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Hausdorff Measure and the Navier-Stokes Equations

Vladimir Scheffer

Department of Mathematics, Stanford University, Stanford, California 94305, USA

Abstract. Solutions to the Navier-Stokes equations are continuous except
for a closed set whose Hausdorff dimension does not exceed two.

1. Informal Statement of Results

Let v :R3 -^R3 be a divergence free, square integrable vector field on 3-space. We will
show that there exists a function u:R3 x R+ -+R3 (R+ = {t:ί>0} is time) which is a
weak solution to the Navier-Stokes equations of incompressible fluid flow with
viscosity = 1 and initial conditions v, and which satisfies the following: There exists
a set ScR3 x JR+ such that the two dimensional Hausdorff measure of S is finite,
(R3 x R+) — S is an open set, and the restriction oϊuto(R3 xR+) — Sis a continuous
function.

The above will be derived as a consequence of a more general theorem in which u
satisfies a weak form of the Navier-Stokes equations with an external force
f:R3xR+-+R3 which is divergence free with the property /(x,£) w(

2. Notation and Complete Statement of Results

Hausdorff measure is defined in [2, p. 171]. We set R+={teR:t>0} and B{a,r)
= {xeR3:|x- a\ ̂  r} for all aeR3 and r >0. The norm | | is always euclidean norm
and || \\p is the IP norm. Open and closed intervals are denoted (α,fo) and [α,b],
respectively. If/:X->jR and AQX then sup(/,̂ 4) is the supremum of/over A and
spt(/) is the closure of {x :/(x)Φθ}. If/and g are functions defined on a subset of
R3 x R, h is a function on R3, and k is a function on R, then we set

(/*#)(*, t) = $$f(y, s)g(x -y,t- s)dyds,

(f*h)(x,t)=$f(y,t)h(x-y)dy9

(f*k)(xj)=$f(x,s)k(t-s)ds

whenever the integrals make sense. If X=R3, X=R, or X=R3 x R + , we let C°°(X, R)
be the set of infinitely differentiable functions f:X-+R. In addition, C$QC,R) is the
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set of all functions in C°°(X, R) which are zero outside of some compact set. We also
set D™(R3xR+,R) = {feCco(R3xR + ,R):spt(f)cR3xta,b] for some 0<a<b
< oo}. If/is a distribution defined on an open subset of R3 x R then DJ9 D^f, etc.
are the distribution partial derivatives (δ/δxf)/, (d2/dxίdxj)f with respect to the
variables x1? x2, x3 oϊR3. The partial derivative of/with respect to the R variable of
R3 x R is denoted D t / We also set Df=(D1f,D2f9D3f), Λf=Duf (repeated indices
are summed), and di\(f) = Difi in case the range of/is R3. Similar definitions are
made for distributions defined on R3 and R.

An absolute constant is a positive constant that is independent of all the
parameters in this paper. The letter C always denotes an absolute constant. The
value of C changes from line to line (e.g. 2C^C). When an absolute constant is
denoted by a letter other than C, its value remains fixed.

The statements below (Parts 1 and 2) are called Hypothesis I:
Part. i. We have a Lebesgue measurable function u:R3 xR+-^R3 (a time
dependent velocity vector field), a Lebesgue measurable and locally integrable
function p:R3 xR+^R (pressure), and a constant 0<L<oo such that

div(t<) = 0, (2.1)

f |tφc,t)\2dx<LL for almost every teR+ , (2.2)

the distribution Du is a square integrable function satisfying

J J \Du(x,t)\2dxdtSL, (2.3)
0 R2

and for almost every teR+ we have

J p(x, t)Δφ(x)dx = - j Dtupc, i)DjUi{x, ήφ(x)dx (2.4)
3 *R3

if 0 G C ° ° ( ^ 3 , ^ ) , φ is bounded, |x| \Dφ(x)\ is bounded, and ΔφeC$(R3,R).
Part 2. We assume that the conditions

φeDco(R3xR+,R); φ(x,t)^0 for all (x,ί);

and φ,Dφ,Aφ + Dtφ are bounded (2.5)

imply that (2.6) holds. Note that (2.2), (2.3), Lemma 3.2, and Lemma 3.6 can be used
to show that the integrals in (2.6) exist.

