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Abstract. Two theorems are proved—the first and the more important of them
due to Sarkovskii—providing complete and surprisingly simple answers to the
following two questions: (i) given that a continuous map T of an interval into
itself (more generally, into the real line) has a periodic orbit of period »n, which
other integers must occur as periods of the periodic orbits of T'? (ii) given that n
is the least odd integer which occurs as a period of a periodic orbit of T, what is
the “shape” of that orbit relative to its natural ordering as a finite subset of the
real line? As an application, we obtain improved lower bounds for the
topological entropy of T.

Consider an order relation - on the set N of all integers = 1, defined as follows. Let
N=AUB, A={2":n<0,1<3,] odd}, and B={2":m=<0}. Order A4 lexicographi-
cally with increasing n and [; order B with decreasing m, and let A precede B. We
have

3-5S79 ... 2-3F2-5...F4 -3 ... 84 21.
The main result of [1] is

Theorem 1 (Sarkovskii). Let T:IR—R be a continuous mapping which has a periodic
orbit of period n. Then T has a periodic orbit of period m for every me N such that
nm.
The main aim of these notes is to make the contents of [ 1] available to those who do
not read Russian. The reader should be warned that this is not a translation : some
new results, closely related to Sarkovskii’s work, are presented in Sections E and H,
and the material of [1] has been rearranged and modified to suit my taste and to
avoid one or two mistakes which have crept into Sarkovskii’s argument.
Nonetheless, I believe that all the main points of [ 1] and here, and I have tried not to
omit anything potentially useful.

The proof of Theorem 1 occupies Sections A-D below. Section E contains the
proof of the fact that the “minimal” odd orbits are, up to an order preserving or
order reversing isomorphism, uniquely determined by their period. This result
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(whose proof depends heavily on Sarkovskii’s ideas) is not taken from [1] and is
probably new. The construction of continuous maps which have a prescribed set of
periods is described in Section F. Section G contains some further comments and
outlines the differences between these notes, [ 1], and the related portions of [3] and
[4]. Finally, as an application of Sarkovskii’s theorem and our result on minimal
orbits, we show in Section H how to strengthen the recently obtained [2] lower
bounds for the topological entropy and the number of periodic points of T,
simplifying at the same time the proofs of these estimates.

I should like to thank Sheldon Newhouse for bringing Sarkovskii’s work to my attention and for

several very helpful discussions, and Joel Lebowitz for his interest and encouragement during the
preparation of these notes.

A. Definitions and Remarks

If T:X —-X is amapping of a set X into itself, the orbit of xe X relative to T'is the set
o(T, x)={x, Tx, T?x, ...}. An orbit w of T'is periodicifit s finite and if Trestricts to a
bijective map w—w ; the period of w is its cardinality 4 w. We write Per(T, k) for the
union of all periodic orbits of T with period k, and Fix T=Per(T, 1) for the set of
fixed points of T. Clearly

(1) xeFix(T" iff (T, x) is periodic and its period divides k;
(2) Per(T,n)CPer(T™ n/h.c.f.(n,m));
(3) If pis prime, then Per(T, p"*™)=Per(T?", p™).

From now on we assume that X =R and that T is continuous.

We write R=Fix(T)uUuD, where U = U(T) is the open set {xeR : Tx>x} and
D=D(T)={xeR: Tx<x}. If wis a periodic orbit of T, we write ,,;, =minw, w,,,,
=maxw, wY =max(wnU), and v” =min(wnD) (see Fig. 1). If Fix T=0 then clearly
either R=U or R=D, and so

(4) If T has a periodic orbit, then it has a fixed point.

Genn m
wmux
Fig. 1

B. Existence of Arbitrary Periods

(5) Let L and R be two closed intervals such that maxL=/1<g=minR. If (i)
LURCTR and RCTL, and (ii) A<g or T?A¢R, then Per(T,n)=+0 for all n>1.

