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Abstract. In its ground state representation, the infinite, spin 1/2 Heisenberg
chain provides a model for spin wave scattering, which entails many features of
the quantum mechanical ΛΓ-body problem. Here, we give a complete eigen-
function expansion for the Hamiltonian of the chain in this representation, for
all numbers of spin waves. Our results resolve the questions of completeness
and orthogonality of the eigenfunctions given by Bethe for finite chains, in
the infinite volume limit.

1. Introduction

Let H be the self adjoint Hamiltonian corresponding to the ground state
representation of the spin 1/2, infinite one-dimensional Heisenberg ferromagnet
with nearest neighbor interactions. The operator H is reduced by a spin-wave
number operator, and H restricted to the N spin-wave sector is unitarily equivalent
in a natural way to a second difference operator — AN with "sticky" boundary
conditions acting in an /2-space.

The purpose of this article is to prove the completeness of an explicit
eigenfunction expansion of — AN, for all N i.e. all numbers of spin-waves. This result
was announced in [1]. In addition, using the generalized eigen functions for — AN9

we construct a complete set of commuting self adjoint projections {Eβ(Δ}} which
reduce —AN. Here the subscript β called the binding, describes the manner in which
the Λf-spin waves are bound together into "complexes" (in Bethe's terminology [2]),
and A is a Borel subset of a torus whose dimension depends on the number of
complexes comprising β. Any two projective Eβ(A)9 Eβ,(Δ'} are orthogonal for β and
β' distinct or if β = β', for A and A' disjoint.

In fact, the projections {Eβ(A)} were already obtained in [4] in a slightly
different representation by considering the thermodynamic limit and utilizing the
Bethe solution in [2] for the finite volume eigenfunctions. But the questions of

* Research supported in part by NSF Grant No. MCS-76-05857
** Research supported in part by NSF Grant No. MCS-74-07313-A02



256 D. Babbitt and L. Thomas

completeness and mutual orthogonality of these projections were left open. Here,
we settle these questions by working directly with the infinite volume expressions.

The original motivation for working out the eigenfunctions expansion was to
determine the dynamics of the ground state representation for the Heisenberg chain
in as much detail as possible (cf. [3,6]). Our results do shed some light on the Bethe
solution and hopefully they will be of utility in other situations, e.g. the Heisenberg
chain at non-zero temperatures.

In itself the Heisenberg chain provides an interesting example of the interplay
between certain "phase factors" in the generalized eigen functions and the
"PlanchereΓ measure associated with these generalized eigenfunctions. Roughly
speaking, in the TV-spin wave sector there is a particular family of generalized
eigenfunctions {ψv} parameterized by z = (zl5 ...9zN)e(CN

9 |z f | = l, i=l, ...,n which
describe the case where all N spin waves are free (i.e. not bound into complexes) the
appropriate Plancherel measure for these functions is (essentially) Lebesgue
measure on the JV-torus. Now ιpv extends analytically away from the torus to a
family parameterized by z e (CN. For z e <CN fixed, ψU9 which will be a function defined
on a subset of zN

9 will not be "tempered" unless z belongs, to one of a set of algebraic
varieties indexed by β contained in CN. Corresponding to the β variety (and the
restriction of {ψv\ze<CN} to this variety), which we call {ιpβ}, there is a Plancherel
measure density μβ determined by the residues of some "phase factors" of the
analytic continuation of ψv evaluated on the variety. The totality of the {ψβ} with
the measures μβ9 provide the complete Plancherel formula.

We add that our results are rather different in character from those of Yang and
Yang, who proved that the ground state of a finite Heisenberg chain for fixed
magnetization is given by the Bethe solution [8]. Our results should be compared
with those of Wortis [7], who obtained the two spin-wave Green's function in one,
two and three lattice dimensions, from which he was able to deduce a bound state
structure in the two spin-wave case.

In Section 2.1, —ΔN and the P-space in which it acts are defined. Section 2.2
contains the definition of the generalized eigenfunctions and introduces the
notation used throughout the proofs. Section 2.3 delineates the important analytic
properties of the generalized eigenfunctions. (For lack of space, Theorem 2.3.2 is not
proved here. Its proof is contained in [5].) In Section 2.4, the proof of completeness
is given. Finally, Section 3.1 summarizes the properties of the projection {Eβ(A)}9

and Section 3.2 presents the Plancherel formula for the generalized eigenfunctions.

2.

2.1. The Hamiltonian

Let N be a positive integer. Then ZN will denote the set of JV-tuples m = (m l9..., mN)
of integers such that m1 <m2 < ... <mN and 12(ZN) will denote the Hubert space of
square summable sequences indexed by ZN. AN will denote the self-adjoint operator
on 12(ZN) which is defined as follows [2] :
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providing the mf's are not neighboring. If just two of the m/s are neighboring e.g.
mk+ι =m/c + l> tnen

ANf(mί9...9mN)=^ £ (/(w1,...9m ί_1,m ί + l,...,m j v)
ί φ k , f c + 1

etc. We might say that /dN is the discrete Laplacian on /2(Z^) with a "sticky"
boundary condition because the random walk of JV-particles on TL determined by AN

is such that two adjacent particles may stick together for an arbitrary finite
(integral) time with positive probability.

Remark 2.1.1. Observe that the above expressions defining AN make sense for all
functions on ZN. We will continue to use this symbol for the extended operator.

/ 00 \

Let 3? = <£®\ 0 12(ZN)\. Then it is shown in ([2,4]), that the ground state

Heisenberg Hamiltonian is equivalent to H = Iφ φ —ΛN The (sub-) spaces

12(%N) are called the N spin-wave sectors.

2.2. The Definition of the ψ-Functions

Let N be a fixed positive integer fixed for the remainder of this section. Let
N

(nl9n2, ...,w#) be an JV-tuple of non-negative integers such that £ knk = N. Let 7 be a
k = l

positive integer such that n. ΦO and fe a positive integer such that I r g / c r g n . . Let
7-1

Njk= Σ to, + (£-!)/ and let Ijk = {NJk + l9 ...9NjΊt+j}. The partition β = {Ijk} is
ί = l

called the standard N -binding of type (n l5 . . . , %). The set J^ is called a complex of the
binding /?. Usually we will denote β by (n1? ...,%). The collection of standard N-
bindings will be denoted by 3$N. ^>β will denote the pairs of integers (jk) [sometimes
written (/', fe)] such that nj Φ 0, 1 ̂  fe ̂  nr We write (/fe) < (j'kf) if either j =/ and k<k'

We shall now define some partitions related to β when w1 Φθ. If nl^2 and
2^fc 0 ^n l 9 then j8Λ( l fc 0 ) will denote the partition {/}k:(/Λ)e^-{(l, 1)}} where
Γjk = Ijk if (/fe)Φ(ifc0)

 an<^ Ak 0

 = ί^u^ifco ^i w^ denote the standard JV-partition
determined by (n1-2, n2 + l, n3, ...,%). I f j 0 > l , (/0/c0)e^, then β Λ ( j 0 k 0 ) will
denote the partition {/^:(/k)e^ — {(11)}} where Γjk = Ijk if (Jk) + (j0k0) and
/Mo = ί1}u /jofco ^jo wίl1 denote the standard binding (^i - 1, ...,π j o_1, n^-1,
rcjo + 1 + l, njo + 2, ...,nN). Observe that β Λ ( j 0 k 0 ) is m?ί a standard binding, j? will
denote the standard N— 1 binding (^j — I5π2, ...,%).

