yield such a bound

β (φn(ί, ω), xt(φn(t9 ω)), R) = «, (t, ω), ωe Ω, ί = 0 (27)

that ^ff is a continuous function of ί and does not depend on n. Hence it follows by
(V) that the sequence φn(t,ώ) of approximate solutions contains a subsequence
converging in the topology of Ω[0, oo) for each fixed initial configuration ωeΩ.
Indeed, the Arzela-Ascoli theorem on the compactness of sets of continuous
functions implies that for each ωeΩ.iel and T>0 there exists such a subsequence
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nk that Xi(φnk(t,ω)) converges uniformly in [0, T]. Applying the diagonal method
first for Tn = n with ω and i fixed, and then for ze/ with ω fixed, we can select a
subsequence ήk such that each co-ordinate x^φ^t, ω)) converges uniformly in any
of the intervals [0, T], T>0.

On the other hand, (26) and (D) show that interparticle distances are bounded
away from δ, thus the approximate solutions remain in such a domain of Ω where
each Ff is continuous. Therefore substituting into

t
vi (ωt) = vt (ω0) + J Fi (ωs) ds

o

we obtain that also v^φ^faω)) converges uniformly in finite intervals of time for
each /; i.e. φ^(t, ώ) converges in the topology of ί2[0, oo). Of course, nk may depend
on ω. Finally, a similar argument shows that the above limit is a solution; g-
temperedness of limiting solutions with initial data ω0eΩg is a direct consequence
of the lower semicontinuity of Qg(ω) as a function of ω, cf. (Q). Thus Theorem 1 is
proven.

Proof of Theorem 2. The first part of Theorem 2 is just Proposition 3. To prove the
second one assume that ωt is a tempered solution and ωt e Ωg for t = s > 0 we have to
show that ω0 e Ωg. Indeed, ώt = ωs

+_ t is a solution for 0 ̂  t ̂  5, and ώs = ω^ e Ω, thus
in view of (27) and of Theorem 1, ώt can be continued as a tempered solution for
ί>5, too. Further, ώ0 = ω*eΩg, whence ωseΩg follows by Proposition 3, con-

sequently ω0 = ωs

+ also belongs to Ω .

1. Dependence of Solutions on Initial Data

In this section we derive a bound for the deviation of ^-tempered solutions from
each other in terms of their initial deviation. Let λn denote an increasing sequence of
positive numbers and define dn(ω,ω) as

dn(ω, ώ) = Σ /(*„ IRn) /(*» IRn) [ΛJx, - x j + \vt - δj], (28)
ie/

where xί? vt, xi9 vt denote the corresponding positions and velocities of the i-th
particle in the configurations ω and ω, while /=/(x, σ) is the function described in
Section 5 by (i)-(iv). We may assume that / satisfies the additional condition that

|/1(x,σ)|^lC< +00 for each x and σ>0. (v)

Of course, dn depends on the choice of correspondence for particles from ω and ώ.
(V) implies a trivial bound for dn, namely if max {Qg(ω\ Qg(ώ)}^q< + oo, then an
easy calculation results in

1
dn(ω, ώ) ̂  - (<5 + 6Rn + 4R) \_λn(6Rn + 4R) + 2 ]/2g(3Rn + 2R)q']. (29)

o

A measure Dp(ω, ω) for the deviation of ω and ω from each other can be defined
as follows p is an arbitrary positive number, Mn = λ1 λ2...λn_ 1 if n > 1, M1 = 1, and
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the sequence λn will be specified in such a way that lim n ~ l λn = 0, i. e. λn = o(n). Then

(29) implies that

Dp (ω, ω) = Σ ~τ Mn dn (ω, ω), ω, ω e Ω (30)

is finite, and if ωn and ω belong to Ω then lim ωn = ω holds in the weak topology of Ω

if and only if lim Dp(ωn,ω) = Q with some p>0.
n

Proposition 4. Suppose that the right hand side of (1) satisfies a g-Lipschitz condition
(U) vw'ί/i αw Mi-function g. Then for each T>0 and q< + co there exist a sequence
λn = λn(q, T) = o(n) and a positive constant p = p(q, T) such that

sup D^ω^ώ^D P(ω0,ώ0)
O^ί^Γ

holds for any couple ωv ώt of g-tempered solutions satisfying max {Qg(ω0\ Qg(ώQ)}

