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Abstract. In its ground state representation, the infinite, spin 1/2 Heisenberg
chain provides a model for spin wave scattering, which entails many features of
the quantum mechanical N-body problem. Here, we give a complete eigen-
function expansion for the Hamiltonian of the chain in this representation, for
all numbers of spin waves. Our results resolve the questions of completeness
and orthogonality of the eigenfunctions given by Bethe for finite chains, in
the infinite volume limit.

1. Introduction

Let H be the self adjoint Hamiltonian corresponding to the ground state
representation of the spin 1/2, infinite one-dimensional Heisenberg ferromagnet
with nearest neighbor interactions. The operator H is reduced by a spin-wave
number operator, and H restricted to the N spin-wave sector is unitarily equivalent
in a natural way to a second difference operator — 4, with “sticky” boundary
conditions acting in an [*-space.

The purpose of this article is to prove the completeness of an explicit
eigenfunction expansion of — 4y, for all N i.e. all numbers of spin-waves. This result
was announced in [1]. In addition, using the generalized eigenfunctions for — 4,,
we construct a complete set of commuting self adjoint projections {E(4)} which
reduce — 4. Here the subscript f§ called the binding, describes the manner in which
the N-spin waves are bound together into “complexes” (in Bethe’s terminology [2]),
and 4 is a Borel subset of a torus whose dimension depends on the number of
complexes comprising . Any two projective E4(4), E;(4') are orthogonal for f and
B’ distinct or if f=p', for 4 and A’ disjoint.

In fact, the projections {Ej(4)} were already obtained in [4] in a slightly
different representation by considering the thermodynamic limit and utilizing the
Bethe solution in [2] for the finite volume eigenfunctions. But the questions of
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completeness and mutual orthogonality of these projections were left open. Here,
we settle these questions by working directly with the infinite volume expressions.

The original motivation for working out the eigenfunctions expansion was to
determine the dynamics of the ground state representation for the Heisenberg chain
in as much detail as possible (cf. [3,67). Our results do shed some light on the Bethe
solution and hopefully they will be of utility in other situations, e.g. the Heisenberg
chain at non-zero temperatures.

In itself the Heisenberg chain provides an interesting example of the interplay
between certain “phase factors” in the generalized eigenfunctions and the
“Plancherel” measure associated with these generalized eigenfunctions. Roughly
speaking, in the N-spin wave sector there is a particular family of generalized
eigenfunctions {y,} parameterized by z=(z,, ..., zy)eC", |z]=1, i=1,...,n which
describe the case where all N spin waves are free (i.e. not bound into complexes) ; the
appropriate Plancherel measure for these functions is (essentially) Lebesgue
measure on the N-torus. Now y, extends analytically away from the torus to a
family parameterized by ze C". For ze C~ fixed, v, which will be a function defined
on a subset of zV, will not be “tempered” unless z belongs, to one of a set of algebraic
varieties indexed by f contained in C". Corresponding to the f variety (and the
restriction of {y,|zeC"} to this variety), which we call {1,}, there is a Plancherel
measure density u; determined by the residues of some “phase factors” of the
analytic continuation of {, evaluated on the variety. The totality of the {y,} with
the measures y;, provide the complete Plancherel formula.

We add that our results are rather different in character from those of Yang and
Yang, who proved that the ground state of a finite Heisenberg chain for fixed
magnetization is given by the Bethe solution [8]. Our results should be compared
with those of Wortis [7], who obtained the two spin-wave Green’s function in one,
two and three lattice dimensions, from which he was able to deduce a bound state
structure in the two spin-wave case.

In Section 2.1, — 4, and the I*-space in which it acts are defined. Section 2.2
contains the definition of the generalized eigenfunctions and introduces the
notation used throughout the proofs. Section 2.3 delineates the important analytic
properties of the generalized eigenfunctions. (For lack of space, Theorem 2.3.2is not
proved here. Its proofis contained in [5].) In Section 2.4, the proof of completeness
is given. Finally, Section 3.1 summarizes the properties of the projection {E(4)},
and Section 3.2 presents the Plancherel formula for the generalized eigenfunctions.

2.

2.1. The Hamiltonian

Let N be a positive integer. Then Z¥ will denote the set of N-tuples m = (m,, ..., my)
of integers such that m, <m, <... <my and [*(Z") will denote the Hilbert space of
square summable sequences indexed by Z". 4, will denote the self-adjoint operator
on [*(Z") which is defined as follows [2]:

N
ANf(ml’mZ’ "'smN)zé Z (f(ml’ --wmi—lﬂmi+ 1: "'>mN)
i=1

+fmy, ceom_,m—1, o omy)=2f(my, ..., my, ... my))
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providing the m;’s are not neighboring. If just two of the m;’s are neighboring e.g.
m, . =m,+1, then
Ay fmy,...omy)=% Y (fmy,...om_ m+1,...,my)

ik k+ 1
+fmy,omm— 1, my)=2f(my, . m, . my))
+ifmy,...om—Lm+1,...,my)

L f My, M+ 2, my) = [0y, ),

etc. We might say that 4, is the discrete Laplacian on [*(Z") with a “sticky”
boundary condition because the random walk of N-particles on Z determined by 4,
is such that two adjacent particles may stick together for an arbitrary finite
(integral) time with positive probability.

Remark 2.1.1. Observe that the above expressions defining 4, make sense for all
functions on Z". We will continue to use this symbol for the extended operator.

Let # = (E@( 6—) 2(Z") ) Then it is shown in ([2,4]), that the ground state

Heisenberg Hamlltoman is equivalent to H=1 (—B(@ —A4 ) The (sub-) spaces
I2(Z") are called the N spin-wave sectors.

2.2. The Definition of the y-Functions

Let N be a fixed positive integer fixed for the remainder of this section. Let
N

(ny,n,, ...,ny) bean N-tuple of non-negative integers such that Z kn,=N.Letjbea

positive integer such that n;40 and k a positive integer such that I=<k=n; Let
ji—1

Z In;+(k—1)j and let I, ={N,+1,...,N; +j}. The partition f={I;} is

called the standard N-binding of type (ny, ..., ny). The set I ; is called a complex of the
binding . Usually we will denote § by (n,, ..., ny). The collection of standard N-
bindings will be denoted by #y. €, will denote the pairs of integers (jk) [sometimes
written (f, k)] such that n;+0, 1 <k <n;. We write (jk) <(j'k) if either j=j and k <k’
or j<j.

We shall now define some partitions related to § when n, +0. If n;, 22 and
2=ky=n,, then B A(1ky) will denote the partition {I,:(jk)e@;—{(1,1)}} where
Iy =1, if (jk)# (ko) and I, = {1}Vl . B, will denote the standard N-partition
determined by (n, —2, n,+1, ny,...,ny). If jo>1, (joko)e%l,, then B A (jok,) will
denote the partition {I:(jk)e%,—{(11)}} where I;y=1I; if (k)= (jok,) and

Lo ={1} 01, B;, will denote the standard binding (n, —1,....n;,_y, n; —1,
nios1+ 1 15 4, ., ny). Observe that f A (jok,) is not a standard binding. f will
denote the standard N —1 binding (n, — 1,n2, ey Hy)-

Sy will denote the group of permutations of {1,2,..., N}. Then we define:

Pp=:{PeSy:P(Ny+1)<... <P(N +j), (jk)e €}
and
PP=:{PeSy:P(N;+1)>...>P(N;+j), (jk)eb,}.
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Eigenfunctions for — 4, will be sums of functions indexed by 2. Z; , (; «,, 1s defined
to be the set of permutations which preserve the natural order of I,
(jk)e€;—{(11)} and 2" U¥ is defined to be the set of permutations which reverse
their order. If z=(2,...,zy)eC" and m=(m,, ..., my)e Z", then z*™ will denote
zimizEme L zgmN o If meZN and PeSy, then P(m) will denote (mpy, ..., Mpy,) and
P(z)=(ZP(1), - ZP(N))

The symbol t will denote the fractional linear transformation t(z)=:(2z—1)/z.
This fractional linear transformation will play a very important role in this chapter.
Note that t(z)=(([+1)z— D/, —(I—1)).