Proof (Li and Yorke). Put I,=L if k=(n—1)modn, I,=R otherwise. Since

I, ., CT(I,), we can find a sequence (4,) of closed intervals such that A, =1,=R,

Ay, CAy,and T*4, =1,. As T"4,=1,=RD A,, T" has a fixed point ae 4,. We have
{a,Ta,...,T" %a}CR and T" ‘acL.

If T 'aeR, then T" 'a=Ai=p and T?1A=TaecR, an impossibility. Hence
#w(T,a)=n.
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(6) If T3a<a<Ta<T?a(or T*a=a>Ta> T?a) for some acR, then Per(T, n)+§
forall n=1 [4].

Proof. Take L=[a, Ta], R=[Ta, T?>a] and use (5).
In particular
(7) If Per(T,3)=+@, then Per(T,n)=0 for all n=1.

(8) IfTh<c<a<bZTa(or Th>c>a>bz=Ta)and Te=c, then Per(T, n)= 0 forall
nz1.

Proof. Choose de[c,a] such that Td=b and put L=[c,d], R=[d,b].
(9) Let w be a periodic orbit of T. If T has a fixed point between w,;, and w? (or
between w? and w_, ), then Per (T,n)=+4 for all n=1.

max.

Proof. Let wp,<c<w¥, Te=c¢, A={xewnU:x>c}. Choose ae A such that
Tao=max {Tx:xe A}. Let d=<c be the greatest fixed point of T in [c, a]. Since
o, <Cc=<d, the sequence a, Ta, T*a, ... cannot remain forever in [d, Ta]. But if
xewn|d, Ta], then either xe A and Tx < Ta, or xe D and Tx <x = Ta. Hence there
exists be[d, Tu] such that Th<d. Since Ta>a, b<a would force a fixed point of T
between b and a, contrary to the definition of d. Hence Th <d<a<b < Ta, and we
may use (8).

(10) Letw be a periodic orbit of T. If w® < @Y, then, by (9), Per(T,n)=* @ foralln > 1.
For example, if w is as in Figure 1, then T has periodic orbits of arbitrary periods.

(11) 1f Per(T,n)#9 for some odd n=3, then Per(T?, m)=+@ for all m=1.

Proof. Let w be a periodic orbit of Twith period n; since nis odd, w is also a periodic
orbit of T Let

oY =max(wnU(T?), wf=min(wnD(T?)).

By (10), we may assume that o <w?. Similarly, if w®<wV, then T has arbitrary
periods by (10) and so T? has arbitrary periods by (2); we may therefore also assume
that ¥ < w®. Note that then w has no elements between w¥ and w® and between wy
and w?}. There are therefore three cases consider: o, S0 <o) Lo’ <0’ Lo,,,,
opnSol<o’<of<ol<o,,,and o, Lo’=0Y <w)=w’ <o, But T(and
hence T?) has a fixed point y between w? and w®, and so in the first two cases 72 has
arbitrary periods by (9). It remains to consider the third case. Let acw, Ta=w
Then a>Ta and so a>w” Let bew, Th=a: then b>T?*b=w,_,, and so
b>wY)=wP. But then b>Th=a2w® Let cew, Te=w,,. Then
T?b=w,,;, < c<w" < Th. Hence there exists deR such that Th<d<b and Td=c.
We have T?b<y<d<b<T?*d, and so T? has arbitrary periods by (8).

min®

C. Proof of the Main Theorem
(12) If Thas a periodic orbit of period =2, then it has a periodic orbit of period 2.

Proof. We assume that Per(T, 2) =0 and prove by induction that Per(T, n) =@ for all
nz2: Let Per(T,2)=...=Per(T,n)=0, and let aePer(T,n+1). Let C, be the
connected component of T*a in R\Fix T As Fix(T)= Fix(T?)=...=Fix(T"), the
sign of TPx—x is constant on each C, for p<n. We claim that, for xe uC, and
1=p=n,
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Forif C, is between two fixed points, then C,,C T"C, for all m=1, and so there exists
y such that {y, Ty, ..., T"y} CC,. If C, is (say) on the left of all fixed points of T, we
have T?x>x on C,: else x> T?x > T?*?x > ... and C, could not meet a periodic orbit.
This proves (*). If now say a<Ta, then a<T?a. As T"(Ta)=a< Ta, we have
a<T?a<Ta. But now T" Y(T?a)=T""'a=a<T?a, T"(T?*a)=Ta>T?a, a con-
tradiction.