Proof. Let g(ί) = w(g)exρ(2ί J/w(g)) and suppose that max {|x£(ωt)|, Ix^ω
, then in view of (Q) of Proposition 2 we have

I U' [xt(ωt) - Xj(ωt) ] - U' [x, (ώt) - Xj(ώt) ]\

^L(2q(t)g(3Rn + 3R)) (\xt(ωt) - xf(ώf)| + \Xj(ωt) - Xj(ωt)\) , (31)

where L = L(u) is the Lipschitz- function defined before (1). Therefore if

λn = max {[L(2^(T)^(3^ + 3^))]1/2, lg(3Rn + 3R)^2} , (32)

then λn = o(n) in view of (U), and for Ogf^Γ,

|F, (ωf) - F, (ωt)| ̂  Λ^2 Σ l^(ωt) - x/ωt)| , (33)

where the sum is over such values o f/ that |x,. — x^l ̂  Λ or |χ. — x7 | ̂  R. Observe now
that dn(t) = dn(ωt,ώt) is an absolutely continuous function of t and, using the
properties (i), (ii), (v) of /, its derivative can be estimated almost everywhere as

ί? 3Rn) ^n\vt - ϋt\ + |F4(ωt) - Ft (ώt
ie/

1(ί)a.e. in(0,T), (34)

where, because of g(3Rn + 3R) ̂  λ%, C is a positive finite constant depending on 7^ q,
R, K, δ, and g, but C does not depend on n. Hence a.e. in (0, T) we have
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i fO<s<ί<Tso that

00 M
Σ -^d'n(

n=ί n-

(35)

for almost every 5 in (0, ί) Therefore, integrating from 0 to t we obtain that

00 M
ω0,ώ0) (36)

n= 1 ^

if 0 ̂  ί ̂  T and p = 1 + CT, which proves the Proposition.

Proof of Theorem 3. Since Dp(ω, ώ) = 0 if and only if ω = ώ, Proposition 4 implies
uniqueness of g- tempered solutions, whence uniqueness of tempered solutions
follows by Proposition 3. On the other hand, any limiting solution ωt is 0-tempered
if ω0 belongs to Ωg, thus any subsequence of φn(t, ω) converges to the same limit, i.e.
there exists the limit Utω = limφn(t,ω) if ω<ΞΩg. This relation implies that Ut is a
reversible semigroup in Ωg9 the continuity of Utω as a function of ω follows from the
bound given in Proposition 4.

8. Potentials without Hard Core

Here we discuss briefly the case of δ = 0, a more detailed study of this problem will
be given in [9]. The only modification of notation used in previous sections is that
we put B = 0 in the Definition (5) of Q. Let Ωg denote the set of such configurations
ωεΩg that

N (ω) = sup sup — - N(ω, xm (ω), σ) < + oo (37)
m <τ^0(xm(ω)) £'G

for superstable potentials Qg(ω)< + oo implies that also Ng(ω)< + oo, see [12] or
[14]. In this definition g is an MI- function, but only the particular case
g(x) =_g0 (x) = 0(0) + log(l + |χ|) will be discussed the corresponding symbols are Ω0

and N0(ώ).

Theorem 4. For each ωeΩ0 there exists a limiting solution ωt such that ω0=ω.