To each f=(n,,... nN)eﬁ we associate an r-dimensional complex variable

zp=:{zj, (jk)€b s} where r= Z n,and where z, =zy . ;. If n, %0, the symbol z,_

will denote the (r— 1)- dlmensmnal complex variable {z;, (jk)e,—{(11)}}. Thus

25=(211,25,)
Let o, ye{1, ..., N}. Then we define:

i (2z,—z,2,—1)
2z,—z,2,—1

and
ei‘Pw/ — (e“ i¢ay) ~1 .

These functions are called phase factors and they also will play an important role in
our discussions. For Pe#, we define:
e"or=: ] e i,

1<a<y=<N
P(y) <P(a)

For Pe 2, we define:

e—in.___ 1—[ ei(Pw/
1Sa<y=N:

aly
P(y) <P(a)

where oLy means that « and y belong to different complexes of f. If we replace
Zy, +1DY Yz ) (jk)e €5, 1 <1< jin the above, we shall denote these functions of z,
by e”s* and €* respectively. The function e”*¢srtoko? PeZy, . - and
0?1 kP pe gphhUoko) are defined in a similar way.

We can now define the central family of functions of this paper. Let fe &,
meZ", and define:

wplzg; m)=: Y zPme iosr

P*2;

where:

L=tz 1SS (WED,. (22.1)

Remark 2.2.1. A priori yy(z;;m) is only defined for z, in the Zariski open set
U {zeC:2z,—2z,z,—1=0, where 2.2.1 is assumed to hold}. We say

a,yeln:
a<ry

a statement holds generically in z; if it holds for z, in this open dense set. In this



Heisenberg Ferromagnet 259

section all statements involving z, will be assumed to be generic statements. One
of our main technical problems will be to show that ,(z;;m) and related
functions can be defined on somewhat larger sets of z,.

Remark 2.2.2. Let U=:(N,0,...,0) where U stands for “unbound”. Observe that
Yy(z5:m), as a function of zj, is the restriction of yy(-; m) to the r dimensional
variety defined by the N —r equations:

22yt 1= Inprie12n, HI—1=0,  (jk)e¥, 1<I<j—1.

The reason why the y, functions are of central importance is contained in the
following theorem.

Theorem 2.2.1. yy(zy;-) is a generalized eigenfunction for— Ay with eigenvalue

N i 1)
)= & —dartar =33 L=l

where it is assumed that 2.2.1 holds, i.e. — Ay, =¢zp;.

Proof. These are simply Bethe’s eigenfunctions in the infinite volume limit written in
terms of the variables z,=e™, [=1,...,N. See [2,4] for the proof. d

Note that once it is established that yy(zy;-), |z;]=... =|zy|=1, is a family of
(generalized) eigenfunctions for—4, it follows by analytic continuation and
Remark 2.2.2 that yy(z,;-), BeAy, z; generic, is an eigenfunction for — A4y with
eigenvalue ¢;(z,).

In the proof of completeness we shall need several other y-functions. They are
defined as follows:

Wizys m)=: Y 2z "™elok
Peph
(k) zgsm)=: Y ZPmeTionr o (jk)eF, ;

P(Nﬁeff)=1
wu(s 25 m)=1: Y pu((,k); 25 m),
k=1

J such that n;#0. In the above definitions it is always assumed that f=(n,, ...,ny)
and that 2.2.1 holds. Now suppose n, &0 and let (j,k,) be as in the beginning of this
section. We then define:

pPhuk gy smy=: ) g T Rmeiept
c ’ °
Pe2B M ioko)
. . _ P ~1i i
l/)ﬁ /\(joko)((L 1) i Zﬁc > m) - Z z (m)e Pt otor®
Pe? i :
“phy Y

where it is assumed that 2.2.1 holds for (j'k)#(1,1) and z, =t%(z;,, ).
We now state and prove a simple lemma which will imply important change of
variable and symmetry properties for various y-functions.

Lemma 2.2.2. Let P, P and P'eSy. Then
(e~ ioPeioP) (Pyz)= (e~ PP P P5') (2). (2.2.2)



260 D. Babbitt and L. Thomas

Proof. Note that (2.2.2) implies (and is implied by) by setting P’ and P respectively
equal to the identity, that:

e~ i(pp(POZ) — (e ~ipppst o~ igpst ) (Z) (223)
0P (Pyz) = (&P Pt e 107" (z). (2.2.4)

A direct calculation shows that (2.2.3) and (2.2.4) hold if P,=(k,k+1)=P;?,
1Zk<N, is the transposition which interchanges k and k + 1. Next observe that if

(2.2.3) and (2.2.4) have been established for P,=P, and P,, then they hold for
P,=P,P,. For example,

e~ P(P P,)z)=e " P(P,(P,z))=e "*PP3'(P 2)e'?" (P z)=e PP Pii(z)
. eiw:,—‘ (Z)ei(ppil Pt (z)e_ ippy (e— ipppyt ei‘/’Pa‘ ) (Z) .
Since every element of Sy can be written as a product of transposition of the
form (k, k+ 1), the lemma is proved. O

Let fe#y and (]0 0)€%,. 1f the complexes of B are {I,(jk)e%,} and the
complexes of f; =(n, ... nN) are {13, (jk)e¥ s,)> we define a permutation P, €Sy
as follows:

{1ol,— I(]o+1)1
P15, if j*j, or 1
P:I,—19,, if jo=lk>k,
Pl —I9 -y if jo#1
P —I10_y, if jo$lk<k,
Pl —14_, if jo=1k>k,

Joko

and P preserves the internal order of each of the above sets. The first consequence of
Lemma 2.2.2 is the following:

Corollary 2.2.3. (Change of variable formula). Let B, (j ko) and P;, be as above.
Define z; as follows:
Zie = Zps N+ 5 UK )EE

where zy =z, .. Then:

vp, (o +1),1): 25, m)wﬂjo(zﬂ}o; m’)
=Yg nGioko)((1s 1)3 25,5 )P MU0z ).
Proof. The proof is straightforward.

The second consequence of Lemma 2.2.2 will pertain to various important
symmetry properties of products of various y-functions. Let f=(ny,n,, ..., ny)e &y
and let j, be such that n; =22. Let Se§, and define Szy=z; as follows:

Zp=zy, il jFjo,l1=k=n;
S .
ik =Zjosay I 1Sk=n; .

If k is such that 2<k=n,, let §;, denote the transposition (1k).



Heisenberg Ferromagnet 261

Corollary 2.2.4. (a) Let B,j, and S, be as above. Then
wil(jor k); 25 myph(z, s m)
= (o> 1); Sjouzg s MIWP(S ;025 m').

(b) If SeS,,JD, then:
Wy(Szy5 mpP(Szp s m) =y(zgs m)ph(zysm').

Proof. The proof again is straightforward.