(13) If Per(T;2")#@, then Per(T,2*) %0 for 0<k<n.
Proof. Let m=2*"1, By (2), Per(T™,2" " **1)4 0. Now use (12) and (3).

(14) If Per(T,2*l)% @ for some odd /=3 and some k=0, then Per(T,2")#@ for all
n=0.
Proof. Use (2), (12), and (13).
(15) Lemma. Let Per(T,n)=0 for some n=3, n odd.
(@) If k=2n, then Per(T k)=+0.
(b) If k>n, then T* has a fixed point ¢ such that #w(T, 0)=3.
The proof is given in Section D.
(16) Let Iser(YZ n)=%@ for some odd n=3. Then Per(T, k)=*0 for all odd k=n.

Proof. Let ¢ be asin (15b) and let r = 4 w(T, g). Then r = 3, r divides k, and r is odd. If
r=k, we are done. Otherwise, » <k/3. By (15.a), Per(T, m)==0 for all m=2r and so
Per(T, k) +0.

(17) If Per(T?, n)#0 for some n=2, then Per(T, 2n)+0.

Proof. Let acPer(T?, n), r = # (T, a). Clearly r = n and r divides 2n. If nis even, then
T"a#a and r=2n: we may assume that r=n and that n is odd. But then n=3 and
the result follows from (15.a).

(18) If Per(T,n)#+0 for some odd n=3, then Per(T, 2k)+ for all k.
Proof. This follows at once from (11) and (17).

(19) Let Per(T,2")+6 for some n=0, [=3, | odd. Then Per(T,2"k)=+ @ whenever
m>nor m=nand k=1

Proof. For n=0, this is just (16) and (18). Assume that (19) has been proved for n— 1.
By (2), Per(T?,2"~ *I)%¢. By induction hypothesis, Per(T?,2™~ k)= @ for m>n and
m=n, k=1. Now use (17).

Theorem 1 now follows at once from (13), (14), and (19).

D. Proof of Lemma 15. Remarks

Let w be a periodic orbit of T, of odd period n=3. By (10), we may assume
(a) wl<o’.

As n is odd, there exists a such that either

(b) {a,Ta}ConU
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or {a, Ta} CwnD; without loss of generality we may assume (b). The rest of the
argument applies to any periodic orbit satisfying (a) and (b); the fact that n is odd
is not used again.

We claim that there exists b and ¢ in w and an integer m such that

(c) T'c=Za<Tasb<c=Tbhb and Tc<Ta;

d) 1=m=n-2.

To show this, let g =2 be the smallest positive integers such that
(e) Th=a<Ta<b<Tb

for some bew. Taking b= Ta, we see that 2<g<n—1. As T*" *Th<a, we cannot

have Th< T?b by the minimality of q. Hence The D. Let [ =2 be the first positive

integer for which T'be U. Thus {Tb,..., T~ *b} CwnD. Since be N U, (a) implies

that b<T' b <Tbh. Put c=T*'" b and note that Tce wn U and so Te< T?c. But

T4 '"Tc=T9%<=<a and so Tc< Ta by the minimality of q. Now put m=q—1[+1.
Next, we assume (c) and put p=m+ 3. There exists £€R such that

() Tré<a<TasTX<E<TE<T, 4<p<n+l;
(g) Tx>T?* for T*<x<TE.

(Choose 7 in [b, c] such that Tiy = c and the smallest { in [#, ¢] such that T{ =#; note
that Tx>#n if n=<x<{. Now choose ¢ in [#,{] such that T¢={.)