(2.6)

Hypothesis II is the following: In addition to Hypothesis I, we assume

(2.7)

for every ie {1,2,3} and φ e C%(R3 xR+,R).
Hypothesis I is a weak form of the classical Navier-Stokes equations

Dtui=-ujDjUi-Dip + Aui+fi, div(w) = 0 (2.8)

where the external force/satisfies div(/) = 0 and/(x, t) u(x, t) 5Ξ 0. Hypothesis II is a
weak form of (2.8) with / = 0 . We will prove
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2.1. Theorem. If Hypothesis I holds then there exist a function u' :R3 xR+ -+R3 and a
set SCR3 xR+ satisfying the following: The functions u and u' are equal almost
everywhere, the two dimensional Hausdorff measure of S is finite, Sn{(x,t):t^.ε} is
compact for every ε>0, and \u!\ is bounded on every compact set KcR3 xR+ which
satisfies KnS = β.

The proof of this theorem includes a priori estimates on the size of |w'|. It is
possible to show that the Hausdorff dimension of S is at most 7/4. We also have

2.2. Theorem. // Hypothesis II holds and S is as in Theorem 2.1 then there exists a
function u" :R3 x R + -+R3 such that u and u" are equal almost everywhere, and u" is
continuous on (R3 x R+) — S.

2.3. Theorem. Ifv:R3-+R3 is a square integr able function satisfying div(ι;) = 0 then
there exists u satisfying Hypothesis II and

- l i i ^ O J i x - ί ut(Dtφ + Aφ)
R3 R3xR +

= J ujUiD^+ ί pDά (2.9)
R3*R+ R3*R +

if φ.R3 x R-+R is smooth with compact support and ie{l, 2,3}.
Here (2.9) states that v is the initial condition for the solution u.
This type of partial regularity is similar to that obtained by Almgren for

solutions to generalized variational problems [1]. The study of the relationship
between Hausdorff measure and the geometry of turbulence was started by
Mandelbrot [6].

The next three sections contain the proof of Theorems 2.1 and 2.2. The proof of
Theorem 2.3 is outlined in Section 6.

3. Preliminary Estimates

Throughout this section we assume that Part I of Hypothesis I holds.

3.1. Lemma. If f:R3->R, feL2, and DfeL2, then

(1) J I/I6 ^C($ \Df\2)3

(2) } | / | 3 ^Cε- 3 ( j | / | 2 ) 3 + Cε(J|D/|2) whenever 0 < ε < o o .

Proof Part (1) is the first inequality in line 9, p. 127 of [9]. We use Holder's
inequality, part (1), and Young's inequality

for a,b^0 and δ =

to estimate

ίi/ι3=ίi/m/ι3/2

=(ίl/l 2) 3 / 4(ίl/l 6) 1 / 4
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T

3.2. Lemma. IfO<T<oo then J J \u(x,t)\3dxdt^CL3/2T114.
0 R3

Proof Using Lemma 3.1 with ε = L 1 / 2 T 1 / 4 , (2.2), and (2.3), we obtain

T

J J |w(x, t)\3dxdt
o κ 3

J J |Diι(x,ί)|2dxΛ
OR3

3.3. Definition. We fix/oeC5XR3,#) and goeC%(R9R) such that spt(gfo)c[-l,l],

J J0 0 0 o J 0 J 0
fn(x) = n3f0(nx) and gn(ή = ng0(nt). We let ,4 consist of all teR + such that the
function pt(x)=p(x,t) is locally integrable, (2.2) and (2.4) hold, the function dt(x)
=Du(x,ή is square integrable, the divergence of the function ut(x) = u(x,ή is zero,

and lim(\u\2*gn)(x, t) = \u(x, t)\2 for almost every xeR3. Part 1 of Hypothesis I,
n

Fubini's theorem, and [10, Theorem 1.25, p. 13] imply that A is almost all of R + .

3.4. Lemma. IfteA.oce C%(R3, R\β = l-a, β(x) = 0 for all x in a neighborhood of 0,
α'(χ)= -(^IxlΓtyx), and β'(x)= - ( ^ I x l ) " 1 ^ ) , then

p(x, t) = - (DμjDjU^Xx, t) - (ujUt*DiJβ')(x91)

holds for almost every xeR3.

Proof Define k:R3-{0}-+R by k(x)= - ( ^ M ) " 1 . Recalling Definition 3.3, we
have A(k*fn)=fn (see [9, p. 126]). Hence 3.3 and Part 1 of Hypothesis I yield the
following for all xeR3:

, ί)

= ((- DtUjDjuMoi*mx, t) + ( (- DiUjDjuW mx, t)

= ((- DiUjDjuMWM** 0 + ((- " / φ ( A /*/J)(x, 0.