5^ will denote the group of permutations of {1,2, ...,JV}. Then we define:

<Pβ=:{PεSN:P(NJk+l)<...<P(Njk+j)9(jk)eVp}

and
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Eigenfunctions for — ΔN will be sums of functions indexed by ̂ . ̂  Λ (joko) is defined
to be the set of permutations which preserve the natural order of Γjk,
(jtyeWβ— {(11)} and ̂ A(jok) is defined to be the set of permutations which reverse
their order. If z = (zl9 ...,zN)e<CN and m = (ml9 ...,J%)e Z*, then z± w will denote
Z ±m l z ±m 2 _ z±m^ jf me%N an(j p65N5 then F(m) will denote (rop(1), ...,mP(N)) and

P(z) = (Zp(l), .;Zp(N))'

The symbol t will denote the fractional linear transformation ί(z)= : (2z— l)/z.
77ιιs fractional linear transformation will play a very important role in this chapter.
Note that t\z) = ((/ + l)z - l)/(lz -(I- 1)).

To each β = (nί9...,nN)E&N we associate an r-dimensional complex variable

zβ= '• (zjk> (Jk)e^β} where r- £ nk and where zjk = zN +j. If ̂  φO, the symbol z^
fc=l

will denote the (r— l)-dimensional complex variable {zjk, (jk)E^β— {(11)}}. Thus

Zβ=(Zll>ZβJ

Let α,ye{l, ...,JV}. Then we define:

and

These functions are called phase factors and they also will play an important role in
our discussions. For Pe^, we define:

e-ίφP= . Γj e-ίφocγ ^

PΪy)<fe)

For Pe^, we define:

e~*>P=

1<βΠ<]ϊ.
e*>"v

αly
P(y)<P(α)

where α_Ly means that α and γ belong to different complexes of β. If we replace
ZN k + lby tj~l(zjk\ (jk)e^β, 1 ̂  l^j in the above, we shall denote these functions of zβ

by e-i<pβr and eiφf respectively. The function e~iφβ"<J°k°}P

9 P^^β^(joko)
 and

^/3ΛO°k°)P, pe^Λ°'oko) are defined in a similar way.
We can now define the central family of functions of this paper. Let
ZN, and define:

ψβ(zβ;m)=: £ z*<"*>*-<*/»•
p*^

where:

V + ̂ ί^'ίz^, Ig/gj , (jk)eVβ. (2.2.1)

Remark 2.2.1. A priori ψβ(zβ;m) is only defined for z^ in the Zariski open set

07- U {z^e€":2zα-zαzy-l=0, where 2.2.1 is assumed to hold}. We say
α, yelN:

α < y

a statement holds generically in zβ if it holds for zβ in this open dense set. In this
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section all statements involving zβ will be assumed to be generic statements. One
of our main technical problems will be to show that ψβ(zβ;m) and related
functions can be defined on somewhat larger sets of zβ.

Remark 2.2.2. Let U= :C/V,0, ...,0) where U stands for "unbound". Observe that
ιpβ(Zβim\ as a function of zβ, is the restriction of \pυ( \ m) to the r dimensional
variety defined by the TV —r equations:

The reason why the ιpβ functions are of central importance is contained in the
following theorem.

Theorem 2.2.1. φ^z^ ) is a generalized eigenfunctionfor — AN with eigenvalue
N :(„ 1 \2

P\ PS Δ-J L 2\"l ' "I /J 2 L*ι ( ι 1\
1=1 jk UZj/c~7" l~1/

where it is assumed that 2.2.1 holds, i.e. — ANιpβ = t

Proof. These are simply Bethe's eigen functions in the infinite volume limit written in
terms of the variables zz = eίfcl, /=!, ...,AΓ. See [2,4] for the proof. D

Note that once it is established that \pυ(zυ',-), ^1 = ... =|zN| = l, is a family of
(generalized) eigen functions for — AN it follows by analytic continuation and
Remark 2.2.2 that t/ ^z^ ), βε^^ zβ generic, is an eigenfunction for — AN with
eigenvalue εβ(zβ).

In the proof of completeness we shall need several other ψ-functions. They are
defined as follows:

P(Njk+l)=l

nJ

ψβ(j; zβ\ m)= : Σ ψβ((j,k) 9 zβ; m),
k= 1

j such that W7 ΦO. In the above definitions it is always assumed that β = (nί,...,nN)
and that 2.2.1 holds. Now suppose nί φO and let ( Ό^o) ̂ e as ^n tne beginning of this
section. We then define:

ψβ Λ (J^\Zβc m) = :

where it is assumed that 2.2.1 holds for (j'fc)Φ(l, 1) and zί=tjo(zjoko).
We now state and prove a simple lemma which will imply important change of

variable and symmetry properties for various ψ- functions.

Lemma 2.2.2. Let P0, P and PΈSN. Then

(e ~ ̂  V^') (P0z) = (e~ iφpp«> eiφp'*ϊl) (z) . (2.2.2)
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Proof. Note that (2.2.2) implies (and is implied by) by setting P' and P respectively
equal to the identity, that :

e ~ iφp(P0z) = (e~ iφpp5l e ~ iφp*1 ) (z) (2.2. 3)

eίφp'(P0z) = (eiφplp*le-iφpϊ) (z) . (2.2.4)

A direct calculation shows that (2.2.3) and (2.2.4) hold if P0 = (k,fc+l) = P~ \
1 ̂ k<N, is the transposition which interchanges k and k+ 1. Next observe that if
(2.2.3) and (2.2.4) have been established for PO=PI an^ ^2? tnen tneY h°ld f°r

P0 = P1P2. For example,

e~ίφp((PίP2)z) = e-ίφp(P2(P1z)) = e~ίφpp^(Pίz)eiφp^(P

- eίφp^ (z)eiφpϊ p" (z)e ~ iφp^ =(e~ iφpρ? eίφp^ ) (z) .

Since every element of SN can be written as a product of transposition of the
form (k, k + 1), the lemma is proved. D

Let βe&N and (/o^o)E^/? If tne complexes of β are {Ijk,(jk)e^β} and the
complexes of βjo = (n°, ...,n%) are {I^(jk)E^β.}, we define a permutation PjokoeSN

as follows:

Pjoko : 1 1 ) U ̂  joko ~*

P ' 1-*1' if

P:Ijok-ηok, if

ί:Λfc^ι*-ι if

^:Λ fc^i(k-i) if

p hk-»h(k-2) if ;Ό = i,
and P preserves the internal order of each of the above sets. The first consequence of
Lemma 2.2.2 is the following :

Corollary 2.2.3. (Change of variable formula). Let β, {J0k0) and Pjoko be as above.
Define z'β as follows :

where zjk = znjh+j. Then:

= , Λ ( M o ) , c

Proo/ The proof is straightforward.

The second consequence of Lemma 2.2.2 will pertain to various important
symmetry properties of products of various φ-functions. Let β = (nί, n2, ...,nN)e$N

and let jQ be such that njo^2. Let SeS and define Szβ = z'β as follows:

If k is such that 2^k^njo, let S7 ok denote the transposition (Ik).
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Corollary 2.2.4. (a) Let βJ0 and Sjok be as above. Then

ψβ((iθ9 k);zβι m)ψβ(zβ m)

= Ψβ(d<» 1) Sjokzβ m)ψβ(SjokZβ m'}.

(b) // SeSnjQ, then:

ψβ(Szβ m)ψβ(Szβ m'} = ψβ(zβ m)ψβ(zβ m'}.

