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In One and Two Dimensions, Every Stationary
Measure for a Stochastic Ising Model is a Gibbs State

R. A. Holley* ** and D. W. Stroock**
Department of Mathematics, University of Colorado, Boulder, Colorado 80309, USA

Abstract. It is shown that one and two dimensional (generalized) stochastic Ising
models with finite range potentials have only Gibbs states as their stationary
measures. This is true even if the stationary measure or the potential is not
translation invariant. This extends previously known results which are re-
stricted to translation invariant stationary measures and potentials. In parti-
cular if the potential has only one Gibbs state the stochastic Ising Model must be
ergodic.

0. Introduction

One of the unpleasant aspects of studying Gibbs states with stochastic Ising models
is that one does not know, in general, if uniqueness of phase implies that any
associated stochastic Ising model is ergodic. The converse statement, namely that
ergodicity of some associated stochastic Ising model implies uniqueness of phase, is
well-known and is one of the major reasons for the interest in stochastic Ising
models (cf. [5] for example). The purpose of the present paper is to show that in one
and two dimensions every stationary measure for any reasonable stochastic Ising
model associated with a given potential energy function is a Gibbs state for that
potential. In particular, this result resolves the question mentioned above, at least in
one and two dimensions.

The technique on which our proof turns is that of considering how the free
energy of a state evolves under the action of the stochastic Ising model. This idea has
been used before in the study of similar questions (cf. [1], [2], and [7]). In these
earlier applications, the free energy functional was used as a kind of Liapounov
function. Unfortunately, as a Liapounov function the free energy functional isn't
completely satisfactory unless everything, including the initial state, is assumed to
be translation invariant. Our application of the free energy functional is quite
different. In particular, we will be concerned with the free energy of a state in a finite

* Research supported in part by N.S.F. Grant MPS 74-18926
** Alfred P. Sloan Fellow



38 R. A. Holley and D. W. Stroock

box; and our proof rests on the simple observation that if the state is stationary for
the stochastic Ising model, then the free energy of that state in each finite box is
constant under the action of the stochastic Ising model. In this connection, we
want to mention our indebtedness to the work of Moulin Ollagnier and Pinchon
in [7]. It is the elegance of their expression for the free energy of a state in a box
which enabled us to carry out our computations.

Finally, we must admit that we cannot explain why dimension seems to play
such an important role. In fact, we do not even know whether it really does or
merely appears to as a consequence of our technique. The only thing of which we are
sure is that our argument as it stands cannot be extended to three or more
dimensions. Amplification of this point is given in the last section.

1. The Main Result

Given d ̂  1, let Zd be the d-dimensional square lattice and put E = Ed = ({ — 1, l})zd.
We think of E as a compact metric space with the obvious product topology and we
use C(E) and M(E) to denote the set of all continuous real- valued functions on E
and the set of all probability measures on E, respectively. E = Ed stands for the class
of all finite subsets of Zd, and for each FeE we define χFe C(E) by

keF

where ηk, keZd, denotes the fcth coordinate oΐηeE. Given AeE and AQΛ9 define

k = l if keA and ηk=-ί if keΛ\A}.

Given L^l, we say that {JF FeEjg.R1 is a potential with range L if
i) for all keZd and all FeEF such that keF and JF^0,

(1.1) FQ{leZd:\l-k\<L} where \l-k\= max β-fcj
1 ̂  i^d

ii) sup £ \JF\ < oo .
fceZ" FBk

(It should be observed that we have not insisted that {JF:FeZd} be translation
invariant in the sense demanded in [1], [2], and [7].) Given such a potential, we say
that μeM(E) is a Gibbs state with potential {JF:FeZd} if for all keZd, AeE with
keA, and AQA:

ί e x p f Σ JFχFfo)]μ(ώ7)= J expί £ JFχF(η)] μ(dη),
,Λ] [F3k \ [Ak,Λ] iFsk J[A,Λ]

where

Ak = AA{k}.

It is easy to check that the preceding definition coincides with the more familiar one
in terms of conditional probabilities.