Since oc'eL1, a'*fn converges to α' in the L1 norm (see [10, Theorem 1.18, p. 10]).
Hence the assumption teA and [10, Theorem 1.3, p. 3] imply

lim f |(( - DtUjDjuM(*'*tt ~ *'))(*, t)\dx = 0.
n R3

Hence [3, (11.26)] implies that there exists a subsequence nk of the positive integers
such that

lim ((- DiUjDjuMWJKx, *) = ((- DiUjDjufratyx, t)

holds for almost every xeR3. Since teA and Dijβ'*fn converges uniformly to D^β',
we have

lim ((- uχKA/*/J)(*> 0 = ((- UjφDijβ'Xx, t)
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for all XER3. Finally, [10, Theorem 1.25, p. 13] yields

lim (p*/Πk)(Λ t)=p(x, t) for almost every x e R3.
k

These statements yield the conclusion of the lemma.

3.5. Lemma. // teA and 0<r< oo then

( J |Dιι(x,ί)|2ΛcWCr-3/2/ J \u(x,t)\2dx).
U3 U/ U 3 /

Proof. Given r, we fix α and β as in Lemma 3.4 such that β(x) = 0 for xeB{0,r\
spt(α)c£(0,2r), 0^α(x)^l, \Dφ)\ ^Cr'\ and I D ^ x ^ C r " 2 . Then we have
||α'| |2 gCr 1 / 2 and HD^/H2 ^Cr" 3 / 2 . Hence Lemma 3.4 and [10, Theorem 1.3, p. 3]
yield the conclusion.

3.6. Lemma. J/0<T<oo then ] j \u{x,t)\\p(x,t)\dxdtSCL3/2Tm.
OR3

Proof. Using the Schwarz inequality, Lemma 3.5 with r= T1 / 2, (2.2), and (2.3), we
estimate

] $ \u(x,t)\\p(x,t)\dxdt
0 R3

^ ]/ J |«(χ, t)\2dxV'2Π |

ί \ ί j \u{x,t)\2dx\dt

3.7. Lemma. If Hypothesis I holds, seA, B = R3 x [0,s], α«ίi 0 satisfies (2.5)

2-1 ί \u(x,s)\2φ(x,s)dx-2-^\u\2{Dt

Λ3 B

Proof Let / v # 3 x^-^^ be the function that satisfies Dthn(x,t)= —gn{t — s) (see
Definition 3.3) and ftB(x,ί)=l for t<s-n~K Then ftM(x,ί) = 0 for t>s + n~1. We
obtain the conclusion by substituting 0/zn for φ in (2.6), taking the limit inferior over
n, using Fatou's lemma, and observing that

lim J \u(x,t)\2φ(x,t)gn(t-s)dt = \
n R +

holds for almost every xeR3 |[this is a consequence of seA and the relation gn(t)
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3.8. Lemma. If f\R3^R, feL2, and DfeL2 then for every aeR3 and 0<r < oo we
have

J \Df\2\ +Cr 3/2ί J \j
B(a,r) I \B(a,2r) J \B(a,2r)

Proof Let ge C%(R3, R) satisfy spt(g)eB(a, 2r), g(x) = 1 ifxeB(a, r), 0<^g(x) ^ 1, and
\Dg(x)\ ^ Cr~ί. We apply the Schwarz inequality, Lemma 3.1 (1), Young's inequality
[4, p. 11], and the estimate \D(fg)\^\Df\ \g\ + \f\ \Dg\ to write

ί l/l4^ίlΛΓ
B(a,r)

= S\fg\3\fg\

l J \Df\γ + Cr-3( J |
\B(α,2r) / \B(a,2r)

4. The Basic Estimate

In this section we assume that Hypothesis I (Parts 1 and 2) holds. The section is
devoted to proving the following:

4.1. Theorem. There exist absolute constants ε and K satisfying the following: If
aeR3, beA (see Definition 3.3), y>0, b-γ2>0, and

J J Wχ,0l(2"ΊΦ,ί)l2+lp(^ί)IXI^-«l+y)"4^*^fiy"2 (4-1)
b-y2R3

then

j \u(x,b)\2dx^Kτ3y for 0<τ^l/2. (4.2)
«(α,τy)