Proof. The proof again is straightforward.

We next introduce some complex differential forms. We define:

J'^ z-l

(/*-(/- 1))

for j = l,2, .... Let β = (nί,n2, ...,%). Then we define:

μβ(zβ)dzβ= f] μj(zjk)dzjk.
(jk)eVβ

The form μ^rfz^, restricted to the "physical" β contour (see below), is the
"Plancherel measure" for the β-sector of the eigen function expansion.

Now suppose w t ̂  1 and (/ΌΌ ^s as ^n ̂ e beginning of this section. We then
define :

and

Proposition 2.2.5. Let β, (j0kQ) and z'β be as in Corollary 2.2.3. Then :

Proof. This is just a direct substitution. D

We will now introduce some contours in tf7. Let j and fe be positive integers and
define: Γ(f) = Γ { j k ) = : { z j k : \ j z j k - ( j - ί ) \ = ί} and for y^2, we define Γ(j) = f(jk)
= :{zjk:\(j-l)zjk-(j-2)\ = 1}. Note that f(j) = Γ(j-l). Both the Γ and f contours
are assumed to be oriented in the counterclockwise direction. If β = (nly ...,nN\
define :

Γβ=: Π
(JkJe

The following contours will be needed for certain proofs in Sections 2.4 and 2.5. If
W i ^ l , define:

rβc= Π
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If 7o ̂ 2, n j o Φθ and I^k0^njo, define:

?β(iM= Π r(jk)χ Π A/VC).

(Mo) < (Jfc)

Remark 2.2.3. Observe that if we use the change of variable of Corollary 2.2.3 that
the contour Γβc goes over to fβ.Jjo + 1)1).

The following theorem will indicate why the {Γ^} contours are called physical
contours.

Theorem 2.2.6. (a) When μβdzg is restricted to Γβ, it is a positive measure, (b) ιpβ(zβ m)
is bounded as a function on ZN for each (generic) zβeΓβ. (c) ψβ(zβ m) = ιp^(zβ m),
zβeΓβ. (d) εβ is real and positive on Γβ.

Proof, a) Under the substitution of variable jzjk—j + l=elkjk, Q^kjk^2π, which
provides a parameterization of Γ(jk\ we get that

1 J'~1

μj(zjk)dzjk= — ((/- I)!)2

2π

2

dkί1r

which is manifestly positive. The quantity μβ(zβ)dzβ is simply a product of such
expressions.

b) It suffices to show that each term z

p(m}e~iφιp, Pe^β, in ψβ is bounded and
hence zp(m) is bounded, for generic zβ. Now zp(m) is a product of factors of the form
z!vll

k + ι ••• ^N\+J with mir

<mis f°r r<s> hence it suffices to show boundedness for
such a factor. To simplify notation, we assume Njk = 0 and replace (mfι, ..., w .̂) by
(m1? ...,m7 ). For zj_l = tl(zj) with z7 eΓ(/), one can verify that \zl+1zj_l\ = l, 0^/<j,
and that zj_leΓ(j-2l) for 2/<j so that |zj_ z | ̂  1 for 2/<j. If for example) is even, we

have |z?' ... z^H(^/ll(^ -1Γ
2 ... (^72^/2 + ιΓ^Γ"mι - ^Vi1"^2!^!- One

can give an analogous argument for j odd, keeping in mind that for j odd,

c) For β fixed, define the permutation * by *i = Njk + j - 1 + 1 for i = Njk + leljk. If
i <j are in distinct complexes then so are *i, *j with *ί < *j and if i <j and in the same
complex then *ϊ> */. Note that ** = identity. Now it is easy to check that for zβeΓβ,
z^z^1, and that

for z,7 in distinct complexes. If we let Q be the composition Q = P* and observe that
0>β = 0>9 then

_. V z-Q(m) ΓT eiφ*i*j= V z-Q(m) ΓT e*<PiJ = ψβ m

Q*e0>β *i<*j Qe^^ i< j
Q(*0 > (2(*J) Q(i) > Qϋ)

*il*7 ilj

d) This follows from the variable substitution of part a). Π
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2.3. The Structure of the Denominators of the \p-Functions

It is the purpose of this section to state a theorem which says that certain
troublesome factors in the denominators of the phase factors e~~ιφβp and el(pβ are not
present in the φ- functions i.e. certain cancellations take place in the sums defining
the φ-functions. The proof which is purely algebraic and rather lengthy will appear
elsewhere. (It is also contained in the preprint [5].)

β = (nl9 ...9nN)e&N will be fixed throughout this section. All pairs (jk\ (j'k'\ etc.
will be assumed to be in ̂ . If Je2£, then:

-(l-2}zjk~lzrk,.

When no confusion should arise we suppress β. It is clear that these are irreducible
polynomials in ^r, the ring of polynomials in r complex variables. A direct
calculation shows that:

when 2.2.1 holds. Thus the phase factors e ίφβp and eίφβ are rational functions in zβ

whose denominators are products of the irreducible polynomials {Q(l (/, fc), (/', k'))}.
If Pe&β and 2.2.1 holds, then

7p(m> _ TT / 7X/ fc-(/'-!) \mp(Njk+1} /2zjfc ~~~ y l(/-i)z. -a-2)) " \ z ' ^
Thus zp(m) is a polynomial in zj7c which vanishes when zjk = (l—l)/l, l^l^j because
P(Njk+l)<...<P(Njk+j) and w1<...<m j v. A similar statement can be made
about z~p(m), P<=&β. We summarize these remarks in the following.

Lemma 2.3.1. T/ie t/; functions can be written as follows:

JY,

where :

βjak
Qβjak= Π CδO" -j-lM (/", *'))]β(ϋo to)!ϋ t) ϋ' *')i')

w/zβrβ ίfce e's are non-negative integers, Pβjoko is a polynomial in zβ which vanishes
when zjk = (l-l)/l 1^/^j, (jk)eVp and (Pβ^Qp^ί (i e. Pβjoko and Qβj^ are
relatively prime in tyr). A similar statement can be made about ψ β ( J Q i z β ι m ) , ^°0ΦO
and ψβ(zβ m) where we write the exponents as e(j0 (/, fe), (jf, k) /) and e((j, k) (/', k) I)
respectively.

2. φ^ can be written as follows :

δ^
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where:

Qβ= Π

and where the /'s are non-negative integers, Pβ is a polynomial in zβ which vanishes
when zjfc = (/-!)//, l^/</, (jk)eVf, and (Pβ, g") = l.

We now state the theorem mentioned in the beginning of this section.