We next introduce some complex differential forms. We define:

i—1 _ 2 i
ez = (1) 1[(;~1>'12H[ Z(zin} T

for j=1,2,.... Let f=(ny,n,,...,ny). Then we define:
tp(zp)dzy = 1_[ HAZp)dz .
(K%,

The form p,dz,, restricted to the “physical” B contour (see below), is the
“Plancherel measure” for the S-sector of the eigenfunction expansion.

Now suppose n; =1 and (j,k,) is as in the beginning of this section. We then
define:

Hp(2p.)dzg, = [1 1z p)dz
(k)€€ —{(1, 1)}

and

—jolio + 1) (250, — 111542,
| . ko Az, 225
i ndjokolZp020. = 1 D24k =0) Gi0Z ok = Gio = 1)) >

Proposition 2.2.5. Let f, (jok,) and z be as in Corollary 2.2.3. Then:

15,,(2p,) = 1y A Gioko\Z5.) -
Proof. This is just a direct substitution. [

We will now introduce some contours in €". Let j and k be positive integers and
define: I'()=I(jk)=:{z;:|iz—(—1I=1} and for j=2, we define F(]) F(jk)
= {z;:|(— Dz~ (i—2)|=1}. Note that F(j)=I(j—1). Both the I" and I’ contours
are assumed to be oriented in the counterclockwise direction. If f=(n,, ..., ny),
define:

T TGk).

(Jk)eép

The following contours will be needed for certain proofs in Sections 2.4 and 2.5. If
ny 21, define:

r,= [I TIGh.

(kyetp—{(11))
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If jo=2, n;, #0 and 1<k, <n;,, define:

0="jo
ko
Flioko)= n I'(jk) x I'(jok).
(jk)e%,;:gk)qjol) k=1
(Joko) < (jk)
Remark 2.2.3. Observe that if we use the change of variable of Corollary 2.2.3 that

the contour I'; goes over to r s, 0o+ D).
The following theorem will indicate why the {I';} contours are called physical
contours.

Theorem 2.2.6. (a) When yﬂdzﬁ isrestricted to Iy, it is a positive measure. (b) yy(z; ; m)
is bounded as a function on Z" for each (generic) zgely. (©) wylzg; m)=v"(z;; m),
z4€lp. (d) &, is real and positive on Iy,

Proof. a) Under the substitution of variable jz, —j+1=e"** 0=kj; <2z, which
provides a parameterization of I'(jk), we get that

2

dk;,

i-1

1
ﬂj(zjk)dzjk = E((l_ 1)? n

=1

eikjk _ 1
letkrm 4j—1

which i§ manifestly positive. The quantity py(z,;)dz, is simply a product of such
expressions.

b) It suffices to show that each term z"™e~'» Pe2,, in y, is bounded and
hence z"™ is bounded, for generic z,. Now z"™ is a product of factors of the form
INS g1 e 2N With my <m;for r<s, hence it suffices to show boundedness for
such a factor. To simplify notation, we assume N ;, =0 and replace (m;, ...,m; ) by
(my, ...,m). For z;_,=1'(z;) with z;e I'(j), one can verify that |z,,,z;_,|=1,0=1<},
and thatz;_,e I'(j—2I) for 2l <jso that|z;_,| <1 for 2] <j. If for example j is even, we
have |21 ... 219 =(z,2)" (2,2, )™ ... (222504 )220 7™ L 283 T ™? £ 1. One
can give an analogous argument for j odd, keeping in mind that for j odd,
2+ 1yl = 1.

¢) For f fixed, define the permutation * by *i= N +j—I+1fori=N, +1lel;. If
i <j are in distinct complexes then so are *i, *j with *i <*jand ifi<jand in the same
complex then *i>*j. Note that ** =identity. Now it is easy to check that for zze I'j,

Z,=z; ', and that

e~ ip; — eitp*,*j

for i,j in distinct complexes. If we let Q be the composition Q = P* and observe that
PP =P, then

o = —MPp(1), ~Mp(2) —mp(N) i@y
V= Y, Za"TWz"PO L 2y [T &7

Pe?g i<j
P@i)>P(j)
= Z 7~ Qm) l—[ oPriny — Z 7~ Q(m) n 0= wﬂ i
Q*ePp *p<KG QePh i<j
Qi) > Q(*)) Q1) >Q3)
L% ilj

d) This follows from the variable substitution of part a). [
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2.3. The Structure of the Denominators of the y-Functions

It is the purpose of this section to state a theorem which says that certain
troublesome factors in the denominators of the phase factors e~ *s* and ¢F are not
present in the -functions i.e. certain cancellations take place in the sums defining
the y-functions. The proof which is purely algebraic and rather lengthy will appear
elsewhere. (It is also contained in the preprint [5].)

B=(n,,...,ny)e By will be fixed throughout this section. All pairs (jk), (/'k’), etc.
will be assumed to be in %. If [€Z, then:

Qu(l; G, ), (k)3 2g) = :(l =Dz 2z + (1= 1)
~(1=2)zj—~lzjy .

When no confusion should arise we suppress . It is clear that these are irreducible
polynomials in ‘B,, the ring of polynomials in r complex variables. A direct
calculation shows that:

Q' —j—'=D+2;G.k),(, k)
(' —j—'=D:G. k), (. k)

when 2.2.1 holds. Thus the phase factors e~'?#* and €'?# are rational functions in z,
whose denominators are products of the irreducible polynomials {Q(!; (j, k), (', k))} -
If PeZ and 2.2.1 holds, then

LP(m) _ I—[( ijk—(j— 1) >mP(Njk+l) (%ij___l->mP(Njk+j_l)Zmp(Njk+j)
k) U—I)ij—(j—z) Zj 7
Thus z"™ is a polynomial in z;, which vanishes when z,, = (I—1)/, 1 £ <j because

P(Nj+1)<...<P(Nj+j) and m, <...<my. A similar statement can be made
about z P™ Pe## We summarize these remarks in the following.

e T loN+ L Ny =

Lemma 2.3.1. The yp functions can be written as follows:

. B jorco
L U)ﬂ(loko Zgs m)=—>=
B joko
where :
Qu — H [Q(i'—j—['(]'k) (]-/ k'))]e((jo,ko);(j,k),(j’,k’);l)
jokﬁ > > >

1 radit
and where the €’s are non-negative integers, P, is a polynomial in z; which vanishes
when z; =(1-1)/l, 1Z1<j, (jk)e €, and (PﬂJoko’ Qﬂfoko)=1 (ie. PﬂJako and Ql,m are
relatively prime in B,). A similar statement can be made about (], ;25;m), n; 0
and yy(zy; m) where we write the exponents as e(j, ; (j, k), (7', k') ; 1) and e((j, k) ; (/', k') ; I)
respectively.
2. w? can be written as follows :

Pﬂ
Yzpsm)=v(z))= =

Qlf
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where :

O'= 1 [QU—j=1+25(. (Y G0
NN

and where the f’s are non-negative integers, P? is a polynomial in z; which vanishes
when z; =(1—1)/I, 1<1Zj, (jK)eb,, and (P*, Q)=1

We now state the theorem mentioned in the beginning of this section.