We fix aeR3, beA, and y>0 with b —y2>0. For integers k we set

Ek = {(x,ί):|x-fl|<72- fc

?fe-min(722-2fc,y2)<ί<fc}. (4.3)

4.2. Lemma. There exisί φ^D^iR3 xR+,R) for n = l,2,3,... such that φn(x,t)^0,
the functions φn, Dφn, and Δφn + Dtφn are bounded,

φn(x,t) = 0 if t^b-y2, (4.4)

3 3 (4.5)

323k if 0£k<n, (4.6)

324k if k<0, (4.7)

(4.8)

k if k<0, (4.9)
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and
12Hφjix9t) if b-y22-2n^t^b. (4.10)

Proof. We fix n. Let hn:R
3^R + be defined by h(x) = y2~n(\x\+y2-n)-*. We define

F:R3x{t:t<0}-^R+ by

The function F is the fundamental solution to the heat equation with time reversed.
We define ψH:R3x(-ao9b + y22"2κ)^R + by

ψn(x, t) = (F*hn)(x -a,t-(b + 722~ 2n)).

We have Dtψn + Δxpn = 0, and the properties (4.5), (4.6), (4.7), (4.10) are satisfied if φn is
replaced by ψn. Let g:R-*[09ϊ] be a C°° function such that g{t) = O if t^b-y2,

y / φ n

φn{x,ή = 0 ift>b + y22-2n-1. Then (4.4) is clear, and (4.5), (4.6), (4.7), (4.10) follow
from the corresponding estimates on ψn. We have (Dtφn + A φn)(x, t) = Dtg(t)ψn(x, i) if
t^b. In particular, we have ( D ^ + zl^Xx, ί) = 0 if b-y2/2<,t^b. Now (4.8) and
(4.9) follow from the estimates on ψn.

4.3. Definition. For fe = l,2,3,... we fix C00 functions rfc on a neighborhood of
#3x[fe-y2,Z>] such that r k(x,ί)e[0,l], rk(x,ί) = l if (x,t)eR3 x(b-γ2,b) and
(x9t)φEk+l9rk{x9t) = 0 if (x9t)eEk+29 and s u p f l D r ^ E ^ - E ^ ^ Q - ^ . For
n = 1,2,3,... and <S > 0 the inequalities (4.11), (4.12), (4.13) will be known as Property

J f I^OPdx-fll + y Γ ^ Λ g δ y - 1 (4.11)

i(xM2-1\u(xΛ2+p(x,t))Diφn(x,t)dxdt^δy-2 (4.12)

J I f Mi(x, 0(2" > ( x , 0I2 +P(x, t))Dfcnφ£x9 ήdx dt

if ^>w. (4.13)

4.4. Lemma. 77iere ^xi5ί5 α̂ z absolute constant M with the following property: If
P(n,δ) holds (see Definition 4.3) then P(n+l,δ + Mδ3/22-n) holds.

Proof Suppose that P(n,δ) holds for some n andδ. Let seA (see Definition 3.3) with
b - y22~ 2n ^ 5 ̂  b and set Bs = R3x [0, s]. Using Lemma 3.7, Lemma 4.2, and P(n, δ)
[Parts (4.12) and (4.11)] we obtain

2 " 1 \\u{x,s)\2φn{x,s)dx+ \\Du\2φn

R3 Bs

S2-1 j \u\\Dtφn + Δφn)+ f W l.(2->| 2+p)A 0n
Bs Bs

1 ] j \u(x,t)\2(\x-a\+yy4dxdt + δy-2

b-γ2 R3

2. (4.14)
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Now (4.10) and (4.14) yield

$\u(x,s)\2(\x-a\+γ2-nΓ4dx

!" $ \u(x,s)\2φn(x,s)dx
R3

^Cδy~32n if seΛ and b- (4.15)

Using (4.3), (4.10), and (4.14) (with s = b) we obtain

J \Du\2^Cy32~3n J |Z)w| 2 0 w ^C^2- 3 w . (4.16)

For q = n + l, rc + 2, n + 3,... we define hq:R
3 x(b — γ2,b)-+R by (see Definition

4.3)

if (4.17)

<2*". (4.18)

Let seA such that b-γ22~2n~2 <s<b. Using (4.18), the Schwarz inequality, (4.15),
Lemma 3.8, and (4.15) again, we obtain