Theorem 2.3.2. 1) Assume ί̂  Φ 0. Then e ( l , l ) ; ( j , k), (j1, k) ;ΐ) = 0ίf either (/, /c) = (1, 1),
O^l^f-ί or (1 1) < (jk\ j' Ξ;(mod2) and I = (/' -j)/2 - 1

2) Assume njo φ OJ0 > 1. Then e((jΰ, !);(/, k), (/', k') ;l) = 0if (a) (Jk), (j'k1) Φ OΌ, 1) or
(jk) = (j0, l),/=/0, andj'=j(mod2), / = (/' _/)/2 - 1 or (b)j<j0, (j-j0)=ί(mod2),f
=;Ό> I = OΌ -J ~ l)/2 J or (c) ;0 </, (/' - Ό) = (mod 2), j =/„, / = (/' - Ό - 3)/2

3) Λsswme njo φ 0. ΓΛen e(/0 (/, /c), (/', /c') /) = 0 if (a)/ =;(mod 2), / = (/" - j)/2) - 1
or (b)7 <;0, 0' - Ό) = I(mod2),/ =j0, 1 = (J0 -j - l)/2 or (c);0 </, 0" - Ό) Ξ !(mod 2)J
=;Ό»ί=/-;Ό-3)/2;

4) T/ie same statement holds for e(jk, j'k' /) as hold for e(JQ 'JkJ'k' /).
5) f((j,k) (j',kf);l) = 0 if(a)f=j(mod2), l = (j'-j/2)+l or (b) j<7θ5 (/-Jo)

Ξl(mod2), /=j0, /=;0 -; + 3/2; or (c)70</, 0'/-70)
Ξ

+ 1/2; or (d) (f n1

2.4. Integrability of the ψ-Functions

In this section we establish the existence of various integrals involving ψ- functions,
the differential form μdz and the Γ contours. Fix β = (n^ ...,nN)eέ$N. Pairs of
integers (jk\ (j'k'\ etc. will be assumed to be in ̂ β unless stated otherwise. If Γί is a

Γ-contour (see Sect. 3.1), then Γ^ :Γί- \J {zjk = zfk. = ί } . It is clear that
o (Jfc)<0"fe')

Γ1 —Γ1 has Lebesgue measure 0 in Γ1 where Γ1 is viewed as a real r dimensional
submanifold of (U.

Lemma 2.4.1. a) Qβ(j' — j — l\ (j,k\(j',k')\ zβ) + Q for zβeΓβ unless f =j(mod2) and I

b) Suppose n1ή=0 andj0 is as in the beginning of Section 2.2. Suppose the triple
{(/, fe), (/', k'\ 1} where (/, k\ (/', kf)e^βj , does not satisfy :

i) (jk\ (j'k') Φ (/o + l j 1)> / Ξ7'(nιoci2) or 7 =/ =70 + 1, fc = 1, and, in both cases, I

ϋ) j <Jo + 1> j -7o(mod2)' / =Jo + 1 andl = (j0 -j)/2 or
ϋi)7=7o + l, 7o + l</?/

ΞJo(m°d2), αnrf l = (j-j0-4)/2; then Qβj(j'-j-li
(/; fc), 0", fc') ̂ Jo) Φ 0 on Γ β j ( j 0 + 1, fc0), I^k0£njo+l + ί .

c) Suppose n1 φ 0 0w/7'0 is as m b) αboi β. Suppose the triple {(/, fc), (/', fc'), /}, where
(/, fc) (/", fc'Je^ , does not satisfy : f =7'(mod2) and I = (/ -j)/2 - 1 or conditions b(ii),
b(iii), ί/zen Qβj(j'-j-ll (Λfc),0",fc'); / ; ^JΦO /or Zβjefβj<j0 + I9k0)9 I^fc 0

g^.o+1 + lorf^.

Proo/ We only prove a). The remainder of the proof uses exactly the same
technique. Observe first of all that Qβ(j'-j-l; (j,k\(j'9k')\ zβ) = Q9 zβεfβ iff
zjk = ϊ-J-l-\zrk\ zrk,eΓ(j')-{\}. The latter occurs iff j=f -2(jf -j-l- 1) i.e.
/ = (/' -j)/2 - 1 since Tl : Γ(j) -^ Γ(j - 21) for /e Z, 7 is a positive integer. D
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Corollary 2.4.2. 1) The functions ψβ(ί9l; zβ; m), φ//0; zβ; m), n^φO, ιpβ(zβ; m)
£

and ψβ(zβ m) are continuous as functions of zβ on Γβ

2) LetJQ be as in Lemma 2.4. Ib. Then Ψβj(Jo + lΛ)l zβjo '•> w), ψβj(JQ + 1 zβ m)
and ψβj°(zβj m) are continuous functions of zβ on f β ( ( j 0 -f I)fc0), 1 ̂  fc0 ̂  nyo + ̂  + 1

3) Z,£f /0 £>£ as in 2). Then w Ω . (/0 + 1 ZΛ . m) αnα t//(zΛ . m) are continuous on
o P J Q " J Q "Jo

βjQ

Proof. This follows immediately from Theorem 2.3.2 and Lemma 2.4.1.

Lemma 2.4.3. The same statements hold as in Corollary 2.4.2 if we replace
"continuous" by "bounded".

o

Proof. Here we prove only the boundedness of \pβ on Γβ the proof of boundedness
of the other functions on the various contours is entirely analogous and so will be
omitted. It is convenient to make the change of variable χjk = (ί— z^)"1 and to
denote by xβ the totality of these transformed binding variables. Then the set Γ(jk) is
mapped to γjk = {xe<C\iQx=j/2}. The point zjk = l is mapped to oo. Under this
change of variables, we have that if

ZNjk + j-p = tP(Zjk) > ZNjtkl +j'-q = tq(zfk>) ,

then

jk -p _ j l k ' - q _xj/c P xfk' Q

and, in terms of xβ, the phase factors are given by

-p-1)'
Let yβ = γ[ yjk and let g be the ring of complex valued functions defined on yβ,

O'.fc)
<$={F\0*(d/dxll9 d/dx129 ...)F is uniformly bounded on yβ for each polynomial ̂ }.
By the above representation, we see that a given phase factor, regarded as a function
oϊXβ, is ing provided it is not singular i.e. j/2 —f/2 + (q — p — 1) Φ 0. Second, we note
that the product of a singular phase factor and a "mollifying" phase factor, i.e. one
which has zeros on yβ9 of the form

ϊ-p-i)/ \Xjk-Xj'k>+(4-p-~
withj/2 ~//2 + (g - p -1) = 0 is, in lowest terms, a function in g. Thirdly we note that
if a phase factor is singular, then its reciprocal is not singular on yβ and is in g.
Finally we note that zp(m) written in terms of xβ also is ing.

Now in terms of xβ9 ψβ may be expressed as

7 / ϊ _ V 7P(m)p-iφβp.
ψβ— Li z v

where J~[' denotes a product over the unmollified singular phase factors ofψβ, and F
is a sum of products which are schematically of the form

(zp(m)) x (products of non-singular phase factors) x (products of a singular and
corresponding mollifying phase factor) x (products of reciprocals of singular
phase factors).
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Hence F is in g. But in addition we know by Corollary 3.3.2 that F vanishes at the
singularities of the singular phase factors to the appropriate orders so that ψβ is
bounded, at least for the xjk variables bounded away from GO.

Consider a single singular phase factor e~iφw. We have that

j fc-x/ ' fc ' + (4-P-l)

is ing by Lemma A.I of the Appendix and that F1 vanishes to the appropriate
orders at the singular points of the remaining singular phase factors to accom-
modate these remaining phase factors. The argument may be iterated, one singular
phase factor at a time to conclude that ιpβ itself is in g and, in particular, is uniformly
bounded. It follows that ψβ, regarded again as a function of zβ, is uniformly
bounded on Γ^, which is what we wished to show.