Theorem 2.3.2. 1) Assume n, +0. Then e(1, 1); (, k), (7, k') ; ) =0 if either (j, k)=(1, 1),
0=I<j —1 or (11)<(jk), j =j(mod2) and I=(j' —j)/2—1;

2) Assumen; #0,j,>1. Thene((jo, 1); (, k), (7', k') ; ) =01f (@) (jk), ("k) F (o, 1) or
(k) =(o» 1), J =jo» and j = j(mod2), I=(j' —j)/2—1; or (b) j<jo, (j —jo) = 1(mod 2), j’
=jo» 1=(o—=j—1)/2; 0r (©) jo <J', (' —Jo) =(m0d2), j=jo, |=(—jo,—3)/2;

3) Assume n; #0. Then e(jy ; (j, k), (j', k') ; )=0if (a) j' = j(mod 2), I=(j' — j)/2) - 1;
or (b) j<jo, (j—jo) = 1mod2),j =jo, [=(jo —j— 1)/2; 0r (¢) jo <J', (i —Jo) = 1(m0d 2), j
=jos I=]'—jo—3)/2;

4) The same statement holds for e(jk, j'k'; 1) as hold for e(j,;jk,j'k’; ).

5) f(G, k), (75 K); D=0 if (a) j'=j(mod2), I=(j'—j/2)+1; or (b) j<jo» (G—Jo)
=1(mod2), j'=j,, I=jo—j+3/2; or (¢) jo<J, ( —jo)=1mod2), j=j,, I=]—jo
+1/2; or (d) if n,*+(k)=(1,1), 1ZI=<j —1. Moreover f((1,1); (f, k'); 0)=1.

2.4. Integrability of the w-Functions

In this section we establish the existence of various integrals involving y-functions,
the differential form pdz and the I' contours. Fix f=(n,,...,ny)e#By. Pairs of
integers (jk), (j'k'), etc. will be assumed to be in €, unless stated otherwise. If I'; is a
I'-contour (see Sect. 3.1), then f Iy— U {zp=zj =1} It is clear that

(k) <)
r, F has Lebesgue measure 0 in I'; where I'; is viewed as a real » dimensional

submamfold of C'.
Lemma 2.4.1. a) Q,(' —j—1; (j. k), (j’, k'); z;) =0 for zﬂefp unless j' =j(mod?2) and |
=('=p2-1

b) Suppose n, £0 and jO is as in the beginning of Section 2.2. Suppose the triple
{(G,k), (G, k), I} where (j, k), (j, k)e(gﬂ , does not satisfy :

i) (Gk), Gk)=*EGo+1,1), j _J(mod2) or j=j=j,+1, k=1, and, in both cases, |

=('=j)2—1;or

i) j<j0+1,j5j0(mod2), J=jo+1and I=(j,—j)/2; or

iii) j=jo+1, jo+ 1<), j=jomod2), and I=(j—j,—4)/2; then Qy (j—j—1;
G,k (k)5 25, ) %0 onl"p o+ Lko), 1Sko=n; oy +1.

c) Suppose n; £0 and j, is as in b) above. Suppose the triple {(j, k), (j', k'), I}, where
G, k) (j,ke¥ B,y does not satisfy : j J(mod2) and 1=(j' —j)/2- 1 or conditions b(ii),
b(iii), then Q/, ('=i=1 GG K); 15 25 )*0 for zg eF ot L ko), 1=kg

Snjo,+1 orF,,

Proof. We only prove a). The remainder of the proof uses exactly the same
technique. Observe first of all that Qu(j'—j—1; (j,k),(/,k); z;)=0, zﬂel’ﬂ iff
zp =707 l(zjk), 2,0 €I(7)—{1}. The latter occurs iff j=j —2(/ —j—1-1) ie.
l—(] j)/2—1 since T’ I(j)228r(j—2l) for leZ, j is a positive integer. O
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Corollary 2.4.2. 1) The functions wy(1,1; zg; m), wy(jo; zg; m), n; #0, wy(z,; m)

and y¥(z,;m) are continuous as functions of z; on r R
2) Let j be as in Lemma 2.4.1b. Theny, (jo+1,1); 25, 5 m), yy. (10+1 Zg,,> ™)
and w”)o(zﬁ ; m) are continuous functions of z; on F/, ((]0 ¥ Dk,), 1<k Snjoe T+1;
3) Let j, be asin 2). Then Vs, (o+1; S Zp,5 m) and P (z/, ; m) are contmuous on

r;.
Bio
Proof. This follows immediately from Theorem 2.3.2 and Lemma 2.4.1.

Lemma 2.4.3. The same statements hold as in Corollary 2.4.2 if we replace
“continuous” by “bounded”.

Proof. Here we prove only the boundedness of y,; on I s> the proof of boundedness
of the other functions on the various contours is entirely analogous and so will be
omitted. It is convenient to make the change of variable x; =(1—z;)~" and to
denote by x, the totality of these transformed binding variables. Then the set I'(jk) is
mapped to y; = {xeClrex=j/2}. The point z; =1 is mapped to co. Under this
change of variables, we have that if

INp+i-p= 2z, INpr+j =g zp0)s

then
oy =D Xt D)
’ Xjx—P ! Xjw—4
and, in terms of x;, the phase factors are given by
Xp—Xppe+(q—p+1) 2

exp —i i = = : .
PPNt s=p Nyt =g Xjp— X +(g—p—1) Xj— Xy +(g—p—1)

Let yg= n 7jxand let § be the ring of complex valued functions defined on y,,

§={F |§"(6/6x1 1,0/0X 5, ...)F is uniformly bounded on y, for each polynomial 2}.
By the above representation, we see that a given phase factor, regarded as a function
of x4, is ing provided it is not singular i.e. j/2 —j/2+(q — p—1) 0. Second, we note
that the product of a singular phase factor and a “mollifying” phase factor, i.e. one
which has zeros on y;, of the form

<xjk—xj’k’+q_p+1 ) (xjk_xj’k’+q"p—1 )
X=X +(@—p—1)/ \x; +(@—p—3)
withj/2—j'/2+(q—p—1)=01is, in lowest terms, a function in &. Thirdly we note that
if a phase factor is singular, then its reciprocal is not singular on 7, and is in §.
Finally we note that z"™ written in terms of x, also is in &.
Now in terms of x;,1,; may be expressed as
P(m),~ippp _ —igii
w= B e (e

where H denotes a product over the unmollified singular phase factors of y,, and F
is a sum of products which are schematically of the form

(zP) x (products of non-singular phase factors) x (products of a singular and
corresponding mollifying phase factor) x (products of reciprocals of singular
phase factors).
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Hence F isin §. But in addition we know by Corollary 3.3.2 that F vanishes at the
singularities of the singular phase factors to the appropriate orders so that y; is
bounded, at least for the x;, variables bounded away from co.

Consider a single singular phase factor e, We have that

2
F
Xjx— X +(@—p—1)

Fy=e iowF=F+

is in § by Lemma A.1 of the Appendix and that F, vanishes to the appropriate
orders at the singular points of the remaining singular phase factors to accom-
modate these remaining phase factors. The argument may be iterated, one singular
phase factor at a time to conclude that y, itselfisin § and, in particular, is uniformly
bounded. It follows that vy, regarded again as a function of z;, is uniformly
bounded on F,,, which is what we wished to show.