Observe that T2 maps [&, T¢] onto a larger interval, and so T2 must have fixed
points between £ and T¢: let w, and w, be the smallest and the largest of these. We
have

(hy Tré<a<TasT*<é<w,Sw,<TE<TE,
@) [&o,[CD(T?), Jw,, TEJCU(T?).
We find sequences (o;) and (f8;) such that
(G) <¢=o0p<o;<..<<.<w; 20,<.<p;<..<p, <P,=TE;
k) Too=o; ., T6,=P ,:
O Tyl =10y, o[, Ty, Bl = oy, fiy[Liz 1.
Next, find 1, and A, between a and T?¢ such that
(m) Ti,=w; and Tx<w, for as<x<i;
m) TA,=w, and Tx>w, for l,<xZT?E.
Finally, we find sequences (o;) and (t;) such that
(0) a<0_,<0,<...<0;<..<h Sh,<.<1,<..<t,<1_,<T?%;
(p) To,=0; and Tr;=f;, for iz—1;
@  Tlopil =10 0,0, Tlp 1 = Jop, BI for iz —1,
where we take o_, =T*¢ and f_, =T3¢
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We are now in a position to prove (15).

Let first k=p+2i,i=0. We have T"4, =T*"'w, > 1, by (g) and because w, is a
fixed point of T?; Trt;=T? ' T?*B,=T?"'T¢ <1, Hence T* has a fixed point ¢
such that A,<g<rzt,. Since, by (q), Teclw,, B[, () implies that
{To, T3g,..., T*"" 19} CJw,, TE].

Hence, by (i),

(1) o<T*<w,<To<T9<...<T**lo<T?*3g.

Let r=4w(T,0). If r<2i+3, then r must be even and <2i+2, contradicting
T"* 10> Tp. Hence

() r=#w(To)z(k-p)+4z(k—n)+3.

If k=p+2i+1, i=0, we find as before that T* has a fixed point ¢ such that
0;<0<A,, and therefore

(1) o<T*<i<T* o< T p<...<Tp.
By (g), we also have T?'"2p> T?&. As above, we conclude that
() r=#aw(To)z(k—p)+22(k—n)+1.

Ifkzn+2orifk=n+1and p<n,thenr=3by(s)or (u). Butifk=p=n+1, then (s)
applies and again r=3.

Finally, if k=2n, then r>(k—n)=k/2 and so, since r divides k, r=k. This
concludes the proof of (15).

Remark 1. Repeating the above argument for i= —1 we obtain g, and g, such that
TP, =0,, T?"%0,=0,, To, #¢, and 10,0,

Remark 2. Sarkovskii shows that if pis even, k=p+2i+1,i>0, and g is the greatest
fixed point of T*in [0, 4,], then # w(T, ¢) =k. For assume that r < k. Since k is odd
and r divides k, r is odd and k —r =24. By (1), &, < To < @, implies that Tp = T*%y for
some y such that o, , , <y <w,. By () and (i), y > T*% = Tp. Hence there exists  such
that o<8<2, and Té=". But then T"S=T""'T""T6=To=0<d. As T\, >},
this would force a fixed point of T* between & and A, contradicting our choice of .

The results of this section are summed up in the next two lemmas.

(20) Lemma. Let m=m(T) be the smallest positive integer® such that
T'cSa<Ta<b<c=Tb and Tt <Ta for some a, b, and c in R. Let p=p(T) be the
smallest positive integer® such that TP Sa<Ta< T*E<E<TE<TE and Tx > T*¢
for every x in [T?E, TE[, for some acR and E€R. Then (1) p<m+3; ) If k=p—2,
then there exists ge R such that T*o =g and To# ¢ ; (3) If k=2(p— 1) or if p is even and
k> p is odd, then Per(T, k)= 0.