Corollary 2.4.4. 1) ιpβιp
βμβdzβ, ψβ(j)ιpβμβdzβ, HjφO, and ψβ((n))ψβμβdzβ, ^ φO are

integrable on Γβ and

J v>,(l WzO = nι ί Vί((l, l))ψβμedzβ (2.4.1)

2) Let JQ be as in the beginning of Section 2.2. Then ψβ ((/0 + 1)> l)ψβj°μ>βj dzβ. and
ΨβJodo + l^βjo^βjo

dzβjo

 are inferable Γβjo((Jo + 1), fe0), 1 1 fe0 ̂  njo+ 1 + 1, and

ί Ψββo +
),(nJo+l + l))

. ί v/J/o + W»μβjdzβjo (2.4.2)

3) ΨβjJJo + Vψ^μβjfaj, is integrable on ΓβjQi
4) Let (j0, fe0) be as in the beginning of Section 2.2. Then

is integrable on Γβ/,(joM and

= . ί V^Uo + lXDv"^^. (2A3)
Γ β j o ( U o + l ) , l )

Proof. The integrability statements in 1), 2) and 3) follow directly from Corollary
2.4.2, Lemma 2.4.3 and the fact that the tp-functions vanish when zjk = (l—l)/l,
l^l^j (Lemma 2.4.1). The integrability statement in 4) and 2.4.3 follow from the
change of variable formulas i.e. Corollary 2.2.3 and the fact that Γβλ(joko} goes to
fβ ((/+!)> 1) under the change of variables. The identities 2.4.1 and 2.4.2 follow
from the symmetry relations in Corollary 2.2.4. Π

Finally we show that we are able to distort some of the Γ contours.
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Lemma 2.4.5. Let jΌ be such that w^ΦO and ifj0 = 1, then it is assumed that n1 ^2.
Then :

. ί V/^ϋo + lUto^/Vfcί*/χϋo+1), i)

ί v^OΌ + DDv"*^^ (2-4.4)

= ί V^OΌ + iy^^v (2-4.5)
ΓβJo

Proof. To prove 2.4.4 one proceeds by steps i.e. one shows that :

ί =...= . ί =...= , ί
ΓβjoUo+ 1), 1 Γβjo((jΌ+ 1), 2) Γβίo(Jo+ D.(»jo+ i + !))

To prove 2.4.5 one also proceeds by steps i.e. one shows that:

ί =...= j ...= j....
Λ»,0<OΌ + l ) , ( n / o + i + D) Γ^o(OΌ+ 1),) J\

Observe that each of the integrals is defined by Corollary 2.4.4. Each of the above
steps uses essentially the same argument so we will only discuss the case:

. ί v^Oo + %SvfeίΛ
ΓβJo (Jo + 1 )

= ί ^JJo + W*^^. (2.4.6)

Fix zhk^Γ(jl}-{\}, for (j>ιfc1)Φθo + 1)lE^0

 Tnen consider F = vj / ? J o(/0+l;z / ϊ,m)
xψβ (zβ;m

f)μβ. as a function of z0 o + 1)1= :z. To establish 2.4.6 it is sufficient
to show that F is analytic in closed region bounded by Γ((/0 -f- 1)1) and Γ((/0 + !)!)•
In view of Theorem 2.2.2 it is sufficient to show:

a) The set {ze(L:Qf_(jo + 1}_l(z,zfk,) = 0 for some zfk,εΓ(j') -{!}}, where
Qz(z,w) = (/— l)zw + (/—!) — (/ — 2)z — /w, does not meet the region bounded by
Γ(/Ό + 1) and Γ(/Ό + 1) if the triple (/', kf, I) is excluded when either/ = (/0 + 1) (mod 2),
/ = (/'/-7o)/2-3/2 or7=70(mod2), / = (/' ~70 - 4)/2.

b) The set {zeC :βj0+ x _7 _z(z7 k, z) = 0 for some zjk£Γ(j) — {!}} does not meet the
region bounded by Γ(/0 + 1) and Γ(/0 + 1) if tne triple (/, fe, /) is excluded when either
7 = (/o + l) (mod2λ / = (/o + l-;)/2-l or jΞj0(mod2), l = (j0-j)/2.

We will only treat Case a). Case b) is handled in the same way. Arguing as in the
proof of Lemma 2.4.1, we see that ze{ze<^:Qr_(jo+ί}_l(z,zrk>) = Q for some
zrk,eΓ(j') — {l}} implies z = tj'~jo~l~~2(Zj,k,) for some z/^e /"(/')-{!} which in turn
implies zeΓ(/'/-2(/Ό-^-2))-{l}-Γ(2j0-/ + 2l-4)-{l}. But this point is in
Γ(/o + 1) or f (/o + 1) only if 2j0 -/ + 21-4 =j0 or ;0 -I- 1 which proves a). D
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2.5. A Completeness Relation for the ψβs

We will use the notation established in Section 2.2. In addition if β = (n1, ...,nN)eέ%N

then βl will denote n1! ... nNL In many of the formulas we will suppress zβ. The main
computation of this chapter can now be given.

Theorem 2.5.1. Let β = (n1, ...,nN)Eέ%N be such that n1^.l and suppose m2 ^mf

2.
Then :

— J ψβ(l m)ψβ(m')μβdzβ
P-Γβ

Σ ΊΓ7 ί Ψββo + 1 m)ιpβJ»(mf)μβjdzβjo
JO n / n Φ O , Pjo' Γβ
jo ̂  2 and

jo= 1 if m ^2

(2.5.1)

where in = (m2, . . . , mM) and m' = (m'2, . . . , m'N).

Proof. From Corollary 2.4.4. (1), we see that the integrals in 2.5.1 exist and

- f ψβ(ί m)ψβ(m')μβdzβ= _ ^ J Ψβ((ί9l);m)ψf(mf)μβdzβ

= 7 - πΓΊ - r f [ Λ ί φ/iαi.lJ(^-1)!^!... Vr, [2πί|Zll

J| = 1 ^

If we keep zβ eΓβ — (J {z,k = 1} fixed, then it follows from Theorem 2.3.2 (5d)
c ( i , i ) < c / f c )

that tp^((l, I);m)φ^(m/)l/z11 viewed as a function of z l t has simple poles in the
exterior of \z^\ = 1 at zίl=tjo(zjoko), for (1, l)<(/0fc0), (J0k0)e^β, and possibly at z1]L

= 00.
We will now compute the residues. Fix (/Ofe0) >((!,!)). Since y^((l, l);z^;m)

= z%iy)βe(zβc;m) it is regular at zx t = tjo(zjoko). Moreover,

Σ z~P(m') giφp

P(NJ0k0+l)<P(V

Jo . Λ

peΣ
vP(l)<p 6(JVj 0k 0+l)

where

z-P(m')eiφβ

1 <a<y

P(γ)<yp(oc)
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and where 2.2.1 holds for (jk) = (jQkQ). Observe that when zn = tjo(zjoko) for eiφ$
= eιφp"(Jok°\ Both functions within the parentheses of the last expression are regular
at zlί=tjo(zjoko) and hence:

Res (ιpβ((l,l) m)ιpβ(m')z-ϊ)
iJ°(*j0k0)

= ̂ AC/o*o)((1'1); ι f |)V/ΪΛϋo*0W) Res (z'l Π e^^oΛ (2.5.2)
f Ό^okoΛ 1=1 I

Using the fact that

ΓΊ e

iφί NJn><n+s

 =
> Zj0k0}

s = 1 Q Jo + 1 vZ 11' ZJok0)Q jΌ(Z 11J ZjΌfco/

for ί = l, we see that:

/ jo a \
τ\ 1 — 1 T—Γ IΦV N + I \
K f*<s 7 I I P Jo ojχcs> I zn 11 ^ I

(7 _ /•JO/'7 ^ JO
,. \Z \ \ — I \Zi~

= hm
zu->ίJo(zJoko)