Corollary 2.4.4. 1) pyy’ugdzy, v uydzg, ny+0, and (1)’ udzy, ny £0 are
integrable on Iy and

Fj wy(Dy ppdzy=n, Ij (1, D)y pydz, ; (24.1)
’ /

2) Let]0 be as in the beginning of Section 2.2. Then Vg, (o +1),1 )wﬁlwﬂ clzlj and
g, Uo+ Dy Jouﬁ dzy, are integrable F LGo+ 1), kg), 1 <k0 =njat1, and

Wﬁjo((io +1, 1))wﬁ]"/i/}jodzpj0

T, o+ 1), (mye+ 1+ 1))

{ .
= ) wp, o+ VDypPopy dzy (2.4.2)

Mo+ 11 1y o+ 1)y tme+ 1)

3) vy, (}0+1)1p opt dz/, is integrable on Iy ;
4) Let (Jos ko) be as in the beginning of Section 2.2. Then

B Ajoko)
Wp atioko s VW MO0 ko2,

is integrable on Iy, ., and

B Ao ko)
§ o s acioko(Ls DY I o ydzg,
I A (ko

= |y (o) yliony dzy (2.4.3)

Fp,, o+ 1), 1)

Proof. The integrability statements in 1), 2) and 3) follow directly from Corollary
242, Lemma 2.4.3 and the fact that the y-functions vanish when z; =([—1)/,
1=</=<j(Lemma 2.4.1). The integrability statement in 4) and 2.4.3 follow from the
change of variable formulas ie. Corollary 2.2.3 and the fact that I'; ; x, goes to
F ((1+ 1), 1) under the change of variables. The identities 2.4.1 and 2.4.2 follow
from the symmetry relations in Corollary 2.2.4. O

Finally we show that we are able to distort some of the I" contours.
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Lemma 2.4.5. Let j, be such that n; +0 and if j, =1, then it is assumed that n, 22.
Then:

I, Go 1, Dwleny, dzp,

Fp, o+ 1), 1)

= | wp, o+ DOWPop, dzy (2.4.4)

Fp, o+ 1), (nyy+1+1)
and:

lppjo(jo + 1)wﬂjoﬂﬂjodzﬁlo

Fp(Go+ 1), (g +1+1)

= J w;i,o(jo + 1)wﬁj°.“ﬂjodzﬁjo~ (2.4.5)
T,

Proof. To prove 2.4.4 one proceeds by steps i.e. one shows that:

T, Go+ 1), 1 T'g, o+ 1),2) Fg5, o+ 1), (g4 1+ 1))
To prove 2.4.5 one also proceeds by steps i.e. one shows that:

Fp,, o+ 1), (mjp+1+ 1) Ip, (Go+ 1)) Iy,

Observe that each of the integrals is defined by Corollary 2.4.4. Each of the above
steps uses essentially the same argument so we will only discuss the case:

I Vg jo(jo + 1)1/)”’% judz 6

I, Got 1)

= [ yy,Uo+ Dylep, dzg, . (2.4.6)
rﬁ]o

Fix Z,,k el'(j,)—{1}, for (j,k )#(;O—I-l)le% Then consider F = Vg, (]0+1 Zg,m)
x P (z,},m),u,; as a function of z; 1= ‘2. To establish 2.4.6 it is sufficient
to show that F is analytic in closed region bounded by r ((Go+ 1) and I'((j, + 1)1).
In view of Theorem 2.2.2 it is sufficient to show:

a) The set {zeC:Q;_, +1)-22;,)=0 for some z;,el(j)—{1}}, where
Q,z,w)=(—-1zw+(—1)—(—2)z—Iw, does not meet the region bounded by
I'(jo+1)and I'(j, + 1)if the triple (j/, k', [) is excluded when either j' = (j, + 1) (mod2),
I=( ~jo)/2—3/2 or j=j(mod2), I=(]' —jo —4)2

b) Theset {zeC:Q; ., _;_(z;,2)=0forsome z;, e I'(j)— {1} } does not meet the
region bounded by I'(j,+ 1) and I'(j, + 1) if the triple (j, k, [) is excluded when either
J=(o+1) (mod2), I=(j,+1—j)/2—1 or j=j,(mod2), [=(j,—j)/2.

We will only treat Case a). Case b) is handled in the same way. Arguing as in the
proof of Lemma 2.4.1, we see that ze{zeC:Q; _; 1)~z 2z;,)=0 for some

2,0 €1(j)—{1}} implies z=¢/ ~/°7'"*(z,,.) for some z,,.€I'(j) — {1} which in turn
implies zel'(j —2(j,—1—2))— {1} = F(Zjo—j’+2l—4)—{1}. But this point is in
I'(jo+1) or I'(j,+ 1) only if 2j,—j +2I—4=j, or j,+1 which proves a). O
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2.5. A Completeness Relation for the ;s

We will use the notation established in Section 2.2. In additionif f=(n, ..., ny)e By
then f! will denote n,! ... nyl. In many of the formulas we will suppress z;. The main
computation of this chapter can now be given.

Theorem 2.5.1. Let f=(n,,...,ny)eBy be such that ny =1 and suppose m,<m.
Then:

1
B FI wy(1; myypP(m' ) dz,
B

1 . )
= — Z s j wﬂ}o(lo +1 ’ m)wﬂjo(m )'uﬂjodzﬂj
Joinjo#0, .Bjo- I's o
jogﬁand
Jo=1ifn1 22

1 N
- il | walimyp" (i yudz; (2.5.1)
s

/

where th=(m,,...,my,) and m'=(m,, ..., my).

Proof. From Corollary 2.4.4. (1), we see that the integrals in 2.5.1 exist and

1
7 [ wpl(1, 1) myph(m)ydz,

1
— 1;mpP(m') p,dz, =
gr | v mwiom) pgdzy = 2

B

1 1 dz,

_ — z
P Ry . 1,1): mpA(m’
(ny —Dlny! ..o ny! r{, 2mi |z“{=1w/}(( ); m)ypF(m’) o

1
'uﬂcdzﬂc *

Ifwekeepz; eIy — U (= =1} fixed, then it follows from Theorem 2.3.2 (5d)

(1,1)<(jk)
that (1, 1);myypP(m')1/z,, viewed as a function of z,, has simple poles in the
exterior of |z, ,|=1atz,; = tj"(zjoko), for (1,1) <(joko), (ioko)€ 4, and possibly at z,
= 0.
We will now compute the residues. Fix (joko)>((1,1)). Since p4((1,1);2,; m)

=271y, (25 ;) it is regular at z,, =1/(z;,, ). Moreover,

ziph(m)
=Zl_11 Z z—P(m’) ei(pf/,’ + Z Z—P(m’)eitpp
ePh: Pe?b:
P(N i, + 1) <P(1) P(1)<P(Njjk,+ 1)

Jo .
— iph _ N ioB
=z] 11 l l e 1N, +1 e P(m )el(pp
=1 PePBrlko

+z;11( y z-P<m'>ei¢£>

PePpB:
P(1) <P(N g+ 1)

ei(/’g — I-[ ei(ﬂay
1<a<y

aly
P(y)<P(a)
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and where 2.2.1 holds for (jk)=(j,k,). Observe that when z,, =t/(z; , ) for €'’
=¢!%""’ Both functions within the parentheses of the last expression are regular
at z,, =t"(z,,,,) and hence:

Res (,((1, 1); myph(m))z5 )

190(2 jy1eg)

Jo
=p r okoy (1, 1) m)y? " Uo*(m’) Res (21_11 T €% ot ’). (2.5.2)

1Jo(z jok,) =1

Using the fact that

ﬁeiwm,ukﬁn: Q2(211azj0k0)Q1(211aZjoko)
s=1 Q.+ 1(211>Zjok0)Qjo(le’zjok0)

for I=1, we see that:

Jjo iof
Res [z [ & Moro™!

tjD(ZJoko) 1=1

__ tJo Jo .
_ lim {211 t (Zjoko) 1—[ elwfw,-okoﬂ}

Z11 2 t0(2Zk,) Z1q =1

= lim (

211 190(2 joi,)