Finally, given a potential {JF:FeE} with range L, we will say that the
coefficients {ck :keZd}QC(E) are associated with {JF :FeE} if the functions

(1.2)
Fsk
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are strictly positive and have the properties that :

0 bk(η) = bk(η') whenever ηι = ηι> for all 0<|ί— fc|<L,

ii) 0 < inf inf bk(η) ̂  sup sup bk(ή) < oo .
k η k η

For kεZd and fe C(E\ define Akf(η) =f(kη) ~f(η\ ηeE, where

ηt if / Φ / c
,fc if / = fc;

and define 2 = {fe C(E) : Ak f = 0 for all but a finite number of fee Zd}. We will say
that the operator & defined on 2 by

('}= Σ <*( )4/( )

is associated with the potential {JF:FeE} if the coefficients {ck:keZd} are
associated with {Jf :FeE}. It is easy to check that μeM(E) is a Gibbs state with
potential { JF : Fe E} if and only if

(1.4) lf<?gdμ=lggfdμ

for all f,ge3t. Moreover, there is a unique Feller semi-group { Tt : t ̂  0} on C(E) with
the property that

(1.5) TJ-f=Ts<efds, ί^O and
o

Finally, (1.4) is equivalent to

(1.6) IfTjdμ^gTJdμ, ί^O and f,geC(E).

Proof of these and related facts can be found in [4] and [6]. If {7^ : ί^O} is the
unique Feller semi-group satisfying (1.5) for some <£ associated with {JF : FeE}, we
will call it a stochastic Ising model with potential {JF \FeE}.

Theorem 1.7. If d— 1 or 2, {JF : FeE} is a potential with range L, and {Tt : t ̂ 0} is a
stochastic Ising model associated with {JF :FeE], then μεM(E) is stationary for
{Tt ί^O} (i.e. T*μ = μfor all ί^Oj if and only if μ is a Gibbs state with potential
{JF:FeE}.

The "if assertion is obvious, in any dimension, from (1.6) simply take g = 1 and
observe that Ttg = l for all ί^O.

To prove the "only if part, we first point out that μ is a Gibbs state if and only if

(1.8) f ckdμ= J ckdμ
[A, A] [Ak,A]

for all fceZd, keΛeE, and AQΛ. Next, we introduce the following notation:

An = {keZd:\k\<nL},

Un( )=

Fn(μ)=\υndμ+ Σ MDiAΛlogMCΛA]), »^1 and μeM(E).
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The number Fn(μ) is the free energy of μ in the box Λn. Given μeM(E), set μt = T*μ,
t ̂ 0. The rest of our proof turns on the fact that

(1.9)
at

= 0,

if μ is stationary and the expression given in the next lemma for —?—
at t = 0

Lemma 1.10. (Moulin Ollagnier and Pinchon): If μeM(E) has the property that
for all AQAn, then

(1.11) 2
dFn(μt)

dt ( = 0

= - Σ Σ (Γn(k,A)-Γn(k,Ak))\og
keAn A cAn

+ y y (Γ (k A)-Γ (k 4ί^ £-j \ n\ ' / n\ '

, Γn(k,Ak)

Γn(k,A)

where

and

Γn(k,A)= J ckdμ
U,Λn]

Vn(k,A)=-2 Σ (-

k,A)

Proof. First note that

dt} u»"^'=(

where

Un(A)= Σ

By an easy change of variables, we have:

Σ Un(A)(Γn(k,Ak)-Γn(k,A))= Σ (ϊ
AC An ' AC An

But

Un(Ak)-Un(A)= ΣΛ

= -2
i

and so

£ Σ Un(A)(Γn(k,Ak)-Γn(k,A)),
heAn AQAn

(1.12) τ\Undμt\t=0= Σ Σ m^)^(*.^)
keλn AZΛn

dt1
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Next, because μ([v4,Λn])>0 for all AQΛn,

= Σ Σ
since

ACAn

Changing variables, we now obtain :

(1.13) A Σ ^([AΛ])logμt([AA])Uo= Σ
at AcΛn keΛn

We have therefore proved that

(1.14) ^F>()|(=0= Σ Σ (V^
<tt keΛnAcΛn\

Since

Vn(k,A)=-Vn(k,Ak)

and

MIΛ.Λ])= ι
B 8

(1.14) can be re- written:

(1.15) 2^-F>t)|I=0= Σ
αΓ fee Ai ^ Cyln

and (1.11) follows easily from (1.15) after an obvious manipulation.