1> Zj0fc0)

We now examine the pole at oo. We write:

ψβ(m') = z-^ιpβc(mf) + Σ z ' P(mΊeίφr

where

If P(l) > 1 observe that m1=m'P(ΐ}^mί-m/

2^-l and (l/z1 ^((l, 1) m)z~p(m'}eίφpe
= z »»ι-mi»(i ) -ι._p where 7? js regular at zn = oo (note e^ is regular at oo for all

and then

\P(1)> 1

is regular at oo. Hence, recalling that (̂(1, l);m) = z^Jφ)3c(m/), we see that:

Res (z^Ψβ((ί,l);m)Ψ

li(m'))=-δmίm,Ψl3c(m)ψl}'(m'). (2.5.4)
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Combining 2.5.2, 2.5.3, 2.5.4, 2.2.5 and the first part of Corollary 2.4.4 (Part 4), we
have that :

- j ιpβ(l m)ψβμβdzβ = - £ - - Σ
P /> jQ>l,n,ΦO \nl L)\n2\...nN\ I^k0^njo,j0>2

and and
j o = l i f w ι ^ 2 2 ^ f c ^ n ι , j o = l

' ί VVΛϋoiJίUί m)^^^^
Γβ

•^mimiiϊf ί Ψβ(m)ψβ(mf)μβdzβ
P- Γβ

where we have used the obvious identity :

j Ψβc(™)Vβc(™!)μβdzβc = j ψβ(m)ψβ(m')μβdZβ .
Γβc

 Γ$

We now apply the second half of Corollary 2.4.4 (Part 4) to the integrals in the
sum and we obtain :

— J ψβ(ί m)ψβ(m')μβdzβ

P ] rβ

ί ΨβJMo + D, 1
Jo:jo ̂  2, n jo Φ 0 Pj0 ΓβjQ((j0 +!),!)

and

1
""^roimΊ 757 ί V^ί^OvA1*1')/•*]§ ̂ zj£ (2.5.5)

P Γ£

However using Lemma 2.4.5 and Corollary 2.4.4 Parts 2 and 3, we see that:

("jo +1 +!) Λ ί Ψβjβio +!)>*)' mΪΨβj°(m')μβjo

dz

βjo

This combined with 2.5.5 yields 2.5.1 and the theorem is proved.
D

We can now easily prove the completeness relation for the t/^'s.

Theorem 2.5.2. Let N be a positive integer. Then:

δmm'= Σ -£Γ ί Ψ^Ψ^'^^ίί (2 5 6)
βe@N Pl Γβ

Proof. First of all the integrals on the right hand side exist by Corollary 2.4.4, Part 1.
Secondly it is sufficient to prove 2.5.6 under the assumption that m2^m'2. This
follows from the fact (Theorem 2.2.6) that

j ψβ(m)ιpβ(m')μβdzβ= J ψβ(mf)ψβ(m)μβdzβ.
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We will use induction on N to establish 2.5.6. For JV=1, there is only one
binding, namely U = (1) and ψv(z m) — zm and 2.5.6 is just the orthonormality of zm,
meZ, on the unit circle with respect to μudzu = (l/2πi) (dz/z). We now assume that
2.5.6 has been established for N—l. Let Jf = {β = (n1,...,nN)€&N:n1'§ϊ'\.} and let
Jf0 = {jSeJ^N:j8φ[/}. Observe that the mapping β^β of jf into J^^ is a
bijection. We can rewrite 2.5.6 as follows:

Σ ~ΰ ί Ψβ(l m)ψβ(m')μβdzβ
βetf P Γβ

o V ^ V Γ /• , i \ β'/ A j /<-* c o\= (5mm'- Σ ^Γ Σ J ψβ'(j + ̂ im)ιpli(m)μβ,dzβ,. (2.5.7)
β' ^yf P' /• > 1 7"

nj'+T+b

Using Theorem 2.5.1, the induction hypothesis and the above bijection between JΓ
and J'jv-i we see that the left hand side of 2.5.7 can be rewritten as follows:

βe* j : n j * < > , j * 2 j Γβj

But given β' = (nf

1, ...,n^)eJΓ0 and; such that n}+ 1Φθ, there exists a unique j5eJΓ
such that βj = β' and thus ψβ(i+'ί.) = ψβ>(j+ 1) and ψβj = ιpβ'. In fact if; ̂ 2, β = (n'1
+ 1, rc'2, ...,^ _ 1 ? w^.+ l, rij+1 — 1, rij+2,...,riN) and if ;'=!, β = (n'1+2, n'2 — l,
n3, ...,wjv). Conversely given βeJΓ and7 such that7^2, n^0or7 = l i fπ 1 ^2, there
exists a unique βfeJ^0 such that /^ = j8'. In fact if7' ̂ 2,βf = (nί — I,n2,...,nj_1,nj—l,
nj+l + 1, ̂ j+2? " 5 wr) or if7'= 1,7^ ^2, β' = (n^ —2,n2 +1, π3, ...,/tjy). This establishes
2.5.7 and hence 2.5.6.

3. Plancherel Theory for the Heisenberg Chain

3.1. Definition of the Operators {Eβ(Δ}} and Their Properties

Let Γβ be the subset of Γβ defined by fβ = {zβ e Γβ\0 ^ %rg(jzjk - (j - 1)) ̂  arg(/z^, - 0'
-l))^2π if fc<k'} and let J be a Borel subset of fβ. We define Eβ(Δ) as the
operatora with kernel

Eβ(Δ)(m, m') = j \pβ(zβ9 m)ψβ(zβ, m')μβdzβ .
Δ

Theorem 3.1.1. i) The operators {Eβ(A)} are self adjoint projections which reduce — ΔN

ii) The {Eβ(Δ}} satisfy the orthogonality relations

Eβ(Δ)Eβ,(A') = V (3.1.1)

for β distinct from /?', or β = β' but A and A' disjoint.
iii) The {Eβ(A}} are complete in the sense

Σ Eβ(fβ) = t. (3.1.2)
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Proof. It is clear from their definition that the Eβ(Λ)^ reduce — ΔN. The completeness
is simply a restatement of Theorem 2.5.2, if we take into account the facts that there
are n*. orderings of arg(/z;7c — (/ — 1)X fc = 1, 2, . . . , np and that ψβψ

β is symmetric under
interchange of j-complex binding variables (Corollary 2.2.4). Note that the
completeness relation (3.1.2), along with the positivity of Eβ(A) (cf. Theorem 2.2.6)
implies that Eβ(A) is bounded in norm by one. That Eβ(A) is actually a projection is
an immediate consequence of the orthogonality relation (3.1.1) and the complete-
ness 3.1.1. It thus remains to prove the orthogonality.

Now E β ( - ) i s (weakly) absolutely continuous with respect to Lebesgue measure
in fβ, as follows from its definition. It therefore suffices to prove the orthogonality
in the special case where A and A' are both open and both of non-zero distances
from a finite number of analytic sets of codimension one or higher in fβ and fβ,
respectively. These analytic sets will be described in the context of the proof.

For an arbitrary β, let \dzβ\ denote Lebesgue measure in fβ and let || \\β be the
norm in L2(fβ, \dzβ\\

Lemma 3.1.2. Let feL2(Γβ>\dzβ\). Then the following estimate holds:

I I Ψp(zβ, )f(zβ)μ^zf)dzβ\\ £ C(β, Δ)\\f\\β
\ A \ \ l 2 ( t N )

where C(β, A) is finite for A of non-zero distance from a finite number of analytic sets
of codimension one in fβ.