(24, — tjo(zjoko))Q 2211, Zjog) 212115 ZJ'U"O)) (2.5.3)

Qjo+1(2115 Zjoke) Qo115 Zjoko)
We now examine the pole at co. We write :

Wim) =zl + Y 27 Pk

PepB
P(1)>1
where
ziyh(in) =2 Yz Peiok
Peph
P(1)=1

If P(1)> 1 observe that m, =mp, Sm, —my < —1and (1/z, (1, 1); m)z ~F™)eioF

=z{{7"*" 7L F where F is regular at z,, = co (note e'? is regular at oo for all
Pe#*) and then

Pepb
P(1)>1

zflllp,;((l,l);m)( Y Z-P(m')eiq,g)
is regular at co. Hence, recalling that (1, 1); m)=z7{yp, (i), we see that:

Res (271 p,((L, 1) myp(m') = =0,y 15 (i) (). (2.5.4)

Z11= 0
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Combining 2.5.2, 2.5.3, 2.5.4, 2.2.5 and the first part of Corollary 2.4.4 (Part 4), we
have that:

1

Jo>1,n, *0 (nl - 1)’”2' nN! 1§k0§"ﬁo;j0>2

1
B rf wLsmypPugdz, = —
B

an an
Jo=1lifn1 =22 2<k=n1,jo=1

: rj Vg /\(joko)((la 1); m)wﬁ " (jokO)(m,)ﬂﬁ A (jokg)dzﬁc
B

1 N e
+6m1m’171_ j W(m)wﬂ(m ),Uﬁdzﬁ
Bt s
where we have used the obvious identity:

vl dzg = ] gyt (i gz
We now apply the second half of Corollary 2.4.4 (Part 4) to the integrals in the
sum and we obtain:

1
B‘,J wﬁ(l;m)w”(m’)ugdzﬁ

n; +1 . j 4
= — Z ot f 1pﬁjo((lo +1),1; m)lpﬁm(m )Mﬂmdzﬂ

| A .
Jjo: Jo> 2 "104:0 Bjo' Lp (Got+ 1), 1)
jo= 1 1fn1>2

Jo

+m; T, [ w iy (i gz (2.5.5)
ﬂ' I'p
However using Lemma 2.4.5 and Corollary 2.4.4 Parts 2 and 3, we see that:

(M1t D [, (o + D 1) mypPo(m' )y dzy,

I, o+ 1)

= I o+ 1 mpe(m g, dz, .

JO

This combined with 2.5.5 yields 2.5.1 and the theorem is proved.

[
We can now easily prove the completeness relation for the y’s.
Theorem 2.5.2. Let N be a positive integer. Then :
O = 3, ' f pp(m)ypP ™ pdz, . (2.5.6)
BE‘@N ﬁ

Proof. First of all the integrals on the right hand side exist by Corollary 2.4.4, Part 1.
Secondly it is sufficient to prove 2.5.6 under the assumption that m, <m),. This
follows from the fact (Theorem 2.2.6) that

V wpmyypP(m'\ydzy = | py(m'ypP(m)uydz,.
I'p I'p
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We will use induction on N to establish 2.5.6. For N=1, there is only one
binding, namely U =(1) and y(z;m)=2z" and 2.5.6 is just the orthonormality of z™,
meZ, on the unit circle with respect to uydz, =(1/2ni) (dz/z). We now assume that
2.5.6 has been established for N—1. Let & ={f=(n,,...,ny)eBy:n, 21} and let
Ho={PeBy:p+U}. Observe that the mapping B—p of A into By_, 18 a
bijection. We can rewrite 2.5.6 as follows:

Z ﬂ’ j lplil m) B(m/)'uﬁdzﬁ

BeA
1 , .
=S — 2, i Yo T wpl+1mpy (m)ugdz,, . (2.5.7)
B'eto 'nj:{%ibl‘ﬁ,

Using Theorem 2.5.1, the induction hypothesis and the above bijection between 4~
and %, _, we see that the left hand side of 2.5.7 can be rewritten as follows:

O s O

mim Ymm’

[y G+ 1 myyPo(m)u, dz,

Be%’]n,#O }>2ﬁ ! F,;J
j= 11fn1>2

But given f'=(n}, ...,ny)e ", and j such that n} , #0, there exists a unique fe A~
such that ;= ' andthuswﬁ(ﬁ-l) w,}(]+1)and =y In factlf]>2ﬂ ()
+1, ny,.,noy, ni+L n =1 N, ny) and if j=1, B=(n}+2, n)—1,
ny, ..., Ay). Conversely given fe A and jsuch thatj=2,n,+0orj=1 ifn1 =2, there
exists a unique '€ # g such that ;=" In factiflj =2, ' =(n, — L,n,, ...,n;_y,n;— 1,
N +Ln,,...,n)orifj=1, n122 p'=(n,—2,n,+1,n,,...,ny). This establishes
2.5.7 and hence 2.5.6.

3. Plancherel Theory for the Heisenberg Chain

3.1. Definition of the Operators {Ey(A)} and Their Properties

Let I'; be the subset of I', defined by I'y = {z,e I'jJ0 < arg(jz;, — (— 1)) S arg(jz;, — (i
—1))=2n if k<k'} and let 4 be a Borel subset of I'y. We define E4(4) as the
operatora with kernel

Ey(4)(m,m')= £ v5(zp, m)lpﬂ(zﬂ, m')ugdzy.

Theorem 3.1.1. i) The operators { E;(A)} are selfadjoint projections which reduce — Ay
il) The {E,(A)} satisfy the orthogonality relations
E (A)E;(4)=0 (3.1.1)

for B distinct from ', or f=p" but A and A’ disjoint.
iii) The {E4(4)} are complete in the sense

Y E(l,)=1. (3.1.2)

BeBN
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Proof. Itis clear from their definition that the Ey(4)’s reduce — 4. The completeness
is simply a restatement of Theorem 2.5.2, if we take into account the facts that there
are n;l orderings ofarg(jz; —(j— 1)), k=1,2, ...,n;, and that tpﬁwﬁ is symmetric under
interchange of j-complex binding variables (Corollary 2.2.4). Note that the
completeness relation (3.1.2), along with the positivity of E,(4) (cf. Theorem 2.2.6)
implies that E4(4) is bounded in norm by one. That E4(4) is actually a projection is
an immediate consequence of the orthogonality relation (3.1.1) and the complete-
ness 3.1.1. It thus remains to prove the orthogonality.

Now Ej(-) is (weakly) absolutely continuous with respect to Lebesgue measure
in I'y, as follows from its definition. It therefore suffices to prove the orthogonality
in the special case where 4 and 4’ are both open and both of non-zero distances
from a finite number of analytic sets of codimension one or higher in F and I’ 5
respectively. These analytic sets will be described in the context of the proof

For an arbltrary B, let |dz;| denote Lebesgue measure in F and let |-/, be the
norm in L? (Fﬂ, |dz,]).

Lemma 3.1.2. Let fe LX(I"5,|dzy)). Then the following estimate holds :
|} s Weglepdz| . <CB DI,

where C(B, A) is finite for A of non-zero distance from a finite number of analytic sets
of codimension one in I';,.

Proof. We consider in detail only the case where f§ consists of a single complex, f
=(0,0,...,1). We have that

flm)= g Wy(z5 m) f(zp)1ig(z,)dz,
= g(zlzz 2T LT f(z 0 uy(zy)dzy

where z;=t""{(zy) and z,z, ... zy=Nzy—(N — 1)=z is of unit modulus. In terms of
the variable z the integral may be written

flm) = [P ) 2

=f(m;,my—m,,...,my—m,)

where A4 is the image of 4 under the transformation zy—z, and so

112, zm = ) Y 1Sy ny, s my)?