Lemma 1.16. IfμeM(E) is stationary for {Tt : ί^O}, then μ(\_A,Λ])>0 for all AeE
and AQA. Moreover, for all n^ 1,

(1.17) Σ Σ (Γn(M)-Γn(
keΛn AcΛn

= Σ Σ (Γn(k,A)-Γa(k,Ak))(Vn(k,A) + \oB^/J^
keAn AcAn

~ l Qg../Λ ? A

In particular, there is a K< oo 5i/c/ι ί/zαί z/ dAn = An\An_ί.> n^2, then

Γ (k A}
(1.18) Σ Σ (Γn(k,A}-Γn(k,Ak))\0gjή^-

ke An AC Λn

 l n\^^k)

^K Σ Σ \Γn(k,A)-Γn(k,Ak)\.
kedAn AcΛn
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Proof. Suppose that μ is stationary and that μ(\_A,Λ]) = 0 for some A and Ac A.
Then

0=4fc(W = f ̂ W^=f Σ ckU{AktΛ}-I{AΛ{\dμ.
ai keΛ

Since ck > 0 this implies that μ([^4fc, A]) = 0 for all /ce A Repeating this argument we
see that for all BcA, μ([B, A]) = 0. This is a contradiction and thus μ([A, A]) > 0 for
all /I and all Ac A.

Equation (1.17) is an immediate consequence of Lemma 1.10 and the fact that

Finally, the estimate (1.18) follows from (1.17) once one notices that

v-•••-•••'/ /•> ' n\2

for keAn_ί and that

K = sup sup sup
n^l keΛn AcAn

Γn(/U) Γn(k,A)

MDMJ)
Next define for rc^l and keAn:

Γn(k,A)

<oo.

«»(*)= Σ / / A \
k

and

= Σ |
AC An

As a consequence of Jensen's inequality applied to the function (x,y)^>(x — ̂ log-

on (0, oo ) x (0, oo ), it is easily seen that

(1.20) αm(fc)^απ(fc), m^n and keΛm.

We next observe that if C2 = sup sup ck(η\ then
keZd ηeE

(1.21) βn(k)^eC(αn(k))1/2, n^l and keAn.

To see this, first note that there is nothing to prove if απ(fc) ̂  C2, since βw(fc) is always
less than or equal to 2C2. If αn(/c) ̂  C2, let 0 < ε g 2 be given and segregate the terms

in the sum defining βn(k) into those for which
1 -* n\ ?
log-F7Γ-

which log
Γn(k,A)

Γn(k,Ak)
<ε and those for

Γn(k,Ak)
>ε. One then sees that:

AC An

+ -αn
3
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In particular, we can take

and thereby arrive at (1.20).
Now define

7ι= Σ αι(fe)
keΛi

and

7.= Σ «.(*), «^2
fcedΛn

Successively using (1.20), (1.18), (1.21), and Schwartz's inequality, we see that

N

(1.22) Σyn^eCKL(ά-l}l2N(d-l}l2yV2, N^2.
i

Lemma 1.23. Let {δn}^=0 be a sequence of non-negative numbers with
00

Σ <5Π=||<5|| <co.Let{h}™=i be a sequence of non-negative numbers with the property
n = 0

that

f(N)= Σ hn^ Σ «N-,Λi/2«ί/2, ^^2,
n=l n = l

oo ^
w/zerβ un>0 and un + 1^unfor all n. If Σ — = 00> ^en hn = 0 for all n^l.

n=ί Un

Proof.