Proof. We consider in detail only the case where β consists of a single complex, β
= (0,0,...,!). We have that

f ( m ) = J ψβ(zβ, m)f(

where z = tN~l(zN) and z:z2 . . . ZN = NzN — (N—l) = zis of unit modulus. In terms of
the variable z the integral may be written

f(m)= £z"Ί(z2(z)Γ2-mι - (zN(z)ΓN-mίf(zN(z))^-

Ξ/(m1,m2-m1,...,m j V-m1)

where A is the image of A under the transformation z^-^z, and so

ll/ll? i (4»)= Σ Σ l/(«ι. «2,-,«w)l2

0<n2<...<nN A

^ 2π sup
A N 0<n2<...<nN Δ
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for Δ bounded away from zN = l and zN = (N — 2)/N (if N is even). For such a Δ,

VN(ZN) =

 1 (-If"1^-!)!)2 N"

N 2πi (NzN-(N-l)) A

is bounded, z^ezl, and

2^ sup |z2

2... z^l = 2^ sup |z2

2... ZjyL""!1! jz^j N

0 < H 2 < <»2V ^ 0<n 2 <.. .<«jv ^

<C V Q i ι n M ^ ~ ^ l τ \^n^ ̂  rr\= L SUP % lz^vl < °°
0<nN Δ

is bounded as well. (Recall that |zj<l for ZN away from 1 and zfczj _ f e + 1 is of
modulus 1 with |z fc |^l for 2k^j+l, so that |z52...z5(/>Lr1

1| ^1 for n2<n^<...<nN_ί.)
This proves the lemma in the case where β consists of a single complex.

In the case where β consists of more than one complex an analogous argument
can be carried out for each term of ψβ. In this case however the zjk = l and zjk = (j
— 2)/j codimension one analytic sets should be supplemented by those analytic sets
of codimension one corresponding to the singularities of the singular phase factors
in ψβ, which the set Δ should avoid. In this case, C(β, Δ) will take into account as well
the L°°-norms of the e~i(pβ and the sum over the allowable permutations in 0>β. This
concludes the proof of Lemma 3.1.2.

Now let feL2(fo\ geL2(fβ,) and define the form

m Δ

• ί μβ,(zβ}dzβ,f(Zβ)^(zβ, m)ψβ.(zβ,, m)g(zβ^^-^^.
Δ'

The dependence of At on β, β', Δ and Δ' will be suppressed since they will be held
fixed throughout the argument. In addition to the hypotheses of Theorem 3.1.1, Δ,
Δ' are assumed open and of non-zero distance from the analytic sets of Lemma 3.1.2.
From Lemma 3.1.2, we have the following result.

Lemma 3.1.3. The form At(f,g) satisfies

(At(f,g)\^C(β,Δ)C(β',Δ')\\f\\β\\g\\β,.

We next examine the limit f->oo of At(f,g).

Lemma 3.1.4. For fixed f, g in L2(Γβ), L2(fβ,) respectively,

limAHf,g)=Q.
ί-> oo

Proof. The idea is to apply the Riemann Lebesgue Lemma. We first note that by
Lemma 3.1.3, it suffices to prove Lemma 3.1.4 in the special case when /eC^(zl),
geC^(zΓ) with supp/ and suppg away from some additional analytic sets of
codimension one or higher. These sets will be described below. In this special case
we avail ourselves of some distribution theory.

If \z\ > 1 set
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where if |z| = 1 the convergence is in the sense of distributions. Then in terms of the
distribution X,

Σ m ι _ m 2 ~mNz1 z2 ...zN

mi < m.2 < ••• <mN

= 2πX(zί]X(zlz2}...X(z1z2...zN_1}δ(z1z2...zN}

in the sense of distributions provided |z1z2...zk |^l for l ^ f c ^ Λ Γ - 1 and
\z1z2...zN\ = l. By δ(z) we mean

1 r -2ε
— lim -~ 2".
2π ε 4 o (1 — z) — ε

Next, consider the distribution given by

Σ+ Ψft(zβ>myψβ'(zβ >™)

• δ(z~ί... z - X... z'N}eίφp(z^

(By z| , we mean parameterization by the binding variables of/? 7 .) This identity is
justified by the facts that products of the form z^1

k+jz^1

k+j_1...z^1

k+j_i, /<j, and
zN'j>k' + l

zN'j>k, + 2-
 zNJ>k' + l»

 z''^/> nave moduli greater than or equal to one.
We shall refer to a factor X or δ in a term of the above sum as singular if its

argument is equal to one for some values of zβ and zβ, in A and A' respectively. Let us
count the number of singular X's in a given term of the sum. Now actually
zNj1

k+j" zNj}

k+j-i nas modulus strictly greater than one for zβeΔ and ί<j—l and
modulus exactly one for ί=j— 1; ZΛT +1^ +2 z5v +r has modulus strictly
greater than one for zβ,EΔ' and ϊ <f and modulus exactly one for ΐ =/. It follows
that a product ^pΛ(1)Zp-1ι(2)...Zp-1ι( ί )z;2-ι(1)ZQ-ι(2)...ZQ-ι( ί ) can have modulus one
only if ^p-1ι(ι)2p-1ι(2)...ZpΛ(0 and z'Q-,(l}z'Q-,(2γ..z'Q-,(ί) separately have modulus
one. This can happen only if {P~l(\\ P ~ 1 ( 2 ) . . . P ~ 1 ( ί ) } is exactly a union of
complexes of β, and {Q~v(^\ Q~ί(2\ . . . , Q ~ l ( ΐ ) } is exactly a union of complexes in
β'. As /ranges from ItoN,{P~\l\P~^l ...,p-\ί)},{Q~\1\Q~^ ...,Q-\ί)}
can separately be a union of complexes in β and β' respectively at most r0 times,
where r0 is the smaller of the number of complexes in β or β'. Furthermore if the
number of complexes in β and β' is the same and equal to r, but β and β' are distinct,
we will again have r0 < r. Thus in the cases β Φ β' only at most r0 of the factors of a
given term in the sum can be singular, where r0 is strictly less than the number of
complexes in β or β', whichever is greater. This is also true for β = β' in a slightly
weakened sense which we now explain.

Let β and β' be the same binding with r complexes and consider a term in the rhs
of Equation (3.1.3). The number of singular factors r0 will certainly be strictly less
than r unless a) the permutations P and Q fill complexes successively in the sense
that P~ 1(ϊ+l) = P~1(i)-l if P~\ΐ)*Njk + l for some jk and analogously
β~10'+l) = β"1(0+l if β~HO+ #/*'+/ for some/fc', and b) if p - l ( f ) = Njk + l
then β~ HO must equal Njk> +j for some fc'. Next suppose that the conditions a) and
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b) are satisfied for a given term in Equation (3.1.3). The arguments of all them's and
δ in the term are never simultaneously 1, since if they were we would have zp-ι(1)

= ZQ-ι(i),zP-1(2} = ZQ-ι(2)9 ...,ZP-I(N) = Z'Q-I(N) which would contradict the facts that
suppfcA is disjoint from suppgCA'. Now let {/ιαPβ}α be a C°°-partition of unity of
Δ x A' (i.e. each ha is C°° and ]£ haPQ = 1) so that the argument of some fixed singular

α

X or δ is not equal to one in the support oϊhΛ, for each α. (Hence in the support oϊha

at least one singular X or δ is in fact bounded and hJC or haδ, as the case may be, is
C00.)