0<ny<n3<..<ny ny

d
= S N (G C) Y EN 6 R VA G E) [ TEN Z))IN_ZZI

O0<ny<..<nny 4

z 2
MET s Gl 2=,

0<ny<..<nn

<2msup
4
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for 4 bounded away from zy=1 and zy=(N—2)/N (if N is even). For such a 4,

pa(zy) 1 (=DVTHWN 1) ”ﬁ( zy—1 >2
N  2ni (Nzy—(N—1)) 4 \kzy—(k—1)

is bounded, zye 4, and

Yy osuplZy.L M PP= Y sup |25 ... 2P |2y

0<ny<...<ny 4 0<ny<..<ny
< Y supny FzyMv<oo

0<nny
is bounded as well. (Recall that |zy|<1 for zy away from 1 and zz;_,, is of
modulus 1 with |z, <1 for 2k< j+1, so that [z5...zp8 { | S1for n,<ny <...<ny_,.)
This proves the lemma in the case where f consists of a single complex.

In the case where f§ consists of more than one complex an analogous argument
can be carried out for each term of y;. In this case however the z;, =1 and z;, =(j
—2)/j codimension one analytic sets should be supplemented by those analytic sets
of codimension one corresponding to the singularities of the singular phase factors
in y,, which the set 4 should avoid. In this case, C(8, 4) will take into account as well
the L*-norms of the e~ **# and the sum over the allowable permutations in ;. This
concludes the proof of Lemma 3.1.2.

Now let fe L3I 2h geLXI ) and define the form

Alf9)= Z i p’ﬂ(zﬂ)dzﬁ

) f .up'(zﬂ')dzp'f_(zﬂ)wp(zpa myyg(zg, m)g(zﬂ')eil(cﬂ(zﬁ)_sﬁl(zﬂl» .
i

The dependence of 4, on f, ', 4 and 4’ will be suppressed since they will be held
fixed throughout the argument. In addition to the hypotheses of Theorem 3.1.1, 4,
A" are assumed open and of non-zero distance from the analytic sets of Lemma 3.1.2.
From Lemma 3.1.2, we have the following result.

Lemma 3.1.3. The form A,(f,g) satisfies
(AL =CBDCE N flig gl -

We next examine the limit t— oo of 4,(f,g).
Lemma 3.1.4. For fixed f, g in L¥I" 2 LAT 5) respectively,
lim A(f.g)=0.

t— 0
Proof. The idea is to apply the Riemann Lebesgue Lemma. We first note that by
Lemma 3.1.3, it suffices to prove Lemma 3.1.4 in the special case when fe CZ(4),
geCg(4’) with supp f and suppg away from some additional analytic sets of
codimension one or higher. These sets will be described below. In this special case
we avail ourselves of some distribution theory.

If |z| =1 set



274 D. Babbitt and L. Thomas

where if |z = 1 the convergence is in the sense of distributions. Then in terms of the
distribution X,

mi my mn
Z Zl Zy Iy
mi<my<..<mn

=21X(z,)X(z,2,)...X(2,25...2y _ )0(212,...2y)

in the sense of distributions provided |z,z,...z /=1 for 1=k<N-1 and
|z,2,...2y| =1. By d(z) we mean

Ui =2
2m cr0 (1—2)%—e?’

Next, consider the distribution given by

Z wﬂ(Z/;, m)lpﬂ’(zﬂ’a m)

mezZ*N

=2n ZB Xz Zo- 1 )X (25 )2 12y Z0- 1) 2 - 1)+ (3.1.3)
PePp
QePp

-1 -1 / /
X (Zp gy Zp i v= 1920 (1) Zo- 1N - 1)

. B .
-1 -1 '\ ieptzg) —ipgo(zp:
cO(zy Mz M2 zy)et e T ooy

(By z}, we mean parameterization by the binding variables of f".) This identity is
justified by the facts that products of the form zy \ , zy ' ;.25 ;_; i<J, and
IN e 1 12N i w2 EN e a0 i'< j, have moduli greater than or equal to one.

We shall refer to a factor X or ¢ in a term of the above sum as singular if its
argument is equal to one for some values of z; and z;. in 4 and 4" respectively. Let us
count the number of singular X’s in a given term of the sum. Now actually
Zy o+ jorZnp+ j—i has modulus strictly greater than one for z’e 4 and i<j—1 and
modulus exactly one for i=j—1; zy . 12y .. +2---ZN,, +# Das modulus strictly
greater than one for z; e 4" and i' <j' and modulus exactly one for i'=j'. It follows
that a product zz i 1y2p ti2)---Zp 1920 1(1)Z0 - 1(2)--- Zg- 1 Can have modulus one
only if zp 425t 2y 2p 1y and Zp-1(4)Zp-1(2)---Zp -1y Separately have modulus
one. This can happen only if {P~'(1), P™'(2)...P~ (i)} is exactly a union of
complexes of 8, and {Q (1), 0 *(2), ..., @~ (i)} is exactly a union of complexes in
B. Asiranges from L to N, {P~ (1), P~ }(2),..., P~ (i)}, {0~ '(1),Q"*(2),....,Q (i)}
can separately be a union of complexes in f and f’ respectively at most r, times,
where r, is the smaller of the number of complexes in f or f'. Furthermore if the
number of complexes in f and ' is the same and equal to r, but f and ' are distinct,
we will again have r, <r. Thus in the cases ff + ' only at most r,, of the factors of a
given term in the sum can be singular, where r,, is strictly less than the number of
complexes in f§ or f, whichever is greater. This is also true for f=f in a slightly
weakened sense which we now explain.

Let f and ' be the same binding with r complexes and consider a term in the rhs
of Equation (3.1.3). The number of singular factors r, will certainly be strictly less
than r unless; a) the permutations P and Q fill complexes successively in the sense
that P~Y(i+1)=P~'()—1 if P ' ()N, +1 for some jk and analogously
Q Mi+1)=07 ')+ 1 if Q7 '() N, +j for some jk', and b) if P~ ({)=N, +1
then O~ '(i) must equal N . +j for some k'. Next suppose that the conditions a) and



Heisenberg Ferromagnet 275

b) are satisfied for a given term in Equation (3.1.3). The arguments of all the X’s and
0 in the term are never simultaneously 1, since if they were we would have zp_ 4,
=Zg-1(1y Zp-1(2) fzb_ 12y s Zp- 1y = Zgo - 1wy Which would contradi.c’_[ the factg that
suppf C4 is disjoint from suppg CA4". Now let {h,p,}, be a C*-partition of unity of
Ax A (i.e.each h,is C* and ) h,p,=1)so that the argument of some fixed singular

X or ¢ is not equal to one in the support of h,, for each o. (Hence in the support of 4,
at least one singular X or ¢ is in fact bounded and kX or h,0, as the case may be, is
C*)

Thus in all cases, f =+ f’ or f=f’, we have the following situation; for fe C¥(4),
geCg(4),

At(f; g) = 27'C Z Z IA' dZBdZﬁ’:uﬁ,uﬁ’f(nXPQ)

PePB a Ax
QePp

. Shyppge 0B o8t en=en) (3.1.4)

where the integrand of each term on the right hand side has at most r—1 X and ¢
factors which are singular, where r is the number of complexes in f or f, whichever
number is greater. [The product [[X,, denotes a product over the X’s with
appropriately permuted arguments depending on P,Q. The function h,p,, is just
unity for = or P,Q not satisfying (a) and (b) above.]