From Definition 4.3 and Lemma 4.2 we obtain

hq{x,t)=0 if

Ui(x,

1

1/2

J
B(a,γ2-»)

+ Cδi/2γ-524n( J

(4.19)

Now we integrate (4.19) over s (recall Definition 3.3) and apply (4.16) and (4.3) to
obtain

J I j ι φ , 5)(2" >(x,
2 2 | 3

( 4 2 °)
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We choose a and β as in Lemma 3.4 such that 0 ̂  α(x) ̂  1, oc(x)=0 for |x| ̂  y2 n 1

9

β(x) = 0 for |χ| ̂ y2~ n - 2, |D/Ϊ(x)| ̂  Cy~ 12", \Duβ{x)\ S Cy~222\ and
8 ( ) 3 2 3 π . Then we. have (see Lemma 3.4)

if xeR3. (4.21)

Let seA such that b-y22~2n~2<s<b. We set gs(x) = (DiujDjui)(x,s) for |x-α |
< y2~w, and gfs(x) = 0 for | χ - a\ ̂ y2~π. Then the property spt(α')CB(0, y2""" 1), [10,
Theorem 1.3, p. 3], and (4.21) yield

/ f MDtUjDjuJtWxΛf
\B{a,γ2-"-i)

f Kflf. α'Xx^dxW2

1 /

J
,y2

Using (4.18), the Schwarz inequality, (4.15), and (4.22) we obtain

I J MΛ(X, s) ((DiUjDjUί) * α') (x, s)Dkhq(x, s)dx

f μ(x

(4.22)

w f |Dιι(x,s)|2dx.
B(αfy2-»)

If |x-α|^y2~"" 1 then (4.21) and (4.15) yield

(4.23)

J
R3

! 2 " . (4.24)

Hence Definition 3.3, integration by parts, (4.24), (4.18), the Schwarz inequality, and
(4.15) yield

IJ uk(x, s) ((UjU;) * Duβ') (x, s)Dkhq(x, s)dx
\R3

ί ^ \u(x,s)\dx

iM^s^rfxj^^measure^α,^-"-1)))1'2

(4.25)

Now (4.23), (4.25), and Lemma 3.4 yield

I j Mk(x, 5)p(x, s)Dkhq(x, s)dx

J (4.26)
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Integration of (4.26) with respect to 5, Definition 3.3, (4.16), (4.3), and (4.20) yield
b

J I j ut(x, s) (2~ 1 \u(x, s)\2 + p(x, s))D,Λβ(x, s)dx ds

*2~M , (4.27)

where M is an absolute constant.
Setting q = n +1 in (4.13) and (4.27), and using (4.17), (4.18), and (4.3), we obtain

J I f Mfίx, 5) (2 x |M(X, 5)|2 + p(x, s))D^n + ί (x,

(4.28)

Using (4.13) and (4.27) with q>n+l9 and using (4.17), (4.18), and (4.3) once again, we
obtain

b

j I J wi(
b-y2\R3

ds

if q>n+l . (4.29)

Now (4.28), (4.29), and property P(n9δ) imply that P(n+1,(5 +M<53/22-«) holds.
Lemma 4.4 has been proved.

Now we can prove Theorem 4.1. Choose an absolute constant (50 such that
M(2(5O)3/2^(5O (see Lemma 4.4). We have

Hence Lemma 4.4 and the definition of P(n, δ) yield that P(n9 δo(2 — 2~n+1)) implies
P(n + 1, ^ 0 ( 2 - 2 ~ ( n + 1 ) + 1)). Hence induction yields that P{l,δ0) implies
P(n,δo(2-2~n+1)) for all n. Now the definition of P(n,δ) yields

P(l9δ0) implies P(n,2δ0) for all n. (4.30)

There is an absolute constant η satisfying
b

η J \{\x-a\+y)-Adxdt^y .
b-γ2R3

Young's inequality (see [4, p. 11]) yields

Hence we have

J \\u{x,t)\2{\x-a
b-γ2 R3

^Cyl f ίlφ^^dx-αl+^-^^+α^oΓ1. (4.31)
\b-γ2 R3 I

Now the estimates I D ^ ^ ^ ί ^ C d x - α l + y)""4 and \Dfa1φ$x9i)\itCi\x--a\
+ y)" 4 for b-y2Stύb and q>\ (see Lemma 4.2 and Definition 4.3), and (4.31)
yield the existence of an absolute constant ε such that (4.1) implies P(l,δ0). Hence
(4.30) yields