(21) Lemma. Let w be a periodic orbit of T with (not necessarily odd) period n=3.
Assume that ©U < wP and that there exists ac w such that a< Ta< T?a. Let q= q(w) be
the smallest positive integer such that T'h<a<Ta <b<Tb for some a and b in w. If
m=m(T) is defined as in (20), then m+3=q+2=<n+1.

1 Or oo, if no such integer exists
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E. Minimal Orbits

We say that an orbit @ of T is minimal if (1) e is periodic, (2) n= # w is an odd
integer =3, and (3) P(T,m)= for every odd integer m such that 3=m=<n-—2.

In this section we prove that, for every odd integer n= 3, there exists only one
“type” of minimal orbit (see Fig. 2). More precisely, note that the restriction of T'to a
periodic orbit w is a cyclic permutation of a finite subset of R. Up to an order
preserving isomorphism, there are exactly (n—1)! such permutations. We shall
prove that only two of these (n—1)! permutations (say M and P) can possibly be
order-isomorphic to a minimal orbit of a continuous mapping R—IR. Moreover,
M =~ P if we allow order-reversing isomorphisms.

Let w, and w, be two finite totally ordered sets and let T;:w,;—~w, and
T, :w,—w, We say that T, and T, are isomorphic if there exists a bijective map
@ 1w, ~m, such that (1) ¢ is either order preserving or order reversing; and (2)
¢-Ty =T,

Theorem 2. Let o be a minimal orbit of a continuous map T:R->R, #fw=n=2k+1.
Then T, is isomorphic to the permutation M =M, of {1,2,...,n}, where M*** (1)
=k+1—sand M** 2 (1)=k+2+s for 0Ss<k—1.

Thus M is the cyclic permutation (1,3,4,2,5), M,=(1,4,5,3,6,2,7), etc. (see

Fig. 2).
A

Fig. 2 Mg

Proof. Let @ be a minimal orbit of T, 4w =n=2k + 1. Without loss of generality, we
may assume that n=5, #onU>#wnD, and 0= {1,2,...,n}. There exists acw
such that

{a, Ta}ConU.
By (10), oV <P, and so

=0, <a<Tugo?<o?’ =0 +120,,,=n.
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Assume first that a+ w,;,. Then T°a=w,,;, forsomes, 3<s<n—1. Takingb=Tain
Lemma (21) we see that, in the notation of that lemma, g <s— 1 <n— 2. But then, by
Lemma (20), there exists geIR such that T"~2g =, To % 0. Since r = # w(T; o) divides
n—2 which is odd, r is an odd integer = 3, contradicting the minimality of w. This
proves

(@) a=w,,=1;

(b) if xewnU and x=+ow,,, then TxewnD.

It follows that #wnD = #(wnU)—1 and hence #wnD=#(wnU)—1. Hence
() wY=k+1 and oP=k+2.

Furthermore, since every point of wnD has pre-image in onU and T, is injective,
the image of every point of wnD lies in wnU, or

(d) If xew and x=k+2, then Tx=<k+1.

We claim that in fact Ta =V =k + 1. For if not, then Ta < V. Put b= " in Lemma
(21) and let T°b=a for some s, 1 <s<n. Since b=+a, b=+ Ta, we have in fact s<n—2
and therefore g<n—2 in Lemma (21). As above, this leads to a contradiction with
the minimality of w and so

() Tu=w¥=k+1.
Assume now that T?a=w®. Put c=w?,

o =a<Te<Ta=wY<c<T?a.

min
Clearly T°c=a forsome s, 2<s<n—3. Hence m<n—3in Lemma (20) and we again
arrive at a contradiction. Thus

() T*a=w®=k+2.

Summing up what we know and writing a(s)= T*a, we obtain

(& l=og,=a=an)<..<aB)<..<al)<a2)<... <o =n=2k+1;
(h) a(l)=k+1 and a(2)=k+2;

(i) a2s+1)<a(l) and a(2s+2)>a(2) for 1=s=<k-—1.