Proof. The proof of Theorem 1 is repeated with some modifications. Let
ωt = φn(t, ω) denote an approximate solution corresponding to ωe Ώ0, instead of Wm

the quantity

Zm(ω, σ) = Wm(ω9 σ)+Σ f(χt ~ *m> σ) Σ f(*j ~^^ + 3Λ) (38)
0 iel j Φ ί

will be used. Of course, 3;£(ω) = xί(ω) as δ = 0 in this case, a and b denote the
constants specified in (E), thus Zm is a nonnegative and nondecreasing function of σ.
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Further, vf (ω) ̂  Z.(ω, σ) and U(xi(ω) - Xj(ω)) ^ Zf(ω, σ) if σ > R, consequently an a
priori bound of type (Q) for

Zg (ω) = sup sup σ ~2 Zm (ω, σ) (39)

is sufficient to deduce existence of limiting solutions.
Suppose now that for some ί, m, and σ we have a bound

d ,
if |xf (ωt) — xm (ωt)\ ^σ + 5R; (40)

then following the proof of Lemma 1 we obtain that

AZ ίω σ)9 (41)
?ι m\ t~ / ^ '

ί

Let ϋ(ί) = J [Z^ωJ] 1/2 ds, g is an MI- function. Since ωt is an approximate solution,
o

v(t) and ι/(ί) are continuous functions. Set ρ(s) = \xm(ωs)\ + r(s) + 5R for Orgs^T,
Γ>0 and observe that the solution r(ί), O^ί^ T of the integral equation

r(ί) = σ + 2(6 + l)Jβ(ρ(5))ι/(5)ώ (42)
ί

decreases so rapidly that — Zm(ωp r(ί)) ̂  0 if 0 ̂  ί g i; thus Zm(ωr, σ) ̂  Zw(ω0, r(0)),

whence

2 (43)

follows as σ^g(xm(ωτ)) implies r(0)^^(xm(ω0)) in the same way as in the proof of
Proposition 1.

From now on we specify g as g(x) = gQ (x) = g(0) + log(l + |x|), the corresponding
quantity Zg(ω) will be denoted by Z0(ω). Since we consider approximate solutions
corresponding to the same initial value problem and this initial configuration ω
belongs to Ω0, we have a finite constant q = \Z0(ω)\ί/2 independent of n in
ωt = φn(t,ω), (43) turns into

t/(ί)^«sup— . (44)

On the other hand, ρ(s)^|xm(ωΓ)| + r(0) + 5R and g0(x + y)^g0(x) + g0(y) if x>0,
, whence

follows directly, thus

r(0) g σ + 2(6 + 1) v(T) (3σ + g0 (r(0))) . (45)

(46)

Further, log r ̂ σlog — h σ i f r ^ σ ^ l s o that an easy calculation yields
σ
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where c is a large enough constant depending only on fc, while h = h(v\ v ̂  0 denotes

the inverse function of the st
Consequently, (44) reduces to

x — 1
the inverse function of the strictly increasing function z(x)= - : - , x>l.

t)), (47)

whence

v(t) 1

I _*S«. ^ (48)

Substituting v = z(x) into this integral and taking into account that — - is not
xlogx

integrable in (1, -h oo), it follows immediately that the maximal solution of (47) with
initial condition v(Q) = 0 is bounded in finite intervals of time. This means that we
have an a priori bound for Z0(φn(ί,co)) so that the proof can be completed in the
same way as that of Theorem 1.

9. Concluding Remarks

1. We can not construct the semigroup of motion without the quasi-Lipschitz
condition. In this general case it is not known whether any tempered solution is a
limiting one.

2. Estimating - more carefully (e. g. as in the proof of Theorem 4) Proposition
σ

2 can be improved. For example, if g = gλ(χ) as defined before Theorem 3, then it
follows that Qg(ωt) increases only as fast as a power of t depending on /L<1.

3. Theorem 4 holds for initial configurations satisfying Z0(ω)< + oo, this set is
larger than Ω0. Similarily, if λ > 0 and ε > 0 are small enough, then Theorem 1 can be
extended to such initial configurations for which

sup sup σ~1"εβ(ω,xm(ω),σ)<H-oo.
m σ^su(*m(ω))

4. Instead of (E) it is enough to assume that

5. Conservation laws for the specific values of energy, particle number, impulse
and entropy as well can be derived in a similar way as done by Lanford [2], Part II.
Moreover, certain mixing properties of initial probability distributions are also
preserved by the semigroup of motion.
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