Inequality (4.1) implies P(n,2δ0) for all n . (4.32)
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The assumption be A, (4.32), and the argument that yielded (4.15) can be used to
show that (4.1) implies

R3

Hence we have that (4.1) implies

j \u(x,b)\2dx^Cδoy2-3n . (4.33)
B(a,γ2~n)

For 0 < τ ^ l / 2 we choose n such that 2 ~ M ^ τ > 2 ~ n ~ 1 . Then (4.33) yields

J \u(x,b)\2dx^ j \u(x,b)\2dx
B(a,τγ) B(a,γ2~n)

where K is an absolute constant. Theorem 4.1 has been proved.

5. The Connection with Hausdorff Measure

Throughout this section we assume that Hypothesis I holds.

5.1. Definition. We define V:R3 xR + -*R by V= \u\ (2~ 1\u\2 + \p\). For every integer
n we define Qn:R

3xR->R by βπ(x,ί) = (|x| + 2-")- 4 if -2-2n^t^2~2\ and
Qn(xj) = 0 otherwise. For t^2~2n we set

Vn(x9 ί) = f J 7(y, s)βw(x - y, t - s)dyds .
0 R3

We define B(n,p1,p2,p3,p4) to be the set of all(x,ί)G,R3 xR satisfying pi2~n^xi

^(pi+l)2-n for ie{l,2,3}, and p 4 2 - 2 n ^ ί ^ ( p 4 + l)2- 2 n . We set B(ή) = {B{n,pv

P2>P3>P4)''Pί is an integer for all /, and p 4 ^ l } .
From Lemma 3.2 and Lemma 3.6 we obtain

T

f \V{x,t)dxdt^CL3ί2T^ if 0<T<oo. (5.1)
o κ3

If 2- 2 π^α<Z>, [10, Theorem 1.3, p. 3] yields

b b+2~2n

J J Vn(x,t)dxdtSC2-n J J V(x,ήdxdt. (5.2)
α R3 a-2~2n R3

5.2. Lemma. There exists an absolute constant θ such that the conditions BeB(n) and

^Vn^θ2~3n imply that \u\ is essentially bounded on a neighborhood of B.
B

Proof Let B = B(n,pvp29p3,p4) and y = 2~w~2. We set

U = {{x,ήeR3xR:{pi-l)2-n<xi<(pi + 2)2-n for ie{l,2,3},

and p 4 2 - 2 M - 2 - 2 " - 4 < i < ( p 4 + l)2- 2 M + 2-2 w-4} ,

D = {(x,t)eR3xR:Pi2-nuxa(Pi + l)2-n for ie{l,2,3},

and p 4 2 - 2 " + 2 - 2 n -
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Now let (a,b)e U. For every (y,s)eD we have (see Definition 5.1)

J f V(x9t)(\x-a\ + yrUxdt£CVH{y,s) .
b-y2 R3

Averaging over D and using the fact D C B, we obtain

J $V(x,t)(\x-a\ + yΓ*dxdt
b-γ2 R3

^ C(measure(D))-* /J Vn\^ Cγ~5 J FM

Since 2~3" = 26y3, there exists an absolute constant θ such that the property

j F π ^θ2~ 3 w implies that (4.1) holds for (α,fc)e U. Then we can use Theorem 4.1,

Definition 3.3, and [9, Corollary 1, p. 5] to conclude that \u(a,b)\2^K(4π/3yxy~2

holds for almost every (α, fr)e (7.

5.3. Definition. The 2 dimensional Hausdorff measure of a set S c # 3 x # is denoted
by j f 2(S). For the definition of Hausdorff measure, see [2, p. 171] (where X
= R3 xR and the metric on X is the usual metric on R*).

5.4. Lemma. For each integer k there exists a compact set Sk contained in
R 3 x [ 2 - k , 2 - f c + 1 ] such that

2 -fr + 2

Jf2(Sfc)^C f f V(x,ήdxdt (5.3)
2-fc-i 2*3

and for every (x, ί )e(£ 3 x [2" fc, 2~ k + x ] ) - S f c ίfere exists a neighborhood U of (x, t)
such that \u\ is essentially bounded on U.