Thus in all cases, β Φβ' or /? = β', we have the following situation for fe C£(Δ),
geC™(Δr),

Pe&β a A x A'

' Ofifypf^g^ i J -L T )

where the integrand of each term on the right hand side has at most r — 1 X and δ
factors which are singular, where r is the number of complexes in β or β', whichever
number is greater. [The product Π^PQ denotes a product over the X's with
appropriately permuted arguments depending on P, β. The function haPQ is just
unity for βφβ' or P, Q not satisfying (a) and (b) above.]

At this point, we impose a further condition on the support of/or g. (See the
paragraph following the statement of Lemma 3.1.4.) Suppose β' has the larger
number of complexes. We assume that suppg does not intersect the codimension
one or higher sets {SaPQ} given by SaPQ = {zβ>\saPQ(zβ,) is not of maximal rank} where
sΛpQ(zβ,) is the matrix

7zβ'
 ε/rM

\ yzβ> ^2-ι(lr<2-ι<2)

The symbol VZβl denotes the gradient with respect to the zβ, binding variables and r0

is the number of singular distributions in the ocPQ term (r0<r is a function of
α,P,Q); ZQ-i( i)Zβ-i(2) zQ-i(i ) denotes the zβ, factor of the arguments of the
singular distributions in Equation (3.1.4). (If/? had the larger number of complexes
an analogous assumption would instead be made o n f . I f β and β' have the same
number of complexes the assumption could be made on either / or g.) Now the
assumption that suppg is disjoint from SaPQ sets implies that εβ(zβ) — εβ(zβ,) = Δε
itself may be regarded as an independent variable of integration for each term in
Equation (3.1.4). Performing the integration first with respect to a set of variables
independent oϊΔε in each term of Equation (3.1.4) (it may be necessary to reduce the
partition of unity to make the transformation of variables one-to-one), one obtains
a sum of terms of the form J F0ίPQeίtAεd(Aε) with FaPQ an L1-function. By the
Riemann-Lebesgue Lemma, each of these terms goes to zero for f-»oo. Thus
At(f,g)-+Q, for feC$(Δ\ geC%(A'- \J SαPQ), and so At(f,g)-+Q9 ί^oo, for

aPQ

feL2(Lβ\ geL2(Lβ>) as well. This concludes the proof of Lemma 3.1.4.
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The proof or orthogonality, Equation (3.1.2) is now immediate. The kernel for
Eβ(A)Eβf(Ar) can be written

- lim (Eβ(A)e-itANe?tΔNEβ,(A'))(m9m')
ί-»oo

= limΛ(0/( ,m), ι//'(',»»')) = 0
ί-»oo

by Lemma 3.1.4 and the facts that ψβ, ψβ, for fixed m, m' are bounded and hence in
L2(Γβ) and L2(fβ,) respectively. Consequently Eβ(A)Eβf(Af) is zero, which completes
the proof of Theorem 3.1.1.

3.2. Plancherel Theorem

Let J^N = © L2(fβ, μβ(Zβ)dzβ). Then Theorem 3.1.1 gives the following Plancherel

theorem.

Corollary 3.2.1. The mapping /-> ]£ ψβ(zβ, m)f(m) defines a unitary mapping U from
m

12(Z+N) onto J4?N such that U(-AN)U~1 restricted to L2(Γβ,μβ(Zβ)dZβ) is multipli-
cation by εβ(zβ).

Proof. Theorem 3.1.1 insures that U is an isometry. It remains to show that U is onto

Let/be a non-zero function of bounded support in 12(%N). Then we claim that
UEβ(Aβ)fis zero a.e. outside AβcΓβ and in Γβ,,β'ή=β. As in the proof of Theorem
3.1.1, it suffices to consider Borel sets bounded away from certain singular
hypersurfaces. If g is C°° with support in Aβ,, βf φβ or β = βf but Aβ,r\Aβ = φ, then

m Aβ x Δβ'

= At(Uf,g)=]imAt(Uf,g) = 0
ί-*αo

in the notation of Lemma 3.1.3. Since such g's are otherwise arbitrary, this
establishes the claim. This argument then implies that

UEβ(Aβ)f = χΔβ UEβ(Aβ)f = χAβ Uf

a.e., where χAβ is the characteristic function oϊAβ9 regarded as a function on (J Γβ.
β

Now by analyticity of the φ^'s, C//is a function which vanishes only on a set of
Lebesque measure zero in Γβ. Thus finite linear combinations of the form

β,n ' ' n β,n

are clearly dense in 3fn, showing that U is onto.
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Appendix. An Elementary Sobolev Inequality
n

Let y{ = {xe(C|rex = αJ y= Y[ γί9 and let g be the set of complex valued functions
/ = !

on y, ($ = {F(xί, ...,xn)\0>(d/dx1,d/dx2, ...,d/dxn)F is uniformly bounded on y for
each polynomial 0*}. The function space $ is a ring under the operations of addition
and multiplication.

Lemma A.I. Let Fe 5 and assume F vanishes along xt — Xj = afar some ί j with a real.
Then the function F = (xi — xj — a)~1F is uniformly bounded along with its derivatives
for (x — Xj — a)ή=0 and hence extends to a function in g.

Proof. It is no restriction to assume a = 0. We consider

dx \dx

dx

d V> 1 Π

Since J~{(δ/£bcΛ)pkF is in g and vanishes at xt = Xp the proof is reduced to showing
(d/dxy^d/dxjY^ - Xj)" 1F is uniformly bounded for each pi9 PJ and F in g with F
vanishing at xf = Xj. We proceed by induction on P = pi + Pj- The case p = 0 is a
special case of the uniform boundedness of (d/dxί)

p(xi — xJ)~1F which we prove
below. If p=t=0 with P / Φ O we have

d P i d P J . dpt( d\p'-1, ._J d d
)-1 —

\dxt

pί+1 P]~1

By the inductive hypothesis and the facts that δ/dxt + d/dXj)F is in g and vanishes
for x . = Xj, the first term on the right hand side is uniformly bounded. Hence the
proof is reduced to showing (d/dxi)

pi + 1 ( d / d x j )
p j ~ i ' ( x i — xj)~1F is uniformly

bounded. But this procedure may be iterated until the proof is reduced to showing

is uniformly bounded. This term, however, is bounded by

sup
1 p+1

F(x)

by an application of the following lemma.

Lemma A.2. Let f(x) be a Cn+1 function on interval /CIR containing 0. Then if
/(0) = 0,

' d\p

dx x

p f x x x

—ΊΓT- ί dx< \ dx7... f
ι^jp+ 1 J i J •£ J
V n γ. vU Λ! Xr>

sup
xe/

d\p

sup
xel

\ p + l
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Proof. Note first that
X X X ,-p

gp(x) = $dxt J dx2... f dxp=—9 p^ l ,
0 xi x p - i P'

which is easily seen from the facts that dgp/dx = gp_1, gi(x) = x and #p(0) = 0.
The formula for dp/dxp(f/x) holds for p = 0. Assume that it holds for p — 1. Then

by the formula for xp/p\,

which establishes the formula for p and thus the formula holds for all p ̂  0. The
estimate follows from this formula and the formula for xp+1/(p + l ) l .

Remark. This lemma is used in the proof of Lemma 2.5.3. To avail oneself of the
lemma, one first makes the transformation zβ-+xβ defined by xjk = (1 — zjk)~1 which
mapy Γβ to a γ of the above form.
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