This proves the theorem for n=35. For n=7 it is sufficient to show that the finite
sequences (a, a(2), a(4), ...) and (a(1), a(3), a(5), ...) are monotonic. This is proved by
induction, starting from a < a(2) < a(4) and a(1) > a(3) and using (i) together with the
following result.

G) If x<T?*x and T*x<T?x (or x>T?*x and T*x>T?%)
for some xew, then T*x)<a(l)<a(2)<T?*x)
for T*(x)za(2)>a(1)=T*(x)].

To prove (j), note that T~ ?T?x=x < T?x and T" 2T*x=T?x> T*x. Hence T" 2
has a fixed point ¢ between T?x and T*x. By minimality, o must be a fixed point of T.
But then (9) implies wY<g<w®, proving (j) and concluding the proof of the
theorem.
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F. Examples

(a) Continuous maps R—IR with minimal orbits of a given odd period n are
obtained as piece-wise monotonic extensions of the cyclic permutation M, defined
in the preceding section (Fig. 3).

Extending Mg

. N IS Y NN SN N
Fig. 3 1 2 3 4 56 7

To indicate why these mappings do not have odd periods between 3 and n— 2,
take n=>5 (the general case is similar). Labelling the intervals as in Figure 4 we note
that, under the action of T

(*) 1-2, 3-4-5, 2-103, and 5-10204.

Note also that the fixed point S acts as a source: the interval 1 is “stretched” by T2
onto 1u3. Hence no periodic orbit remains forever in 1U2. On the other hand, a
periodic orbit which remains in 5U4 must be of an even period. Hence periodic
orbits with odd period k=3 meet the interval 3. By (*), k=5.

4 S=fixed point
Fig.

(b) Itiseasy to give examples of maps with Per(T,n)=0 forn=1(or n%1, 2)and
with periodic orbits of period one (or of period 1 and 2).

(c) Other examples are obtained using the “square root” construction: If
T:[a,b] O and K >b—a, we define a “square root” S of T by S(x)=T(x)+ K on
[a,b], S(x)=x—K on [a+ K, b+ K] and extend S monotonically across [b,a+ K]
(see Fig. 5, 6). It is clear that, apart from the fixed point in [b,a +k], every periodic
orbit y of S meets a unique periodic orbit w of T, #y=2#w.

(d) Starting from (a) or (b) and iterating the construction (c) we obtain
mappings with Per(T,n)%§ for a given n and Per(T, k)=0 for all k}-n (see p. 237).
With a little care we can also construct continuous maps 7:IR—R such that
Per(T, n)+¢ if and only if n is a power of 2.
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/T_tK\\
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id—K

S="'square root'of T, T:[a,bl=>

Fig. 5

| | L I
a b a+K b+K

S ='square root' of T

Fig. 6

G. Comments

(a) Theorem 7 of [1] states that if a<b are two elements of a periodic orbit w of
period n, then between a and b must lie a fixed point of T* for some s<k. For
let a=#{s:1=s<k, Toa<a}=#{xew:x<a} and f=#{s:1=<s<k T°b<b}
= # {xew :x<b}. Clearly >0 >0 and so there exists s such that 1 < s<k, T*a>aq,
and T°b <b. For example, the interval labelled 3 in Figure 4 meets an orbit of period
4.

(b) The proof of the main theorem remains valid if we assume that T is a
continuous map X - R, where X is an arbitrary interval in R.

() If w is a periodic orbit of T with period n, and if nk, where | is the
ordering defined on p. 237, then T has an orbit of period k which is contained in
[0 pmins Omax]- This follows from (b) on taking X = [®,; O -

(d) TItook(5)and (6)from the paper [4] of Lieand Yorke in which they prove (7)
and study some other consequences of the existence of periodic orbits of period 3.

Sarkovskii gives a direct proof of (8) and does not state or use (5) and (6). The
assertion (7) is a special case of his main theorem.