Proof Let k be given. For each integer n satisfying n^k+1 and n^Owe set (see

Lemma 5.2) D(n)= lBeB(n):BcR3 x [2- f c,2- f e + 1] and J 7B >Θ2" 3 " J.We then set

Sk = n{(u{B:B6D(π)}):n^Jk+l and n^O} .

For each n, (5.2) yields

X J Fπ^C2-«2 j lV(x9t)dxdt.
BeD(n) B 2 - f c " 1 K3

Hence the number of elements in D(ή) is at most

C22n j | F (2-k-i R3

Hence (5.1) implies that Sk is compact, and we also have (using π ^

Σ (diameter(B))2^ ^ c 2 ~ 2 "
BeD(n) BeD(«)

2-k-i R3
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Since the diameter of the sets in D(ή) can be made arbitrarily small by taking n
sufficiently large, and Sk is contained in u {B:BeD(ή)} for sufficiently large n, [2, p.
171] yields (5.3).

Now take (x,t)e(R3 x [2~k,2~k+1l)-Sk. There exists ft^max(/c + l,0) such
that {x,t)φB for every BeD(n). However, there exists BeB(ή) such that
BcR3 x [2~ k ,2~ k + 1 ] and (x9ήeB. Hence Lemma 5.2 implies that \u\ is essentially
bounded on a neighborhood of B, and hence on a neighborhood of (x, t).

Now we can prove Theorem 2.1. For any integer ft, (5.2) and (5.1) yield

2~2n R3 O R 3

SWL3/22~3nl2 (5.4)

where W is an absolute constant. Let m be the integer that satisfies
WL3'2 ^Θ2~3m/2 <23/2WL312 (see Lemma 5.2). If ft, pv p 2, p 3 are integers such that
n^m then, setting Bi = B(n,pί,p2,p3,ΐ) for ie{l,2,3}, we obtain that (5.4) yields

^VnSWL3/22~3n/2^θ2-3m/22~3n/2^θ2-3n for i=l,2,3 .

Hence Lemma 5.2 yields that |w| is essentially bounded on Bl9 B2, and B3. By varying
n'and pp j= 1,2,3, we obtain that |u| is locally essentially bounded on the set
{(xj):xeR3 and ί^2~ 2 m}. Actually, the proof of Lemma 5.2 shows that \u\ is
essentially bounded on that set. We define S = v{Sk:k^2m+l}. The above and
Lemma 5.4 yield that \u\ is locally essentially bounded outside of S. Finally, the
countable subadditivity of Jίf2, (5.3), (5.1), and the definition of m yield

2 -2m + l

Jf 2(S) ^ Σ ^2(sk)^ 3C f f V(x, ήdxdt^ CL2 .
k^2m+ί 0 R3

Theorem 2.1 has been proved.
We can prove Theorem 2.2 as follows: First, use Hypothesis II to imitate the

proof of [7, Lemma 1.1] and derive identity (1.8) of [7] for almost every x, tί9 and t2.
Then use Theorem 2.1 to adapt the proof in the last paragraph of [7, Section 2] to
our case.

6. Outline of Proof of Theorem 2.3

Let v be given as in Theorem 2.3. From [5] we obtain that there exist 0 < L < oo and
(w,ft)eC00(JR

3 xR+,R3) for n = l,2,3,... such that (see Definition 3.3)

div(u,n) = 0 , (6.1)

j \(u,n)(x,t)\2dx£L for all teR+ , (6.2)
R3

J $JD(u,n)(x,t)\2dxdtSL, (6.3)

- "f ΌtWφJtx,0)dx- J (w, nUDdt + Aφt)
R3 R3*R +

= ί ({u,n)J*f,)(u,n)tDjφt (6.4)

whenever φe Cg(R3 x R, R3) satisfies div(^)=0. We also obtain from [5] that there
exists an increasing sequence nl9 n2, ft3,... of positive integers and a Lebesgue
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measurable function u:R3 xR+ ->R3 such that (2.1), (2.2), and (2.3) are satisfied, and
we have

lim f \u(x, t)- (u, nk) (x, t)\2dx = 0 (6.5)
k R3

for almost every teR3, and

D(u, nk) converges weakly in L2 to Du . (6.6)

If 0<T<oo then the Lebesgue dominated convergence theorem, (2.2), (6.2), and
(6.5) yield

lim J / J \u(x,t)-(u,nk)(x,t)\2dx)3dt = 0 . (6.7)
k 0 \R3 /

From Lemma 3.1, (6.2), (2.2), (6.3), and (2.3) we obtain
T

J j \u(x,t)-(u,nk)(x,t)\3dxdt
0 R3

/ J \u{x,t)-{u,nk)(x,t)\2dx\3dt + C&L (6.8)