\ n = l

^11-511 Σ VA«B^II<5||%Σ VΛ
n = l w = l

. 0 . 2

. Thus forN>n
Suppose /ίn>0 for some n. Let rc0 be the smallest such n. Then f2(N)^h%Q for all

0

1 Γ N

%- l l<5 | lL-£+
Γ N

Thus

00 i

Σ -^
N = n0+ί UN I J V"0>

which is a contradiction.
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Now set δ0 = eCKL(d ' 1)/2, δk = 0 for k ̂  1, and UN = Nd~1. Applying Lemma 1.23
to (1.22) when d= 1 or 2, we now have that γn = Q for all n^ 1. But this means that
απ(fc) = 0 for all fee dΛn and therefore, by (1.21) βn(k) = 0 for all fee δΛn. Using this in
(1.18), one arrives at the conclusion that

(1.24) Γn(k,A) = Γn(k,Ak), n^2, keAn and AgAn.

Since (1.24) certainly implies (1.8), the proof of Theorem 1.7 is now complete.

(1.25) Remark. Lemma 1.23 is more general than necessary to prove Theorem 1.7.
We have included this more general result because it allows one to generalize
Theorem 1.7 to include some situations which are not finite range by making the
obvious modifications in the above proof. We have not bothered to include all the
details of this generalization because this is not the direction in which it would be
most interesting to generalize Theorem 1.7. What one really wants is to know
whether Theorem 1.7 holds when d>3.

2. Discussion

If the potential, {JF : FeE}, is such that there is only one Gibbs state, μ, then under
the hypotheses of Theorem 1.7

S-> oo »

for all ηeE and feC(E). It seems likely in this case that the stronger result
Ttf(η)->$fdμ is also true however, this has only been proved in special cases (see
[3] and [5]). It is known, however, that even if Ttf(η)^>$fdμ for all ηeE and all
feC(E) the convergence may be extremely slow (see Remark 2.21 in [6]).

If there are many Gibbs states for {JF : FeE}, then for some ηeE and fe C(E\
Tt f(η) may not converge at all (see Section 3 of [3]). However if α is a limit point of
1 s

— j Ttf(η)dt and if Theorem 1.7 applies, then we must have α = μ(/) for some Gibbs
0

state μ having potential {JF :FeE}.
Theorem 1.7 is more interesting in two dimensions than it is in one dimension. In

one dimension it is conceivable that for any uniformly positive, uniformly bounded
ck's satisfying ck(tη) = ck(η) if \k-l\>L (but not necessarily associated with a
potential) there is only one stationary measure for the semigroup. If this is true, then
in one dimension Theorem 1.7 is a special case of a more general theorem however
in two dimensions this cannot be the case, since it is possible for the stochastic Ising
model to have more than one stationary measure in two dimensions. Hence in two
dimensions Theorem 1.7 cannot be a consequence of a theorem which guarantees
uniqueness of the stationary measure in all finite range situations.

Aside from the details of the computation, we do not understand why this
technique should fail in three or more dimensions and work in two dimensions. It is
possible that the first derivative of the free energy does not contain enough
information in three dimensions for the same reason that there may exist non-
periodic Gibbs states in three dimensions, even if the potential is translation
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invariant. More specifically, in one and two dimensions, it may be the case that if the
cks are any strictly positive, translation invariant, continuous functions satisfying
ckdη) = ck(η) if \k —1\ > L (but not necessarily associated with a potential) and v is any
stationary measure for the semi-group, then v is periodic. This is false in three
dimensions as the stochastic Ising model shows however, if it is true in one and two
dimensions, it would immediately imply Theorem 1.7 (at least for translation
invariant ( c k s ) since free energy arguments are very effective for periodic measures
(see [7]).

Finally we would like to point out that the assumption that ck(η) > 0 for all k and
η is critical. [This was used in showing that (1.8) is equivalent to μ being a Gibbs
state and in the proof of Lemma 1.16.] For example, let d=l and JΛ = 1 if
R = (fc, k +1) for some k and 0 otherwise. If bk in (1.2) is given by bk(η) = (l+ηk_ t),
then there are two stationary measures: the measure concentrated on ηk = — 1 and
the Gibbs state for the potential {JR}
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