At this point, we impose a further condition on the support of f or g. (See the
paragraph following the statement of Lemma 3.1.4.) Suppose ' has the larger
number of complexes. We assume that suppg does not intersect the codimension
one or higher sets {S,p(} given by S,po = {2;/S,po(25) is not of maximal rank } where
S,po(Zy) is the matrix

l7z,3, ep(zy)
/ ’ ’
Ve 20100701 201Gy
— ' !
i) =\ Vep  Zo_,0%0-02) 29 (i)

Ve Zooau)
The symbol V, , denotes the gradient with respect to the z; binding variables and r,,
is the number of singular distributions in the aPQ term (r,<r is a function of
% P,Q); Zp-11yZg-1(2)---Zg-14, denotes the z, factor of the arguments of the
singular distributions in Equation (3.1.4). (If § had the larger number of complexes
an analogous assumption would instead be made on f. If f and ' have the same
number of complexes the assumption could be made on either f or g.) Now the
assumption that suppg is disjoint from S,,, sets implies that ey(z;) —¢j(zp) = de
itself may be regarded as an independent variable of integration for each term in
Equation (3.1.4). Performing the integration first with respect to a set of variables
independent of A¢ in each term of Equation (3.1.4) (it may be necessary to reduce the
partition of unity to make the transformation of variables one-to-one), one obtains
a sum of terms of the form [F,pye"*“d(4e) with F,p, an L'-function. By the
Riemann-Lebesgue Lemma, each of these terms goes to zero for t—oco. Thus
A(f.9)—0, for feCZ(4), geCF(4' — U S.pg) and so A(f,g)—0, t—oo, for
aPQ

fe Lz(ﬁﬂ), ge Lz(ﬁﬂ,) as well. This concludes the proof of Lemma 3.1.4.
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The proof or orthogonality, Equation (3.1.2) is now immediate. The kernel for
Ey(4)E;(4') can be written®
(EfA)Ep(4) (m, m')=(Eg(A)e™ "~ " NE(4')) (m, m')
= lim (Ey(4)e™ "4¥e" N E  (4")) (m, m')

t— o0

= lim A4,(y#(-, m), *'(-, m’))=0
t—> 00

by Lemma 3.1.4 and the facts that v, ;. for fixed m, m’ are bounded and hence in
LI ») and LAT ») respectively. Consequently Ey(4)E(4) is zero, which completes
the proof of Theorem 3.1.1.

3.2. Plancherel Theorem

Let #y = ﬁg—l;N LAT g Ug(25)dzp). Then Theorem 3.1.1 gives the following Plancherel
theorem.

Corollary 3.2.1. The mapping f — ) w"(zﬂ, m) f(m) defines a unitary mapping U from
X(Z*N) onto #,, such that U(—A";,)U'1 restricted to L*(I" g y(zp)dzy) is multipli-
cation by ey(zp).

Proof. Theorem 3.1.1 insures that U is an isometry. It remains to show that U is onto
%N.Let £ be a non-zero function of bounded support in *(Z"). Then we claim that
UE(4,)f is zero a.e. outside 4,CI'; and in Iy, B’ B. As in the proof of Theorem

3.1.1, it suffices to consider Borel sets bounded away from certain singular
hypersurfaces. If g is C* with support in 4, '+ or f=p' but 4, N4, =¢, then

CUEN4pf9>=Y [{ wghy, dzydzy Uf(zphpPe™> =Ny g(z,)

m AgXxAg:

=AUf,g)= lim A(Uf g)=0

in the notation of Lemma 3.1.3. Since such g’s are otherwise arbitrary, this
establishes the claim. This argument then implies that

UE;;(Ap)szAﬁ UEﬂ(Ap)f=XA,, uf
a.e., where y 4, is the characteristic function of 4, regarded as a function on U T 3

B
Now by analyticity of the y’s, U f'is a function which vanishes only on a set of
Lebesque measure zero in I'p. Thus finite linear combinations of the form

[}Z aﬁ,nXAB,nUf= Uﬁz aﬂ,nEﬁ(Aﬁ,n)f

are clearly dense in J#,, showing that U is onto.
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Appendix. An Elementary Sobolev Inequality

Lety,={xeClrex=gq;};y= H y;, and let § be the set of complex valued functions
=1

on y, F={F(xy,...,X W(a/axl,a/axz, ...,0/0x,)F is uniformly bounded on y for
each polynomial 2}. The function space § is a ring under the operations of addition
and multiplication.

Lemma A.1. Let Fe § and assume F vanishes along x;— x;=a for some i,j with areal.

Then the function F = (x;—x;—a)” 1F is uniformly bounded along with its derivatives
Jor (x;—x;—a)=*0 and hence extends to a function in §.

Proof. It is no restriction to assume a=0. We consider

0 \Pt 0 \P2 J \P» 1
o e A

a D a pj - a Pk
‘(az) (a,-) (=) kﬂ,-(a) F

Since | [(9/0x,)P<F is in § and vanishes at x,=x;, the proof is reduced to showing
(0/0x,)P{(0/0x )" (x;— x;)~ 'F is uniformly bounded for each p,, p; and F in § with F
vanishing at x;=x; We proceed by induction on p=p,+p; The case p=0is a
special case of the uniform boundedness of (/0x,) (x;—x;)~'F which we prove
below. If p#0 with p;+0 we have

d \P [0\ . o\ [\t (o @
o) (o) = (o) (o) (e

a pit1 a p;—1 _
- (E) (‘a“) (=) F
i J

By the inductive hypothesis and the facts that /dx;+ 9/0x)F is in & and vanishes
for x;=x;, the first term on the right hand side is uniformly bounded. Hence the
proof is reduced to showing (8/0x,)"""(0/0x ;)" '-(x;—x;)~'F is uniformly
bounded. But this procedure may be iterated until the proof is reduced to showing

is uniformly bounded. This term, however, is bounded by
sup

6 pt1
x p+l (5;;) o)

by an application of the following lemma.

Lemma A.2. Let f(x) be a C**' function on interval ICR containing 0. Then if
f0)=0,

. dp+1
(dx> (f(x)) 2 J’dxz jdxpﬂdpﬂf( p 1)

X
BEEE () s

and

1
sup

>
p+1 xel p=0

sup
xel
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Proof. Note first that
x x xP
g,(x)= [ dx, | dx,... j dx, —27—‘ p=1,
0 X1 Xp-1
which is easily seen from the facts that dg,/dx=g,_,, g,(x)=x and g,(0)=
The formula for d?/dx?(f/x) holds for p=0. Assume that it holds for p— 1. Then
by the formula for x"/p!

8152 o 2

X dxx

Xp-1

i d?f(x,) (P—l)!
p+1 fdxl xj dx,... xj_ dx, dx? xP
I R d? f(x)
: fdx1 j dx,... | dx,_; o

p+1jdx1jdx2 f dx, df(x)

x d? f(x
+jdx1jdx2 | dx, d{c(p)

K dPf(x,. 1)
p+1 jdxl j dx,... j d"pﬂd—;;;rl

which establishes the formula for p and thus the formula holds for all p=0. The
estimate follows from this formula and the formula for x?*1/(p+1)!.

xp+l

Xy Xp-1

Remark. This lemma is used in the proof of Lemma 2.5.3. To avail oneself of the
lemma, one first makes the transformation z;— x, defined by x;, =(1—z;)~ ! which
mapy I’y to a y of the above form.
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