U 3 /
for every 0 < ε < o o . Combining (6.7) and (6.8) (with varying ε) we obtain

T

lim j J | φ , ί) - (w, nk) (x, ί) |3 dxdt = 0 . (6.9)
k 0 R3

Let α, αr, β, β' be as in Lemma 3.4. Define (p,n):# 3 x i^+ ^ i ^ and p:R3xR+-+R by

(p, n) (x, ί) = - (DJίiu, n)j * fn)Dj(u, n\ * α7) (x, ί)

- (((«, π)y * Λ) (t/? n), * D , / ) (x, ί) (6.10)

p(x, ί) = - (DtUjDjUt * α') (x, t) - (ujUt * DyjS') (x, ί)

for almost all (x, t). The argument in Lemma 3.5, the Schwarz inequality, (2.2), (6.2),
(2.3), (6.3), Young's inequality, and [10, Theorem 1.3, p. 3] yield

J |(D(W,n>/

R3

+ Cr~3'2 j | φ , ί)| |(ι/, nk)(x, ί ) - φ , ί)|dx

j
R3

R3

+ Cr-3/2L1/2( J |(M,w f c)(Λ:,ί)-φ,OI2^)1 / 2 (6.11)
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for almost all te R+. The Schwarz inequality, the argument in Lemma 3.5, (2.2), (2.3),
(6.2), (6.3), (6.11), Young's inequality, and [10, Theorem 1.3, p. 3] yield

T

j j \(u, nk\(x, ί)(p, nk){x, t) - wf(x, φ(x, t)\dxdt
OR3

T

^ J J \(u, nk)(x, t) - φ , t)\ |(p, nk)(x, t)\dxdt
o R3

Γ

+ j j |ιφc, ί)| |(p, ΠfcXx, ί) - p(x, ί)|dxΛ
o κ3

KII, nk)(x, 0 - Φ , ί) | 2 ix) 1 / 2 / f |(p, πjίx, tψdx Y'2dt

+ f f f |φ,θ l 2 ^) 1 / 2 f ί KP^
o. U 3 / U 3

\(u,nk)(x,t)-u(xj)\2dxV/2($ \D(u,nk)(x,t)\2dx)dt](\ k)(x,t)-u(xj)\dxV($ \D(u,nk

oU 3 / U 3

oU3

ϊ J | ( p k X ) p ( ) | )
oU 3 /

T

^ C r 1 / 2 L 3 / 2 + Cr" 3 / 2 LJ/ J \(u,nk){x,t)-u(x,tψdx)ί/2dt
oU 3 /

oU3 /

for 0< T< oo. Now we make r small and use (6.12), (2.2), (2.3), (6.2), (6.3), (6.5), the
fact

Km j |((κ, w>/J(x, ί ) - w(x, ί ) l 2 ^ = 0 '
* κ3

for almost every teR+ [see (6.5)], and the Lebesgue dominated convergence
theorem to conclude

T

limj J \(u,nk)i{x,t)(p,nk)(xj)-uί{x,ήp(x,t)\dxdt = O (6.13)
ft o κ 3

Let φ satisfy (2.5). From (6.1), (6.2), (6.3), (6.4), (6.10), and the usual arguments we
conclude

- 2" x(ί |(iι, n)\\Dtφ + Λφ)) + $\D(u,n)\2φ

= 2-1$((u,n)i*fn)\(u,n)\2Dίφ+ $(u, n)fy>, n)Drf . (6.14)
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Now (2.2), (6.2), and (6.5) yield

lim j Kii, nk)\\Dtφ + Δφ) = \\u\2{Dtφ + Δφ).

Properties (2.3), (6.3), and (6.6) yield (recall φ^O)

liminf J \D(u, nk)\2φ ^ J \Du\2φ.
k

From (6.9) and (6.13) we obtain

lim 2"1J ((u, nkWJ\(u, nk)\2Drf = juβ-'M^φ,
k

lim J (u, njt(p, nk)D^ = Ju tpD^ .

Hence (6.14) yields (2.6). Properties (2.7) and (2.9) are a more immediate
consequence of (6.1), (6.4), (6.10), and the usual estimates.
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