(e) My proofof (12)is different from Sarkovskii’s, which seems to break down
for n=3 and 4. The proof of (15) is a slight modification of the proof of Sarkovskii,
which contains some mistakes.
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(f) Guckenheimer [3] gives a different proof of Theorem 1 assuming that T'is
smooth, T:[0,17 O, T(0)=T(1)=0, and the derivative of T vanishes at a single
point.

(g) As far as I know, Theorem 2 on minimal orbits (Section E) is not stated
anywhere in the literature. Sarkovskii gives in [1] the examples reproduced here in
Section F(a), without pointing out that these examples are essentially the only
possible ones. It seems likely though that he was aware of this fact.

H. An Application

Bowen and Franks prove in [2] the following theorem.
(BF) Let T:[0,1] D be continuous and assume that Per(T;n)=+, where
n=2%n and m=3 is odd. Then

. .1
(1) the topological entropy W(T) of T is> . log2;

(ii) there exists K, (independent of T) such that if r=2% and k=K,, then
#P(Lr)z2™

Combining the approach of Bowen and Franks with Sarkovskii’s results and
with Theorem 2 as indicated below, it is easy to strengthen both of these estimates.
We first remark that for n=3 a considerably simplified version of the argument of
Bowen and Franks yields

(@) h(T)=logx, x=(1+52)2=1618.

If now n is odd, then, by Theorem 1 or directly by (11), Per(T?2, 3)=@. Since h(T?)
=2N(T), this gives

(b) M(T)zlogx'".

Note that, in contrast to (BF(i)), the right-hand side of (b) does not tend to zero
when n=2k+1 tends to infinity. From (b) it follows at once that, under the
assumptions of (BF),

() h(T)=2“logx!’?.
The estimate (c) can be further improved if we use Theorem 2:

Theorem 3. If T satisfies the assumptions of (BF), then

(A) W(T)>2"log2'?;

(i) there exists a constant K,, (independent of T and d) such that if r=2% and
k=K,, then # P(T,r)= 2"

Proof. Asin [2], we may assume that n is odd. Taking n=m as small as possible and
using Theorem 2, we find that T'has a periodic orbit w isomorphic to M,,. Subdivide
the interval [, ®,... ] as in Figure 4, replacing the fixed point S if necessary by an
interval S=[a, ] where « (resp. f8) is the smallest (resp. largest) fixed point of T
between w? and w®. In view of (9) and the estimate (a) above we may assume that T
has no fixed point elsewhere in [w,;, ®n..J.) Labelling the subintervals of



248 P. Stefan

[0 i Omaxd \S as in Figure 4, we obtain the m x m incidence matrix
0100 0.0 1
1 000 0..01
01 000..00
0010 0..0 1
A=|0 0 0 1 0..0 O
0000 1.0 1
0000 0..0 1

00 0O0O0..10
with the characteristic polynomial —f(4), where
(d) fQ)y=am—2am"2—1.
It is easy to see that f has exactly 3 real roots: 4,;,,—1,and 4., and that, form=5,

(€ —2"2<Apn<—Cm/m+2)'? and 292 <, <212 427 M2,

min>

Using the argument of Bowen and Franks, it is sufficient to show that, for large
(f) Traced"~A!

max *

As in [2], it can be shown that (f) follows from the Perron-Frobenius theorem. We
can, however, obtain a more precise information directly: we claim that

(g IAl<l for 1<Zis<m-3,

where A, are the remaining m—3 roots of f. A simple proof of (g), for which I am
indebted to A. Connes, goes as follows. Set g =A"— 24"~ 2 and note that, for every
sufficiently small & >0,

1=|f—g|<l|g| on the circle |=1+¢.

Hence, by Rouché’s theorem, f has exactly m — 2 zeros in the disc |4] < 1. It is easy to
check that 2= —1 is the only root of f on the unit circle, proving (g) and so (in
combination with the arguments in [2]) concluding the proof of Theorem 3.

We note that (g) can be used, together with (e) and the inequalities on pp. 7
and 8 of [2], to obtain an explicit upper bound for the constant K,
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